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Logic Elements

functions. Another special packing mode allows the register output to 
feed back into the LUT of the same LE so that the register is packed with 
its own fan-out LUT. This provides another mechanism for improved 
fitting. The LE can also drive out registered and unregistered versions of 
the LUT output.

LUT Chain & Register Chain

In addition to the three general routing outputs, the LEs within an LAB 
have LUT chain and register chain outputs. LUT chain connections allow 
LUTs within the same LAB to cascade together for wide input functions. 
Register chain outputs allow registers within the same LAB to cascade 
together. The register chain output allows an LAB to use LUTs for a single 
combinatorial function and the registers to be used for an unrelated shift 
register implementation. These resources speed up connections between 
LABs while saving local interconnect resources. See “MultiTrack 
Interconnect” on page 2–14 for more information on LUT chain and 
register chain connections.

addnsub Signal

The LE’s dynamic adder/subtractor feature saves logic resources by 
using one set of LEs to implement both an adder and a subtractor. This 
feature is controlled by the LAB-wide control signal addnsub. The 
addnsub signal sets the LAB to perform either A + B or A – B. The LUT 
computes addition, and subtraction is computed by adding the two’s 
complement of the intended subtractor. The LAB-wide signal converts to 
two’s complement by inverting the B bits within the LAB and setting 
carry-in = 1 to add one to the least significant bit (LSB). The LSB of an 
adder/subtractor must be placed in the first LE of the LAB, where the 
LAB-wide addnsub signal automatically sets the carry-in to 1. The 
Quartus II Compiler automatically places and uses the adder/subtractor 
feature when using adder/subtractor parameterized functions.

LE Operating Modes

The Stratix LE can operate in one of the following modes:

■ Normal mode
■ Dynamic arithmetic mode

Each mode uses LE resources differently. In each mode, eight available 
inputs to the LE—the four data inputs from the LAB local interconnect; 
carry-in0 and carry-in1 from the previous LE; the LAB carry-in 
from the previous carry-chain LAB; and the register chain connection—
are directed to different destinations to implement the desired logic 
function. LAB-wide signals provide clock, asynchronous clear, 
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MultiTrack Interconnect

can drive other R8 interconnects to extend their range as well as C8 
interconnects for row-to-row connections. One R8 interconnect is faster 
than two R4 interconnects connected together.

R24 row interconnects span 24 LABs and provide the fastest resource for 
long row connections between LABs, TriMatrix memory, DSP blocks, and 
IOEs. The R24 row interconnects can cross M-RAM blocks. R24 row 
interconnects drive to other row or column interconnects at every fourth 
LAB and do not drive directly to LAB local interconnects. R24 row 
interconnects drive LAB local interconnects via R4 and C4 interconnects. 
R24 interconnects can drive R24, R4, C16, and C4 interconnects.

The column interconnect operates similarly to the row interconnect and 
vertically routes signals to and from LABs, TriMatrix memory, DSP 
blocks, and IOEs. Each column of LABs is served by a dedicated column 
interconnect, which vertically routes signals to and from LABs, TriMatrix 
memory and DSP blocks, and horizontal IOEs. These column resources 
include:

■ LUT chain interconnects within an LAB
■ Register chain interconnects within an LAB
■ C4 interconnects traversing a distance of four blocks in up and down 

direction
■ C8 interconnects traversing a distance of eight blocks in up and 

down direction
■ C16 column interconnects for high-speed vertical routing through 

the device

Stratix devices include an enhanced interconnect structure within LABs 
for routing LE output to LE input connections faster using LUT chain 
connections and register chain connections. The LUT chain connection 
allows the combinatorial output of an LE to directly drive the fast input 
of the LE right below it, bypassing the local interconnect. These resources 
can be used as a high-speed connection for wide fan-in functions from 
LE 1 to LE 10 in the same LAB. The register chain connection allows the 
register output of one LE to connect directly to the register input of the 
next LE in the LAB for fast shift registers. The Quartus II Compiler 
automatically takes advantage of these resources to improve utilization 
and performance. Figure 2–10 shows the LUT chain and register chain 
interconnects.
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TriMatrix Memory

Figure 2–21. Left-Facing M-RAM to Interconnect Interface Notes (1), (2)

Notes to Figure 2–21:
(1) Only R24 and C16 interconnects cross the M-RAM block boundaries.
(2) The right-facing M-RAM block has interface blocks on the right side, but none on the left. B1 to B6 and A1 to A6 

orientation is clipped across the vertical axis for right-facing M-RAM blocks.

