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Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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Figure 2–5. Stratix LE

Each LE’s programmable register can be configured for D, T, JK, or SR 
operation. Each register has data, true asynchronous load data, clock, 
clock enable, clear, and asynchronous load/preset inputs. Global signals, 
general-purpose I/O pins, or any internal logic can drive the register’s 
clock and clear control signals. Either general-purpose I/O pins or 
internal logic can drive the clock enable, preset, asynchronous load, and 
asynchronous data. The asynchronous load data input comes from the 
data3 input of the LE. For combinatorial functions, the register is 
bypassed and the output of the LUT drives directly to the outputs of the 
LE.

Each LE has three outputs that drive the local, row, and column routing 
resources. The LUT or register output can drive these three outputs 
independently. Two LE outputs drive column or row and direct link 
routing connections and one drives local interconnect resources. This 
allows the LUT to drive one output while the register drives another 
output. This feature, called register packing, improves device utilization 
because the device can use the register and the LUT for unrelated 
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functions. Another special packing mode allows the register output to 
feed back into the LUT of the same LE so that the register is packed with 
its own fan-out LUT. This provides another mechanism for improved 
fitting. The LE can also drive out registered and unregistered versions of 
the LUT output.

LUT Chain & Register Chain

In addition to the three general routing outputs, the LEs within an LAB 
have LUT chain and register chain outputs. LUT chain connections allow 
LUTs within the same LAB to cascade together for wide input functions. 
Register chain outputs allow registers within the same LAB to cascade 
together. The register chain output allows an LAB to use LUTs for a single 
combinatorial function and the registers to be used for an unrelated shift 
register implementation. These resources speed up connections between 
LABs while saving local interconnect resources. See “MultiTrack 
Interconnect” on page 2–14 for more information on LUT chain and 
register chain connections.

addnsub Signal

The LE’s dynamic adder/subtractor feature saves logic resources by 
using one set of LEs to implement both an adder and a subtractor. This 
feature is controlled by the LAB-wide control signal addnsub. The 
addnsub signal sets the LAB to perform either A + B or A – B. The LUT 
computes addition, and subtraction is computed by adding the two’s 
complement of the intended subtractor. The LAB-wide signal converts to 
two’s complement by inverting the B bits within the LAB and setting 
carry-in = 1 to add one to the least significant bit (LSB). The LSB of an 
adder/subtractor must be placed in the first LE of the LAB, where the 
LAB-wide addnsub signal automatically sets the carry-in to 1. The 
Quartus II Compiler automatically places and uses the adder/subtractor 
feature when using adder/subtractor parameterized functions.

LE Operating Modes

The Stratix LE can operate in one of the following modes:

■ Normal mode
■ Dynamic arithmetic mode

Each mode uses LE resources differently. In each mode, eight available 
inputs to the LE—the four data inputs from the LAB local interconnect; 
carry-in0 and carry-in1 from the previous LE; the LAB carry-in 
from the previous carry-chain LAB; and the register chain connection—
are directed to different destinations to implement the desired logic 
function. LAB-wide signals provide clock, asynchronous clear, 
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Figure 2–10. LUT Chain & Register Chain Interconnects

The C4 interconnects span four LABs, M512, or M4K blocks up or down 
from a source LAB. Every LAB has its own set of C4 interconnects to drive 
either up or down. Figure 2–11 shows the C4 interconnect connections 
from an LAB in a column. The C4 interconnects can drive and be driven 
by all types of architecture blocks, including DSP blocks, TriMatrix 
memory blocks, and vertical IOEs. For LAB interconnection, a primary 
LAB or its LAB neighbor can drive a given C4 interconnect. 
C4 interconnects can drive each other to extend their range as well as 
drive row interconnects for column-to-column connections. 
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Figure 2–11. C4 Interconnect Connections Note (1)

Note to Figure 2–11:
(1) Each C4 interconnect can drive either up or down four rows.

C4 Interconnect
Drives Local and R4
Interconnects
up to Four Rows

Adjacent LAB can
drive onto neighboring
LAB's C4 interconnect

C4 Interconnect
Driving Up

C4 Interconnect
Driving Down

LAB

Row
Interconnect

Local
Interconnect



2–30 Altera Corporation
Stratix Device Handbook, Volume 1 July 2005
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Figure 2–16. M512 RAM Block LAB Row Interface

M4K RAM Blocks

The M4K RAM block includes support for true dual-port RAM. The M4K 
RAM block is used to implement buffers for a wide variety of applications 
such as storing processor code, implementing lookup schemes, and 
implementing larger memory applications. Each block contains 
4,608 RAM bits (including parity bits). M4K RAM blocks can be 
configured in the following modes:

■ True dual-port RAM
■ Simple dual-port RAM
■ Single-port RAM
■ FIFO
■ ROM
■ Shift register

When configured as RAM or ROM, you can use an initialization file to 
pre-load the memory contents.
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Figure 2–20. EP1S60 Device with M-RAM Interface Locations Note (1)

Note to Figure 2–20:
(1) Device shown is an EP1S60 device. The number and position of M-RAM blocks varies in other devices.

