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Section I.  Stratix Device
Family Data Sheet

This section provides the data sheet specifications for Stratix® devices. 
They contain feature definitions of the internal architecture, 
configuration and JTAG boundary-scan testing information, DC 
operating conditions, AC timing parameters, a reference to power 
consumption, and ordering information for Stratix devices.

This section contains the following chapters:

■ Chapter 1, Introduction

■ Chapter 2, Stratix Architecture

■ Chapter 3, Configuration & Testing

■ Chapter 4, DC & Switching Characteristics

■ Chapter 5, Reference & Ordering Information

Revision History The table below shows the revision history for Chapters 1 through 5.

Chapter Date/Version Changes Made

1 July 2005, v3.2 ● Minor content changes.

September 2004, v3.1 ● Updated Table 1–6 on page 1–5.

April 2004, v3.0 ● Main section page numbers changed on first page.
● Changed PCI-X to PCI-X 1.0 in “Features” on page 1–2.
● Global change from SignalTap to SignalTap II.
● The DSP blocks in “Features” on page 1–2 provide dedicated 

implementation of multipliers that are now “faster than 300 MHz.”

January 2004, v2.2 ● Updated -5 speed grade device information in Table 1-6.

October 2003, v2.1 ● Add -8 speed grade device information.

July 2003, v2.0 ● Format changes throughout chapter.
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asynchronous preset load, synchronous clear, synchronous load, and 
clock enable control for the register. These LAB-wide signals are available 
in all LE modes. The addnsub control signal is allowed in arithmetic 
mode. 

The Quartus II software, in conjunction with parameterized functions 
such as library of parameterized modules (LPM) functions, automatically 
chooses the appropriate mode for common functions such as counters, 
adders, subtractors, and arithmetic functions. If required, you can also 
create special-purpose functions that specify which LE operating mode to 
use for optimal performance.

Normal Mode

The normal mode is suitable for general logic applications and 
combinatorial functions. In normal mode, four data inputs from the LAB 
local interconnect are inputs to a four-input LUT (see Figure 2–6). The 
Quartus II Compiler automatically selects the carry-in or the data3 
signal as one of the inputs to the LUT. Each LE can use LUT chain 
connections to drive its combinatorial output directly to the next LE in the 
LAB. Asynchronous load data for the register comes from the data3 
input of the LE. LEs in normal mode support packed registers.

Figure 2–6. LE in Normal Mode

Note to Figure 2–6:
(1) This signal is only allowed in normal mode if the LE is at the end of an adder/subtractor chain.
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C8 interconnects span eight LABs, M512, or M4K blocks up or down from 
a source LAB. Every LAB has its own set of C8 interconnects to drive 
either up or down. C8 interconnect connections between the LABs in a 
column are similar to the C4 connections shown in Figure 2–11 with the 
exception that they connect to eight LABs above and below. The C8 
interconnects can drive and be driven by all types of architecture blocks 
similar to C4 interconnects. C8 interconnects can drive each other to 
extend their range as well as R8 interconnects for column-to-column 
connections. C8 interconnects are faster than two C4 interconnects. 

C16 column interconnects span a length of 16 LABs and provide the 
fastest resource for long column connections between LABs, TriMatrix 
memory blocks, DSP blocks, and IOEs. C16 interconnects can cross M-
RAM blocks and also drive to row and column interconnects at every 
fourth LAB. C16 interconnects drive LAB local interconnects via C4 and 
R4 interconnects and do not drive LAB local interconnects directly.

All embedded blocks communicate with the logic array similar to LAB-
to-LAB interfaces. Each block (i.e., TriMatrix memory and DSP blocks) 
connects to row and column interconnects and has local interconnect 
regions driven by row and column interconnects. These blocks also have 
direct link interconnects for fast connections to and from a neighboring 
LAB. All blocks are fed by the row LAB clocks, labclk[7..0].
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The read and write operation of the memory is controlled by the WREN 
signal, which sets the ports into either read or write modes. There is no 
separate read enable (RE) signal.