M-RAM Block

Port B

Port A

Row Unit Interface
Allows LAB Rows to
Drive Address and
Control Signals to
M-RAM Block

Column Interface Block
Allows LAB Columns to
Drive datain and dataout to
and from M-RAM Block

LABs in Row
M-RAM Boundary

LABs in Column
M-RAM Boundary

M512 RAM Block Columns

Column Interface Block
Drives to and from
C4 and C8 Interconnects

LAB Interface
Blocks

R11

R10

R9

R8

R7

R6

R5

R4

R3

R2

R1

A1 A2 A3 A4 A5 A6

B1 B2 B3 B4 B5 B6



2–44 Altera Corporation
Stratix Device Handbook, Volume 1 July 2005

TriMatrix Memory

Independent Clock Mode

The memory blocks implement independent clock mode for true dual-
port memory. In this mode, a separate clock is available for each port 
(ports A and B). Clock A controls all registers on the port A side, while 
clock B controls all registers on the port B side. Each port, A and B, also 
supports independent clock enables and asynchronous clear signals for 
port A and B registers. Figure 2–24 shows a TriMatrix memory block in 
independent clock mode.



2–56 Altera Corporation
Stratix Device Handbook, Volume 1 July 2005

Digital Signal Processing Block

Figure 2–31. DSP Block Diagram for 9 × 9-Bit Configuration
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Pipeline/Post Multiply Register

The output of 9 × 9- or 18 × 18-bit multipliers can optionally feed a register 
to pipeline multiply-accumulate and multiply-add/subtract functions. 
For 36 × 36-bit multipliers, this register will pipeline the multiplier 
function.

Adder/Output Blocks

The result of the multiplier sub-blocks are sent to the adder/output block 
which consist of an adder/subtractor/accumulator unit, summation unit, 
output select multiplexer, and output registers. The results are used to 
configure the adder/output block as a pure output, accumulator, a simple 
two-multiplier adder, four-multiplier adder, or final stage of the 36-bit 
multiplier. You can configure the adder/output block to use output 
registers in any mode, and must use output registers for the accumulator. 
The system cannot use adder/output blocks independently of the 
multiplier. Figure 2–34 shows the adder and output stages.
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Digital Signal Processing Block

Figure 2–36. 36 × 36 Multiply Mode

Notes to Figure 2–36:
(1) These signals are not registered or registered once to match the pipeline.
(2) These signals are not registered, registered once, or registered twice for latency to match the pipeline.
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Figure 2–41. DSP Block Interface to Interconnect
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include clock[0..3] clocks, aclr[0..3] asynchronous clears, 
ena[1..4] clock enables, signa, signb signed/unsigned control 
signals, addnsub1 and addnsub3 addition and subtraction control 
signals, and accum_sload[0..1] accumulator synchronous loads. The 
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Table 2–23 shows the performance on each of the fast PLL clock inputs 
when using LVDS, LVPECL, 3.3-V PCML, or HyperTransport technology.

External Clock Outputs

Each fast PLL supports differential or single-ended outputs for source-
synchronous transmitters or for general-purpose external clocks. There 
are no dedicated external clock output pins. Any I/O pin can be driven 
by the fast PLL global or regional outputs as an external output pin. The 
I/O standards supported by any particular bank determines what 
standards are possible for an external clock output driven by the fast PLL 
in that bank.