The M-RAM block local interconnect is driven by the R4, R8, C4, C8, and 
direct link interconnects from adjacent LABs. For independent M-RAM 
blocks, up to 10 direct link address and control signal input connections 
to the M-RAM block are possible from the left adjacent LABs for M-RAM 
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Table 2–13 shows the number of DSP blocks in each Stratix device.

DSP block multipliers can optionally feed an adder/subtractor or 
accumulator within the block depending on the configuration. This 
makes routing to LEs easier, saves LE routing resources, and increases 
performance, because all connections and blocks are within the DSP 
block. Additionally, the DSP block input registers can efficiently 
implement shift registers for FIR filter applications.

Figure 2–30 shows the top-level diagram of the DSP block configured for 
18 × 18-bit multiplier mode. Figure 2–31 shows the 9 × 9-bit multiplier 
configuration of the DSP block.

Table 2–13. DSP Blocks in Stratix Devices Notes (1), (2)

Device DSP Blocks
Total 9 × 9 
Multipliers

Total 18 × 18 
Multipliers

Total 36 × 36 
Multipliers

EP1S10 6 48 24 6

EP1S20 10 80 40 10

EP1S25 10 80 40 10

EP1S30 12 96 48 12

EP1S40 14 112 56 14

EP1S60 18 144 72 18

EP1S80 22 176 88 22

Notes to Table 2–13:
(1) Each device has either the number of 9 ×  9-, 18 ×  18-, or 36 ×  36-bit multipliers 

shown. The total number of multipliers for each device is not the sum of all the 
multipliers.

(2) The number of supported multiply functions shown is based on signed/signed 
or unsigned/unsigned implementations.
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Figure 2–34. Adder/Output Blocks Note (1)

Notes to Figure 2–34:
(1) Adder/output block shown in Figure 2–34 is in 18 ×  18-bit mode. In 9 ×  9-bit mode, there are four adder/subtractor 

blocks and two summation blocks.
(2) These signals are either not registered, registered once, or registered twice to match the data path pipeline.
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Output Selection Multiplexer

The outputs from the various elements of the adder/output block are 
routed through an output selection multiplexer. Based on the DSP block 
operational mode and user settings, the multiplexer selects whether the 
output from the multiplier, the adder/subtractor/accumulator, or 
summation block feeds to the output.

Output Registers

Optional output registers for the DSP block outputs are controlled by four 
sets of control signals: clock[3..0], aclr[3..0], and ena[3..0]. 
Output registers can be used in any mode.

Modes of Operation

The adder, subtractor, and accumulate functions of a DSP block have four 
modes of operation:

■ Simple multiplier
■ Multiply-accumulator
■ Two-multipliers adder
■ Four-multipliers adder

1 Each DSP block can only support one mode. Mixed modes in the 
same DSP block is not supported.

Simple Multiplier Mode

In simple multiplier mode, the DSP block drives the multiplier sub-block 
result directly to the output with or without an output register. Up to four 
18 × 18-bit multipliers or eight 9 × 9-bit multipliers can drive their results 
directly out of one DSP block. See Figure 2–35.
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provide general purpose clocking with multiplication and phase shifting 
as well as high-speed outputs for high-speed differential I/O support. 
Enhanced and fast PLLs work together with the Stratix high-speed I/O 
and advanced clock architecture to provide significant improvements in 
system performance and bandwidth.

The Quartus II software enables the PLLs and their features without 
requiring any external devices. Table 2–18 shows the PLLs available for 
each Stratix device.

Table 2–18. Stratix Device PLL Availability

Device
Fast PLLs Enhanced PLLs

1 2 3 4 7 8 9 10 5(1) 6(1) 11(2) 12(2)

EP1S10 v v v v v v

EP1S20 v v v v v v

EP1S25 v v v v v v

EP1S30 v v v v v (3) v (3) v (3) v (3) v v

EP1S40 v v v v v (3) v (3) v (3) v (3) v v v(3) v(3)

EP1S60 v v v v v v v v v v v v

EP1S80 v v v v v v v v v v v v

Notes to Table 2–18:
(1) PLLs 5 and 6 each have eight single-ended outputs or four differential outputs.
(2) PLLs 11 and 12 each have one single-ended output.
(3) EP1S30 and EP1S40 devices do not support these PLLs in the 780-pin FineLine BGA® package.
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Clock Multiplication & Division