Writing into RAM is controlled by both the WREN and byte enable 
(byteena) signals for each port. The default value for the byteena 
signal is high, in which case writing is controlled only by the WREN signal. 
The byte enables are available for the ×18, ×36, and ×72 modes. In the 
×144 simple dual-port mode, the two sets of byteena signals 
(byteena_a and byteena_b) are combined to form the necessary 
16 byte enables. Tables 2–10 and 2–11 summarize the byte selection.   

Table 2–9. M-RAM Block Configurations (True Dual-Port)

Port A
Port B

64K × 9 32K × 18 16K × 36 8K × 72

64K × 9 v v v v

32K × 18 v v v v

16K × 36 v v v v

8K × 72 v v v v

Table 2–10. Byte Enable for M-RAM Blocks Notes (1), (2)

byteena[3..0] datain ×18 datain ×36 datain ×72

[0] = 1 [8..0] [8..0] [8..0]

[1] = 1 [17..9] [17..9] [17..9]

[2] = 1 – [26..18] [26..18]

[3] = 1 – [35..27] [35..27]

[4] = 1 – – [44..36]

[5] = 1 – – [53..45]

[6] = 1 – – [62..54]

[7] = 1 – – [71..63]
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Similar to all RAM blocks, M-RAM blocks can have different clocks on 
their inputs and outputs. All input registers—renwe, datain, address, 
and byte enable registers—are clocked together from either of the two 
clocks feeding the block. The output register can be bypassed. The eight 
labclk signals or local interconnect can drive the control signals for the 
A and B ports of the M-RAM block. LEs can also control the clock_a, 
clock_b, renwe_a, renwe_b, clr_a, clr_b, clocken_a, and 
clocken_b signals as shown in Figure 2–19.

Table 2–11. M-RAM Combined Byte Selection for ×144 Mode Notes (1), (2)

byteena[15..0] datain ×144

[0] = 1 [8..0]

[1] = 1 [17..9]

[2] = 1 [26..18]

[3] = 1 [35..27]

[4] = 1 [44..36]

[5] = 1 [53..45]

[6] = 1 [62..54]

[7] = 1 [71..63]

[8] = 1 [80..72]

[9] = 1 [89..81]

[10] = 1 [98..90]

[11] = 1 [107..99]

[12] = 1 [116..108]

[13] = 1 [125..117]

[14] = 1 [134..126]

[15] = 1 [143..135]

Notes to Tables 2–10 and 2–11:
(1) Any combination of byte enables is possible.
(2) Byte enables can be used in the same manner with 8-bit words, i.e., in × 16, × 32, 

× 64, and × 128 modes.
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The variation due to process, voltage, and temperature is about ±15% on 
the delay settings. PLL reconfiguration can control the clock delay shift 
elements, but not the VCO phase shift multiplexers, during system 
operation.

Spread-Spectrum Clocking

Stratix device enhanced PLLs use spread-spectrum technology to reduce 
electromagnetic interference generation from a system by distributing the 
energy over a broader frequency range. The enhanced PLL typically 
provides 0.5% down spread modulation using a triangular profile. The 
modulation frequency is programmable. Enabling spread-spectrum for a 
PLL affects all of its outputs.

Lock Detect

The lock output indicates that there is a stable clock output signal in 
phase with the reference clock. Without any additional circuitry, the lock 
signal may toggle as the PLL begins tracking the reference clock. You may 
need to gate the lock signal for use as a system control. The lock signal 
from the locked port can drive the logic array or an output pin.

Whenever the PLL loses lock (for example, inclk jitter, clock switchover, 
PLL reconfiguration, power supply noise, and so on), the PLL must be 
reset with the areset signal to guarantee correct phase relationship 
between the PLL output clocks. If the phase relationship between the 
input clock versus output clock, and between different output clocks 
from the PLL is not important in the design, then the PLL need not be 
reset. 

f See the Stratix FPGA Errata Sheet for more information on implementing 
the gated lock signal in a design.

Programmable Duty Cycle

The programmable duty cycle allows enhanced PLLs to generate clock 
outputs with a variable duty cycle. This feature is supported on each 
enhanced PLL post-scale counter (g0..g3, l0..l3, e0..e3). The duty cycle 
setting is achieved by a low and high time count setting for the post-scale 
dividers. The Quartus II software uses the frequency input and the 
required multiply or divide rate to determine the duty cycle choices.