Phase Shifting 

Stratix device fast PLLs have advanced clock shift capability that enables 
programmable phase shifts. You can enter a phase shift (in degrees or 
time units) for each PLL clock output port or for all outputs together in 
one shift. You can perform phase shifting in time units with a resolution 
range of 125 to 416.66 ps. This resolution is a function of the VCO period, 
with the finest step being equal to an eighth (×0.125) of the VCO period. 

SSTL-2 Class II v

SSTL-3 Class I v

SSTL-3 Class II v

AGP (1×  and 2× )

CTT v

Table 2–23. LVDS Performance on Fast PLL Input

Fast PLL Clock Input Maximum Input Frequency (MHz)

CLK0, CLK2, CLK9, CLK11, 
FPLL7CLK, FPLL8CLK, FPLL9CLK, 
FPLL10CLK

717(1)

CLK1, CLK3, CLK8, CLK10 645

Note to Table 2–23:
(1) See the chapter DC & Switching Characteristics of the Stratix Device Handbook, 

Volume 1 for more information.

Table 2–22. Fast PLL Port I/O Standards (Part 2 of 2)

I/O Standard
Input

INCLK PLLENABLE
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I/O Structure

Stratix devices have an I/O interconnect similar to the R4 and C4 
interconnect to drive high-fanout signals to and from the I/O blocks. 
There are 16 signals that drive into the I/O blocks composed of four 
output enables io_boe[3..0], four clock enables io_bce[3..0], four 
clocks io_bclk[3..0], and four clear signals io_bclr[3..0]. The 
pin’s datain signals can drive the IO interconnect, which in turn drives 
the logic array or other I/O blocks. In addition, the control and data 
signals can be driven from the logic array, providing a slower but more 
flexible routing resource. The row or column IOE clocks, io_clk[7..0], 
provide a dedicated routing resource for low-skew, high-speed clocks. 
I/O clocks are generated from regional, global, or fast regional clocks (see 
“PLLs & Clock Networks” on page 2–73). Figure 2–62 illustrates the 
signal paths through the I/O block.

Figure 2–62. Signal Path through the I/O Block
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I/O Structure

Figure 2–64. Stratix IOE in Bidirectional I/O Configuration Note (1)

Note to Figure 2–64:
(1) All input signals to the IOE can be inverted at the IOE.

The Stratix device IOE includes programmable delays that can be 
activated to ensure zero hold times, input IOE register-to-logic array 
register transfers, or logic array-to-output IOE register transfers.

A path in which a pin directly drives a register may require the delay to 
ensure zero hold time, whereas a path in which a pin drives a register 
through combinatorial logic may not require the delay. Programmable 
delays exist for decreasing input-pin-to-logic-array and IOE input 
register delays. The Quartus II Compiler can program these delays to 
automatically minimize setup time while providing a zero hold time. 
Programmable delays can increase the register-to-pin delays for output 
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shift by the same degree amount. For example, all 10 DQS pins on the top 
of the device can be shifted by 90° and all 10 DQS pins on the bottom of 
the device can be shifted by 72°. The reference circuits require a maximum 
of 256 system reference clock cycles to set the correct phase on the DQS 
delay elements. Figure 2–69 illustrates the phase-shift reference circuit 
control of each DQS delay shift on the top of the device. This same circuit 
is duplicated on the bottom of the device.

Figure 2–69. Simplified Diagram of the DQS Phase-Shift Circuitry

See the External Memory Interfaces chapter in the Stratix Device Handbook, 
Volume 2 for more information on external memory interfaces.

Programmable Drive Strength

The output buffer for each Stratix device I/O pin has a programmable 
drive strength control for certain I/O standards. The LVTTL and 
LVCMOS standard has several levels of drive strength that the user can 
control. SSTL-3 Class I and II, SSTL-2 Class I and II, HSTL Class I and II, 
and 3.3-V GTL+ support a minimum setting, the lowest drive strength 
that guarantees the IOH/IOL of the standard. Using minimum settings 
provides signal slew rate control to reduce system noise and signal 
overshoot. 
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Figure 2–71. LVDS Input Differential On-Chip Termination

I/O banks on the left and right side of the device support LVDS receiver 
(far-end) differential termination. 