Each Stratix device enhanced PLL provides clock synthesis for PLL 
output ports using m/(n × post-scale counter) scaling factors. The input 
clock is divided by a pre-scale divider, n, and is then multiplied by the m 
feedback factor. The control loop drives the VCO to match fIN × (m/n). 
Each output port has a unique post-scale counter that divides down the 
high-frequency VCO. For multiple PLL outputs with different 
frequencies, the VCO is set to the least common multiple of the output 
frequencies that meets its frequency specifications. Then, the post-scale 
dividers scale down the output frequency for each output port. For 
example, if output frequencies required from one PLL are 33 and 66 MHz, 
set the VCO to 330 MHz (the least common multiple in the VCO’s range). 
There is one pre-scale counter, n, and one multiply counter, m, per PLL, 
with a range of 1 to 512 on each. There are two post-scale counters (l) for 
regional clock output ports, four counters (g) for global clock output 
ports, and up to four counters (e) for external clock outputs, all ranging 
from 1 to 1024 with a 50% duty cycle setting. The post-scale counters 
range from 1 to 512 with any non-50% duty cycle setting. The Quartus II 
software automatically chooses the appropriate scaling factors according 
to the input frequency, multiplication, and division values entered.

Clock Switchover

To effectively develop high-reliability network systems, clocking schemes 
must support multiple clocks to provide redundancy. For this reason, 
Stratix device enhanced PLLs support a flexible clock switchover 
capability. Figure 2–53 shows a block diagram of the switchover 
circuit.The switchover circuit is configurable, so you can define how to 
implement it. Clock-sense circuitry automatically switches from the 
primary to secondary clock for PLL reference when the primary clock 
signal is not present.
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■ RapidIO
■ HyperTransport

Dedicated Circuitry

Stratix devices support source-synchronous interfacing with LVDS, 
LVPECL, 3.3-V PCML, or HyperTransport signaling at up to 840 Mbps. 
Stratix devices can transmit or receive serial channels along with a 
low-speed or high-speed clock. The receiving device PLL multiplies the 
clock by a integer factor W (W = 1 through 32). For example, a 
HyperTransport application where the data rate is 800 Mbps and the 
clock rate is 400 MHz would require that W be set to 2. The SERDES factor 
J determines the parallel data width to deserialize from receivers or to 
serialize for transmitters. The SERDES factor J can be set to 4, 7, 8, or 10 
and does not have to equal the PLL clock-multiplication W value. For a J 
factor of 1, the Stratix device bypasses the SERDES block. For a J factor of 
2, the Stratix device bypasses the SERDES block, and the DDR input and 
output registers are used in the IOE. See Figure 2–73. 

Figure 2–73. High-Speed Differential I/O Receiver / Transmitter Interface Example

An external pin or global or regional clock can drive the fast PLLs, which 
can output up to three clocks: two multiplied high-speed differential I/O 
clocks to drive the SERDES block and/or external pin, and a low-speed 
clock to drive the logic array.
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Figures 4–1 and 4–2 show receiver input and transmitter output 
waveforms, respectively, for all differential I/O standards (LVDS, 3.3-V 
PCML, LVPECL, and HyperTransport technology).

Figure 4–1. Receiver Input Waveforms for Differential I/O Standards
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tSKEW Clock skew between two external 
clock outputs driven by the different 
counters with the same settings

–75 ps

fSS Spread spectrum modulation 
frequency

30 150 kHz

% spread Percentage spread for spread 
spectrum frequency (10)

0.4 0.5 0.6 %

tARESET Minimum pulse width on areset  
signal

10 ns

tA R E S E T _ RE C O N
F I G

Minimum pulse width on the 
areset  signal when using PLL 
reconfiguration. Reset the PLL after 
scandataout  goes high.

500 ns

Table 4�128. Enhanced PLL Specifications for -6 Speed Grades (Part 1 of 2)

Symbol Parameter Min Typ Max Unit

fIN Input clock frequency 3
(1), (2)

650 MHz

fINPFD Input frequency to PFD 3 420 MHz

fINDUTY Input clock duty cycle 40 60 %

fEINDUTY External feedback clock input duty 
cycle

40 60 %

tINJITTER Input clock period jitter –200 (3) ps

tEINJITTER External feedback clock period jitter –200 (3) ps

tFCOMP External feedback clock compensation 
time (4)

6 ns

fOUT Output frequency for internal global or 
regional clock 

0.3 450 MHz

fOUT_EXT Output frequency for external clock (3) 0.3 500 MHz

tOUTDUTY Duty cycle for external clock output 
(when set to 50%)

45 55 %

tJITTER Period jitter for external clock output 
(6)

–100 ps for >200-MHz outclk
–20 mUI for <200-MHz outclk

ps or 
mUI

tCONFIG5,6 Time required to reconfigure the scan 
chains for PLLs 5 and 6

289/fSCANCLK

tCONFIG11,12 Time required to reconfigure the scan 
chains for PLLs 11 and 12

193/fSCANCLK

Table 4�127. Enhanced PLL Specifications for -5 Speed Grades (Part 2 of 2)

Symbol Parameter Min Typ Max Unit