Advanced Clear & Enable Control

There are several control signals for clearing and enabling PLLs and their 
outputs. You can use these signals to control PLL resynchronization and 
gate PLL output clocks for low-power applications.
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Figure 2–58. Stratix Device Fast PLL

Notes to Figure 2–58:
(1) The global or regional clock input can be driven by an output from another PLL or any dedicated CLK or FCLK pin. 

It cannot be driven by internally-generated global signals.
(2) In high-speed differential I/O support mode, this high-speed PLL clock feeds the SERDES. Stratix devices only 

support one rate of data transfer per fast PLL in high-speed differential I/O support mode.
(3) This signal is a high-speed differential I/O support SERDES control signal.

Clock Multiplication & Division

Stratix device fast PLLs provide clock synthesis for PLL output ports 
using m/(post scaler) scaling factors. The input clock is multiplied by the 
m feedback factor. Each output port has a unique post scale counter to 
divide down the high-frequency VCO. There is one multiply divider, m, 
per fast PLL with a range of 1 to 32. There are two post scale L dividers 
for regional and/or LVDS interface clocks, and g0 counter for global clock 
output port; all range from 1 to 32.

In the case of a high-speed differential interface, set the output counter to 
1 to allow the high-speed VCO frequency to drive the SERDES. When 
used for clocking the SERDES, the m counter can range from 1 to 30. The 
VCO frequency is equal to fIN×m, where VCO frequency must be between 
300 and 1000 MHz.
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Figure 2–60. Row I/O Block Connection to the Interconnect

Notes to Figure 2–60:
(1) The 16 control signals are composed of four output enables io_boe[3..0], four clock enables io_bce[3..0], 

four clocks io_clk[3..0], and four clear signals io_bclr[3..0].
(2) The 28 data and control signals consist of eight data out lines: four lines each for DDR applications 

io_dataouta[3..0] and io_dataoutb[3..0], four output enables io_coe[3..0], four input clock enables 
io_cce_in[3..0], four output clock enables io_cce_out[3..0], four clocks io_cclk[3..0], and four clear 
signals io_cclr[3..0].
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Each I/O bank has its own VCCIO pins. A single device can support 1.5-, 
1.8-, 2.5-, and 3.3-V interfaces; each bank can support a different standard 
independently. Each bank also has dedicated VREF pins to support any 
one of the voltage-referenced standards (such as SSTL-3) independently.

Each I/O bank can support multiple standards with the same VCCIO for 
input and output pins. Each bank can support one voltage-referenced 
I/O standard. For example, when VCCIO is 3.3 V, a bank can support 
LVTTL, LVCMOS, 3.3-V PCI, and SSTL-3 for inputs and outputs.

Differential On-Chip Termination

Stratix devices provide differential on-chip termination (LVDS I/O 
standard) to reduce reflections and maintain signal integrity. Differential 
on-chip termination simplifies board design by minimizing the number 
of external termination resistors required. Termination can be placed 
inside the package, eliminating small stubs that can still lead to 
reflections. The internal termination is designed using transistors in the 
linear region of operation. 

Stratix devices support internal differential termination with a nominal 
resistance value of 137.5 Ω for LVDS input receiver buffers. LVPECL 
signals require an external termination resistor. Figure 2–71 shows the 
device with differential termination.

SSTL-3 Class II v v v

AGP (1×  and 2× ) v v

CTT v v v

Table 2–32. I/O Support by Bank (Part 2 of 2)

I/O Standard Top & Bottom Banks 
(3, 4, 7 & 8)

Left & Right Banks 
(1, 2, 5 & 6)

Enhanced PLL External 
Clock Output Banks 

(9, 10, 11 & 12)
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Figure 3–1 shows the timing requirements for the JTAG signals.

Figure 3–1. Stratix JTAG Waveforms

Table 3–4 shows the JTAG timing parameters and values for Stratix 
devices.