Table 2–33 shows the Stratix device differential termination support.

Table 2–34 shows the termination support for different pin types.

The differential on-chip resistance at the receiver input buffer is 
118 Ω ±20 %.

RD
+

Ð

+

Ð

Transmitting
Device

Receiving Device with
Differential Termination

Z0

Z0

Table 2–33. Differential Termination Supported by I/O Banks

Differential Termination Support I/O Standard Support Top & Bottom 
Banks (3, 4, 7 & 8)

Left & Right Banks 
(1, 2, 5 & 6)

Differential termination (1), (2) LVDS v

Notes to Table 2–33:
(1) Clock pin CLK0, CLK2, CLK9, CLK11, and pins FPLL[7..10]CLK do not support differential termination.
(2) Differential termination is only supported for LVDS because of a 3.3-V VC C I O.

Table 2–34. Differential Termination Support Across Pin Types

Pin Type RD

Top and bottom I/O banks (3, 4, 7, and 8)

DIFFIO_RX[] v

CLK[0,2,9,11],CLK[4-7],CLK[12-15]

CLK[1,3,8,10] v

FCLK

FPLL[7..10]CLK
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1 Stratix, Stratix II, Cyclone®, and Cyclone II devices must be 
within the first 17 devices in a JTAG chain. All of these devices 
have the same JTAG controller. If any of the Stratix, Stratix II, 
Cyclone, and Cyclone II devices are in the 18th or after they will 
fail configuration. This does not affect SignalTap II. 

f For more information on JTAG, see the following documents:

■ AN 39: IEEE Std. 1149.1 (JTAG) Boundary-Scan Testing in Altera Devices 
■ Jam Programming & Test Language Specification 

SignalTap II 
Embedded Logic 
Analyzer

Stratix devices feature the SignalTap II embedded logic analyzer, which 
monitors design operation over a period of time through the IEEE Std. 
1149.1 (JTAG) circuitry. You can analyze internal logic at speed without 
bringing internal signals to the I/O pins. This feature is particularly 
important for advanced packages, such as FineLine BGA® packages, 
because it can be difficult to add a connection to a pin during the 
debugging process after a board is designed and manufactured.

Configuration The logic, circuitry, and interconnects in the Stratix architecture are 
configured with CMOS SRAM elements. Altera® devices are 
reconfigurable. Because every device is tested with a high-coverage 
production test program, you do not have to perform fault testing and can 
focus on simulation and design verification.

Stratix devices are configured at system power-up with data stored in an 
Altera serial configuration device or provided by a system controller. 
Altera offers in-system programmability (ISP)-capable configuration 
devices that configure Stratix devices via a serial data stream. Stratix 
devices can be configured in under 100 ms using 8-bit parallel data at 
100 MHz. The Stratix device’s optimized interface allows 
microprocessors to configure it serially or in parallel, and synchronously 
or asynchronously. The interface also enables microprocessors to treat 
Stratix devices as memory and configure them by writing to a virtual 
memory location, making reconfiguration easy. After a Stratix device has 
been configured, it can be reconfigured in-circuit by resetting the device 
and loading new data. Real-time changes can be made during system 
operation, enabling innovative reconfigurable computing applications.

Operating Modes

The Stratix architecture uses SRAM configuration elements that require 
configuration data to be loaded each time the circuit powers up. The 
process of physically loading the SRAM data into the device is called 
configuration. During initialization, which occurs immediately after 
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Table 4–59. EP1S10 External I/O Timing on Row Pins Using Regional Clock Networks Note (1)

