Welcome to **E-XFL.COM** ## **Understanding Embedded - FPGAs (Field Programmable Gate Array)** Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. ### **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|---| | Product Status | Obsolete | | Number of LABs/CLBs | 1057 | | Number of Logic Elements/Cells | 10570 | | Total RAM Bits | 920448 | | Number of I/O | 426 | | Number of Gates | - | | Voltage - Supply | 1.425V ~ 1.575V | | Mounting Type | Surface Mount | | Operating Temperature | 0°C ~ 85°C (TJ) | | Package / Case | 780-BBGA | | Supplier Device Package | 780-FBGA (29x29) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/ep1s10f780c5 | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong | Chapter | Date/Version | Changes Made | |---------|----------------------|---| | 4 | January 2005, 3.2 | Updated rise and fall input values. | | | September 2004, v3.1 | Updated Note 3 in Table 4–8 on page 4–4. Updated Table 4–10 on page 4–6. Updated Table 4–20 on page 4–12 through Table 4–23 on page 4–13. Added rows V_{IL(AC)} and V_{IH(AC)} to each table. Updated Table 4–26 on page 4–14 through Table 4–29 on page 4–15. Updated Table 4–31 on page 4–16. Updated Table 4–36 on page 4–20. Added signals t_{OUTCO}, T_{XZ}, and T_{ZX} to Figure 4–4 on page 4–33. Added rows t_{M512CLKENSU} and t_{M512CLKENH} to Table 4–40 on page 4–24. Added rows t_{M4CLKENSU} and t_{M4CLKENH} to Table 4–41 on page 4–24. Updated Note 2 in Table 4–54 on page 4–35. Added rows t_{MRAMCLKENSU} and t_{MRAMCLKENH} to Table 4–42 on page 4–25. Updated Table 4–46 on page 4–29. Updated Table 4–47 on page 4–29. | Section I–4 Altera Corporation ## 2. Stratix Architecture \$51002-3.2 # Functional Description Stratix® devices contain a two-dimensional row- and column-based architecture to implement custom logic. A series of column and row interconnects of varying length and speed provide signal interconnects between logic array blocks (LABs), memory block structures, and DSP blocks. The logic array consists of LABs, with 10 logic elements (LEs) in each LAB. An LE is a small unit of logic providing efficient implementation of user logic functions. LABs are grouped into rows and columns across the device. M512 RAM blocks are simple dual-port memory blocks with 512 bits plus parity (576 bits). These blocks provide dedicated simple dual-port or single-port memory up to 18-bits wide at up to 318 MHz. M512 blocks are grouped into columns across the device in between certain LABs. M4K RAM blocks are true dual-port memory blocks with 4K bits plus parity (4,608 bits). These blocks provide dedicated true dual-port, simple dual-port, or single-port memory up to 36-bits wide at up to 291 MHz. These blocks are grouped into columns across the device in between certain LABs. M-RAM blocks are true dual-port memory blocks with 512K bits plus parity (589,824 bits). These blocks provide dedicated true dual-port, simple dual-port, or single-port memory up to 144-bits wide at up to 269 MHz. Several M-RAM blocks are located individually or in pairs within the device's logic array. Digital signal processing (DSP) blocks can implement up to either eight full-precision 9×9 -bit multipliers, four full-precision 18×18 -bit multipliers, or one full-precision 36×36 -bit multiplier with add or subtract features. These blocks also contain 18-bit input shift registers for digital signal processing applications, including FIR and infinite impulse response (IIR) filters. DSP blocks are grouped into two columns in each device. Each Stratix device I/O pin is fed by an I/O element (IOE) located at the end of LAB rows and columns around the periphery of the device. I/O pins support numerous single-ended and differential I/O standards. Each IOE contains a bidirectional I/O buffer and six registers for registering input, output, and output-enable signals. When used with can drive other R8 interconnects to extend their range as well as C8 interconnects for row-to-row connections. One R8 interconnect is faster than two R4 interconnects connected together. R24 row interconnects span 24 LABs and provide the fastest resource for long row connections between