Table 3–4. Stratix JTAG Timing Parameters & Values

Symbol Parameter Min Max Unit

tJCP TCK clock period  100 ns

tJCH TCK clock high time 50 ns

tJCL TCK clock low time 50 ns

tJPSU JTAG port setup time 20 ns

tJPH JTAG port hold time 45 ns

tJPCO JTAG port clock to output 25 ns

tJPZX JTAG port high impedance to valid output 25 ns

tJPXZ JTAG port valid output to high impedance 25 ns

tJSSU Capture register setup time 20 ns

tJSH Capture register hold time 45 ns

tJSCO Update register clock to output 35 ns

tJSZX Update register high impedance to valid output 35 ns

tJSXZ Update register valid output to high impedance 35 ns
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Table 4–13. HyperTransport Technology Specifications

Symbol Parameter Conditions Minimum Typical Maximum Unit

VCCIO I/O supply voltage 2.375 2.5 2.625 V

VID (peak-
to-peak)

Input differential voltage 
swing (single-ended)

300 900 mV

VICM Input common mode 
voltage

300 900 mV

VOD Output differential voltage 
(single-ended)

RL = 100 Ω 380 485 820 mV

Δ VOD Change in VOD between 
high and low

RL = 100 Ω 50 mV

VOCM Output common mode 
voltage

RL = 100 Ω 440 650 780 mV

Δ VOCM Change in VOCM between 
high and low

RL = 100 Ω 50 mV

RL Receiver differential input 
resistor

90 100 110 Ω

Table 4–14. 3.3-V PCI Specifications

Symbol Parameter Conditions Minimum Typical Maximum Unit

VCCIO Output supply voltage 3.0 3.3 3.6 V

VIH High-level input voltage 0.5 ×  
VCCIO

VCCIO + 
0.5

V

VIL Low-level input voltage –0.5 0.3 ×  
VCCIO

V

VOH High-level output voltage IOUT = –500 μA 0.9 ×  
VCCIO

V

VOL Low-level output voltage IOUT = 1,500 μA 0.1 ×  
VCCIO

V
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Table 4–18. SSTL-18 Class I Specifications

Symbol Parameter Conditions Minimum Typical Maximum Unit

VCCIO Output supply voltage 1.65 1.8 1.95 V

VREF Reference voltage 0.8 0.9 1.0 V

VTT Termination voltage VREF – 0.04 VREF VREF + 0.04 V

VIH(DC) High-level DC input voltage VREF + 
0.125

V

VIL(DC) Low-level DC input voltage VREF – 0.125 V

VIH(AC) High-level AC input voltage VREF + 
0.275

V

VIL(AC) Low-level AC input voltage VREF – 0.275 V

VOH High-level output voltage IOH = –6.7 mA 
(3)

VTT + 0.475 V

VOL Low-level output voltage IOL = 6.7 mA (3) VTT – 0.475 V

Table 4–19. SSTL-18 Class II Specifications

Symbol Parameter Conditions Minimum Typical Maximum Unit

VCCIO Output supply voltage 1.65 1.8 1.95 V

VREF Reference voltage 0.8 0.9 1.0 V

VTT Termination voltage VREF – 0.04 VREF VREF + 0.04 V

VIH(DC) High-level DC input voltage VREF + 
0.125

V

VIL(DC) Low-level DC input voltage VREF – 0.125 V

VIH(AC) High-level AC input voltage VREF + 
0.275

V

VIL(AC) Low-level AC input voltage VREF – 0.275 V

VOH High-level output voltage IOH = –13.4 mA 
(3)

VTT + 0.630 V

VOL Low-level output voltage IOL = 13.4 mA (3) VTT – 0.630 V
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External Timing Parameters

External timing parameters are specified by device density and speed 
grade. Figure 4–4 shows the pin-to-pin timing model for bidirectional 
IOE pin timing. All registers are within the IOE.

Figure 4–4. External Timing in Stratix Devices

All external timing parameters reported in this section are defined with 
respect to the dedicated clock pin as the starting point. All external I/O 
timing parameters shown are for 3.3-V LVTTL I/O standard with the 
24-mA current strength and fast slew rate. For external I/O timing using 
standards other than LVTTL or for different current strengths, use the I/O 
standard input and output delay adders in Tables 4–103 through 4–108.
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Tables 4–85 through 4–90 show the external timing parameters on column 
and row pins for EP1S60 devices.