Parameter
-5 Speed Grade -6 Speed Grade -7 Speed Grade -8 Speed Grade

Unit
Min Max Min Max Min Max Min Max

tINSU 2.161 2.336 2.685 NA ns

tINH 0.000 0.000 0.000 NA ns

tOUTCO 2.434 4.889 2.434 5.226 2.434 5.643 NA NA ns

tXZ 2.461 4.493 2.461 5.282 2.461 5.711 NA NA ns

tZX 2.461 4.493 2.461 5.282 2.461 5.711 NA NA ns

tINSUPLL 1.057 1.172 1.315 NA ns

tINHPLL 0.000 0.000 0.000 NA ns

tOUTCOPLL 1.327 2.773 1.327 2.848 1.327 2.940 NA NA ns

tXZPLL 1.354 2.827 1.354 2.904 1.354 3.008 NA NA ns

tZXPLL 1.354 2.827 1.354 2.904 1.354 3.008 NA NA ns

Table 4–60. EP1S10 External I/O Timing on Row Pins Using Global Clock Networks Note (1)

Parameter
-5 Speed Grade -6 Speed Grade -7 Speed Grade -8 Speed Grade

Unit
Min Max Min Max Min Max Min Max

tINSU 1.787 1.944 2.232 NA ns

tINH 0.000 0.000 0.000 NA ns

tOUTCO 2.647 5.263 2.647 5.618 2.647 6.069 NA NA ns

tXZ 2.674 5.317 2.674 5.674 2.674 6.164 NA NA ns

tZX 2.674 5.317 2.674 5.674 2.674 6.164 NA NA ns

tINSUPLL 1.371 1.1472 1.654 NA ns

tINHPLL 0.000 0.000 0.000 NA ns

tOUTCOPLL 1.144 2.459 1.144 2.548 1.144 2.601 NA NA ns

tXZPLL 1.171 2.513 1.171 2.604 1.171 2.669 NA NA ns

tZXPLL 1.171 2.513 1.171 2.604 1.171 2.669 NA NA ns

Note to Tables 4–55 to 4–60:
(1) Only EP1S25, EP1S30, and EP1S40 have speed grade of -8.
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Tables 4–67 through 4–72 show the external timing parameters on column 
and row pins for EP1S25 devices.

Table 4–67. EP1S25 External I/O Timing on Column Pins Using Fast Regional Clock Networks

Parameter
-5 Speed Grade -6 Speed Grade -7 Speed Grade -8 Speed Grade

Unit
Min Max Min Max Min Max Min Max

tINSU 2.412  2.613  2.968  3.468  ns

tINH 0.000  0.000  0.000  0.000  ns

tOUTCO 2.196 4.475 2.196 4.748 2.196 5.118 2.196 5.603 ns

tXZ 2.136 4.349 2.136 4.616 2.136 4.994 2.136 5.488 ns

tZX 2.136 4.349 2.136 4.616 2.136 4.994 2.136 5.488 ns

Table 4–68. EP1S25 External I/O Timing on Column Pins Using Regional Clock Networks

Parameter
-5 Speed Grade -6 Speed Grade -7 Speed Grade -8 Speed Grade

Unit
Min Max Min Max Min Max Min Max

tINSU 1.535  1.661  1.877  2.125  ns

tINH 0.000  0.000  0.000  0.000  ns

tOUTCO 2.739 5.396 2.739 5.746 2.739 6.262 2.739 6.946 ns

tXZ 2.679 5.270 2.679 5.614 2.679 6.138 2.679 6.831 ns

tZX 2.679 5.270 2.679 5.614 2.679 6.138 2.679 6.831 ns

tINSUPLL 0.934  0.980  1.092  1.231  ns

tINHPLL 0.000  0.000  0.000  0.000  ns

tOUTCOPLL 1.316 2.733 1.316 2.839 1.316 2.921 1.316 3.110 ns

tXZPLL 1.256 2.607 1.256 2.707 1.256 2.797 1.256 2.995 ns

tZXPLL 1.256 2.607 1.256 2.707 1.256 2.797 1.256 2.995 ns
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Skew on Input Pins

Table 4–99 shows the package skews that were considered to get the 
worst case I/O skew value. You can use these values, for example, when 
calculating the timing budget on the input (read) side of a memory 
interface.

PLL Counter & Clock Network Skews

Table 4–100 shows the clock skews between different clock outputs from 
the Stratix device PLL.