LABs, TriMatrix memory, DSP blocks, and IOEs. The R24 row interconnects can cross M-RAM blocks. R24 row interconnects drive to other row or column interconnects at every fourth LAB and do not drive directly to LAB local interconnects. R24 row interconnects drive LAB local interconnects via R4 and C4 interconnects. R24 interconnects can drive R24, R4, C16, and C4 interconnects. The column interconnect operates similarly to the row interconnect and vertically routes signals to and from LABs, TriMatrix memory, DSP blocks, and IOEs. Each column of LABs is served by a dedicated column interconnect, which vertically routes signals to and from LABs, TriMatrix memory and DSP blocks, and horizontal IOEs. These column resources include: - LUT chain interconnects within an LAB - Register chain interconnects within an LAB - C4 interconnects traversing a distance of four blocks in up and down direction - C8 interconnects traversing a distance of eight blocks in up and down direction - C16 column interconnects for high-speed vertical routing through the device Stratix devices include an enhanced interconnect structure within LABs for routing LE output to LE input connections faster using LUT chain connections and register chain connections. The LUT chain connection allows the combinatorial output of an LE to directly drive the fast input of the LE right below it, bypassing the local interconnect. These resources can be used as a high-speed connection for wide fan-in functions from LE 1 to LE 10 in the same LAB. The register chain connection allows the register output of one LE to connect directly to the register input of the next LE in the LAB for fast shift registers. The Quartus II Compiler automatically takes advantage of these resources to improve utilization and performance. Figure 2–10 shows the LUT chain and register chain interconnects. C8 interconnects span eight LABs, M512, or M4K blocks up or down from a source LAB. Every LAB has its own set of C8 interconnects to drive either up or down. C8 interconnect connections between the LABs in a column are similar to the C4 connections shown in Figure 2–11 with the exception that they connect to eight LABs above and below. The C8 interconnects can drive and be driven by all types of architecture blocks similar to C4 interconnects. C8 interconnects can drive each other to extend their range as well as R8 interconnects for column-to-column connections. C8 interconnects are faster than two C4 interconnects. C16 column interconnects span a length of 16 LABs and provide the fastest resource for long column connections between LABs, TriMatrix memory blocks, DSP blocks, and IOEs. C16 interconnects can cross M-RAM blocks and also drive to row and column interconnects at every fourth LAB. C16 interconnects drive LAB local interconnects via C4 and R4 interconnects and do not drive LAB local interconnects directly. All embedded blocks communicate with the logic array similar to LAB-to-LAB interfaces. Each block (i.e., TriMatrix memory and DSP blocks) connects to row and column interconnects and has local interconnect regions driven by row and column interconnects. These blocks also have direct link interconnects for fast connections to and from a neighboring LAB. All blocks are fed by the row LAB clocks, labclk [7..0]. blocks facing to the left, and another 10 possible from the right adjacent LABs for M-RAM blocks facing to the right. For column interfacing, every M-RAM column unit connects to the right and left column lines, allowing each M-RAM column unit to communicate directly with three columns of LABs. Figures 2–21 through 2–23 show the interface between the M-RAM block and the logic array. clock signals are routed from LAB row clocks and are generated from specific LAB rows at the DSP block interface. The LAB row source for control signals, data inputs, and outputs is shown in Table 2–17. | Table 2-17. D | Table 2–17. DSP Block Signal Sources & Destinations | | | | | | | | | | | | |-------------------------|---|-------------|--------------|--|--|--|--|--|--|--|--|--| | LAB Row at
Interface | Control Signals