Table 4–85. EP1S60 External I/O Timing on Column Pins Using Fast Regional Clock Networks Note (1)

Parameter
-5 Speed Grade -6 Speed Grade -7 Speed Grade -8 Speed Grade

Unit
Min Max Min Max Min Max Min Max

tINSU 3.029  3.277  3.733  NA  ns

tINH 0.000  0.000  0.000  NA  ns

tOUTCO 2.446 4.871 2.446 5.215 2.446 5.685 NA NA ns

tXZ 2.386 4.745 2.386 5.083 2.386 5.561 NA NA ns

tZX 2.386 4.745 2.386 5.083 2.386 5.561 NA NA ns

Table 4–86. EP1S60 External I/O Timing on Column Pins Using Regional Clock Networks Note (1)

Parameter
-5 Speed Grade -6 Speed Grade -7 Speed Grade -8 Speed Grade

Unit
Min Max Min Max Min Max Min Max

tINSU 2.491 2.691 3.060 NA ns

tINH 0.000 0.000 0.000 NA ns

tOUTCO 2.767 5.409 2.767 5.801 2.767 6.358 NA NA ns

tXZ 2.707 5.283 2.707 5.669 2.707 6.234 NA NA ns

tZX 2.707 5.283 2.707 5.669 2.707 6.234 NA NA ns

tINSUPLL 1.233 1.270 1.438 NA ns

tINHPLL 0.000 0.000 0.000 NA ns

tOUTCOPLL 1.078 2.278 1.078 2.395 1.078 2.428 NA NA ns

tXZPLL 1.018 2.152 1.018 2.263 1.018 2.304 NA NA ns

tZXPLL 1.018 2.152 1.018 2.263 1.018 2.304 NA NA ns
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the FPGA device. The Quartus II software calculates the I/O timing for 
each I/O standard with a default baseline loading as specified by the I/O 
standard.

Altera measures clock-to-output delays (tCO) at worst-case process, 
minimum voltage, and maximum temperature (PVT) for the 3.3-V LVTTL 
I/O standard with 24 mA (default case) current drive strength setting and 
fast slew rate setting. I/O adder delays are measured to calculate the tCO 
change at worst-case PVT across all I/O standards and current drive 
strength settings with the default loading shown in Table 4–101 on 
page 4–62. Timing derating data for additional loading is taken for tCO 
across worst-case PVT for all I/O standards and drive strength settings. 
These three pieces of data are used to predict the timing at the output pin. 

tCO at pin = tOUTCO max for 3.3-V 24 mA LVTTL + I/O Adder + 
Output Delay Adder for Loading

Simulation using IBIS models is required to determine the delays on the 
PCB traces in addition to the output pin delay timing reported by the 
Quartus II software and the timing model in the device handbook.

1. Simulate the output driver of choice into the generalized test setup 
using values from Table 4–101 on page 4–62.

2. Record the time to VMEAS.

3. Simulate the output driver of choice into the actual PCB trace and 
load, using the appropriate IBIS input buffer model or an equivalent 
capacitance value to represent the load.

4. Record the time to VMEAS.

5. Compare the results of steps 2 and 4. The increase or decrease in 
delay should be added to or subtracted from the I/O Standard 
Output Adder delays to yield the actual worst-case propagation 
delay (clock-to-input) of the PCB trace.

The Quartus II software reports maximum timing with the conditions 
shown in Table 4–101 on page 4–62 using the proceeding equation. 
Figure 4–7 on page 4–62 shows the model of the circuit that is represented 
by the Quartus II output timing.
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Table 4–116. Stratix Maximum Input Clock Rate for CLK[1, 3, 8, 10] Pins in 
Flip-Chip Packages

I/O Standard -5 Speed 
Grade

-6 Speed 
Grade

-7 Speed 
Grade

-8 Speed 
Grade Unit

LVTTL 422 422 390 390 MHz

2.5 V 422 422 390 390 MHz

1.8 V 422 422 390 390 MHz

1.5 V 422 422 390 390 MHz

LVCMOS 422 422 390 390 MHz

GTL+ 300 250 200 200 MHz

SSTL-3 Class I 400 350 300 300 MHz

SSTL-3 Class II 400 350 300 300 MHz

SSTL-2 Class I 400 350 300 300 MHz

SSTL-2 Class II 400 350 300 300 MHz

SSTL-18 Class I 400 350 300 300 MHz

SSTL-18 Class II 400 350 300 300 MHz

1.5-V HSTL Class I 400 350 300 300 MHz

1.8-V HSTL Class I 400 350 300 300 MHz

CTT 300 250 200 200 MHz

Differential 1.5-V HSTL 
C1

400 350 300 300 MHz

LVPECL (1) 645 645 640 640 MHz

PCML (1) 300 275 275 275 MHz

LVDS (1) 645 645 640 640 MHz

HyperTransport 
technology (1)