I/O Timing Measurement Methodology

Different I/O standards require different baseline loading techniques for 
reporting timing delays. Altera characterizes timing delays with the 
required termination and loading for each I/O standard. The timing 
information is specified from the input clock pin up to the output pin of 

Table 4–99. Package Skew on Input Pins

Package Parameter Worst-Case Skew (ps)

Pins in the same I/O bank 50

Pins in top/bottom (vertical I/O) banks  50

Pins in left/right side (horizontal I/O) banks  50

Pins across the entire device  100

Table 4–100. PLL Counter & Clock Network Skews

Parameter Worst-Case Skew (ps)

Clock skew between two external clock outputs driven 
by the same counter

100

Clock skew between two external clock outputs driven 
by the different counters with the same settings

150

Dual-purpose PLL dedicated clock output used as I/O 
pin vs. regular I/O pin 

270 (1)

Clock skew between any two outputs of the PLL that 
drive global clock networks

150

Note to Table 4–100:
(1) The Quartus II software models 270 ps of delay on the PLL dedicated clock 

output (PLL6_OUT[3..0]p/n and PLL5_OUT[3..0]p/n) pins both when 
used as clocks and when used as I/O pins. 
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tDUTY LVDS (J = 2 
through 10)

47.5 50 52.5 47.5 50 52.5 47.5 50 52.5 47.5 50 52.5 %

LVDS (J =1) 
and LVPECL, 
PCML, 
HyperTransport 
technology

45 50 55 45 50 55 45 50 55 45 50 55 %

tLOCK All 100 100 100 100 μs

Notes to Table 4–125:
(1) When J = 4, 7, 8, and 10, the SERDES block is used.
(2) When J = 2 or J = 1, the SERDES is bypassed.

Table 4–125. High-Speed I/O Specifications for Flip-Chip Packages (Part 4 of 4) Notes (1), (2)

Symbol Conditions
-5 Speed Grade -6 Speed Grade -7 Speed Grade -8 Speed Grade

Unit
Min Typ Max Min Typ Max Min Typ Max Min Typ Max
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DC & Switching Characteristics

tSKEW Clock skew between two external 
clock outputs driven by the different 
counters with the same settings

±75 ps

fSS Spread spectrum modulation 
frequency

30 150 kHz

% spread Percentage spread for spread 
spectrum frequency (10)

0.4 0.5 0.6 %

tARESET Minimum pulse width on areset 
signal

10 ns

tA R E S E T _ RE C O N
F I G

Minimum pulse width on the 
areset signal when using PLL 
reconfiguration. Reset the PLL after 
scandataout goes high.

500 ns

Table 4–128. Enhanced PLL Specifications for -6 Speed Grades (Part 1 of 2)

Symbol Parameter Min Typ Max Unit

fIN Input clock frequency 3
(1), (2)

650 MHz

fINPFD Input frequency to PFD 3 420 MHz

fINDUTY Input clock duty cycle 40 60 %

fEINDUTY External feedback clock input duty 
cycle

40 60 %

tINJITTER Input clock period jitter ±200 (3) ps

tEINJITTER External feedback clock period jitter ±200 (3) ps

tFCOMP External feedback clock compensation 
time (4)

6 ns

fOUT Output frequency for internal global or 
regional clock 

0.3 450 MHz

fOUT_EXT Output frequency for external clock (3) 0.3 500 MHz

tOUTDUTY Duty cycle for external clock output 
(when set to 50%)

45 55 %

tJITTER Period jitter for external clock output 
(6)

±100 ps for >200-MHz outclk
±20 mUI for <200-MHz outclk

ps or 
mUI

tCONFIG5,6 Time required to reconfigure the scan 
chains for PLLs 5 and 6

289/fSCANCLK

tCONFIG11,12 Time required to reconfigure the scan 
chains for PLLs 11 and 12

193/fSCANCLK

Table 4–127. Enhanced PLL Specifications for -5 Speed Grades (Part 2 of 2)

Symbol Parameter Min Typ Max Unit
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