500 500 450 450 MHz

Table 4–117. Stratix Maximum Input Clock Rate for CLK[7..4] & CLK[15..12] 
Pins in Wire-Bond Packages (Part 1 of 2)

I/O Standard -6 Speed 
Grade

-7 Speed 
Grade

-8 Speed 
Grade Unit

LVTTL 422 390 390 MHz

2.5 V 422 390 390 MHz

1.8 V 422 390 390 MHz

1.5 V 422 390 390 MHz

LVCMOS 422 390 390 MHz

GTL 250 200 200 MHz
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tSCANCLK scanclk frequency (5) 22 MHz

tDLOCK Time required to lock dynamically 
(after switchover or reconfiguring any 
non-post-scale counters/delays) (7) 
(11)

(9) 100 μs

tLOCK Time required to lock from end of 
device configuration (11)

10 400 μs

fVCO PLL internal VCO operating range 300 800 (8) MHz

tLSKEW Clock skew between two external 
clock outputs driven by the same 
counter

±50 ps

tSKEW Clock skew between two external 
clock outputs driven by the different 
counters with the same settings

±75 ps

fSS Spread spectrum modulation 
frequency

30 150 kHz

% spread Percentage spread for spread 
spectrum frequency (10)

0.4 0.5 0.6 %

tARESET Minimum pulse width on areset 
signal

10 ns

Table 4–129. Enhanced PLL Specifications for -7 Speed Grade (Part 1 of 2)

Symbol Parameter Min Typ Max Unit

fIN Input clock frequency 3 
(1), (2)

565 MHz

fINPFD Input frequency to PFD 3 420 MHz

fINDUTY Input clock duty cycle 40 60 %

fEINDUTY External feedback clock input duty 
cycle

40 60 %

tINJITTER Input clock period jitter ±200 (3) ps

tEINJITTER External feedback clock period jitter ±200 (3) ps

tFCOMP External feedback clock 
compensation time (4)

6 ns

fOUT Output frequency for internal global 
or regional clock

0.3 420 MHz

fOUT_EXT Output frequency for external clock 
(3)

0.3 434 MHz

Table 4–128. Enhanced PLL Specifications for -6 Speed Grades (Part 2 of 2)

Symbol Parameter Min Typ Max Unit
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tJITTER Period jitter for DIFFIO clock out (6) (5) ps

tLOCK Time required for PLL to acquire lock 10 100 μs

m Multiplication factors for m counter (7) 1 32 Integer

l0, l1, g0 Multiplication factors for l0, l1, and g0 
counter (7), (8)

1 32 Integer

tARESET Minimum pulse width on areset 
signal

10 ns

Table 4–133. Fast PLL Specifications for -8 Speed Grades (Part 1 of 2)

Symbol Parameter Min Max Unit

fIN CLKIN frequency (1), (3) 10 460 MHz

fINPFD Input frequency to PFD 10 500 MHz

fOUT Output frequency for internal global or 
regional clock (4)

9.375 420 MHz

fOUT_DIFFIO Output frequency for external clock 
driven out on a differential I/O data 
channel 

(5) (5) MHz

fVCO VCO operating frequency 300 700 MHz

tINDUTY CLKIN duty cycle 40 60 %

tINJITTER Period jitter for CLKIN pin ±200 ps

tDUTY Duty cycle for DFFIO 1× CLKOUT pin (6) 45 55 %

tJITTER Period jitter for DIFFIO clock out (6) (5) ps

tLOCK Time required for PLL to acquire lock 10 100 μs

m Multiplication factors for m counter (7) 1 32 Integer

l0, l1, g0 Multiplication factors for l0, l1, and g0 
counter (7), (8)

1 32 Integer

Table 4–132. Fast PLL Specifications for -7 Speed Grades (Part 2 of 2)

Symbol Parameter Min Max Unit
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