Generated | Data Inputs | Data Outputs | | | | | | | | | | | 1 | signa | A1[170] | OA[170] | | | | | | | | | | | 2 | aclr0
accum_sload0 | B1[170] | OB[170] | | | | | | | | | | | 3 | addnsub1
clock0
ena0 | A2[170] | OC[170] | | | | | | | | | | | 4 | aclr1
clock1
ena1 | B2[170] | OD[170] | | | | | | | | | | | 5 | aclr2
clock2
ena2 | A3[170] | OE[170] | | | | | | | | | | | 6 | sign_b
clock3
ena3 | B3[170] | OF[170] | | | | | | | | | | | 7 | clear3
accum_sload1 | A4[170] | OG[170] | | | | | | | | | | | 8 | addnsub3 | B4[170] | OH[170] | | | | | | | | | | ## PLLs & Clock Networks Stratix devices provide a hierarchical clock structure and multiple PLLs with advanced features. The large number of clocking resources in combination with the clock synthesis precision provided by enhanced and fast PLLs provides a complete clock management solution. ## **Global & Hierarchical Clocking** Stratix devices provide 16 dedicated global clock networks, 16 regional clock networks (four per device quadrant), and 8 dedicated fast regional clock networks (for EP1S10, EP1S20, and EP1S25 devices), and 16 dedicated fast regional clock networks (for EP1S30 EP1S40, and EP1S60, and EP1S80 devices). These clocks are organized into a hierarchical clock structure that allows for up to 22 clocks per device region with low skew and delay. This hierarchical clocking scheme provides up to 48 unique clock domains within Stratix devices. During switchover, the PLL VCO continues to run and will either slow down or speed up, generating frequency drift on the PLL outputs. The clock switchover transitions without any glitches. After the switch, there is a finite resynchronization period to lock onto new clock as the VCO ramps up. The exact amount of time it takes for the PLL to relock relates to the PLL configuration and may be adjusted by using the programmable bandwidth feature of the PLL. The specification for the maximum time to relock is $100~\mu s$. For more information on clock switchover, see *AN 313, Implementing Clock Switchover in Stratix & Stratix GX Devices*. #### PLL Reconfiguration The PLL reconfiguration feature enables system logic to change Stratix device enhanced PLL counters and delay elements without reloading a Programmer Object File (.pof). This provides considerable flexibility for frequency synthesis, allowing real-time PLL frequency and output clock delay variation. You can sweep the PLL output frequencies and clock delay in prototype environments. The PLL reconfiguration feature can also dynamically or intelligently control system clock speeds or $t_{\rm CO}$ delays in end systems. Clock delay elements at each PLL output port implement variable delay. Figure 2–54 shows a diagram of the overall dynamic PLL control feature for the counters and the clock delay elements. The configuration time is less than 20 µs for the enhanced PLL using a input shift clock rate of 22 MHz. The charge pump, loop filter components, and phase shifting using VCO phase taps cannot be dynamically adjusted. | Table 2–20. I/O Standards Supported for Enhanced PLL Pins (Part 2 of 2) | | | | | | | | | | | | |---|----------|----------|-----------|----------|--|--|--|--|--|--|--| | I/O Standard | | Input | | Output | | | | | | | | | I/O Standard | INCLK | FBIN | PLLENABLE | EXTCLK | | | | | | | | | 1.5-V HSTL Class II | ✓ | ✓ | | ✓ | | | | | | | | | 1.8-V HSTL Class I | ✓ | ✓ | | ✓ | | | | | | | | | 1.8-V HSTL Class II | ✓ | ✓ | | ✓ | | | | | | | | | SSTL-18 Class I | ✓ | ✓ | | ✓ | | | | | | | | | SSTL-18 Class II | ✓ | ✓ | | ✓ | | | | | | | | | SSTL-2 Class I | ✓ | ✓ | | ✓ | | | | | | | | | SSTL-2 Class II | ✓ | ✓ | | ✓ | | | | | | | | | SSTL-3 Class I | ✓ | ✓ | | ✓ | | | | | | | | | SSTL-3 Class II | ✓ | ✓ | | ✓ | | | | | | | | | AGP (1× and 2×) | ✓ | ✓ | | ✓ | | | | | | | | | СТТ | ✓ | ✓ | | ✓ | | | | | | | | Enhanced PLLs 11 and 12 support one single-ended output each (see Figure 2–56). These outputs do not have their own VCC and GND signals. Therefore, to minimize jitter, do not place switching I/O pins next to this output pin. Figure 2-56. External Clock Outputs for Enhanced PLLs 11 & 12 Note to Figure 2-56: (1) For PLL 11, this pin is CLK13n; for PLL 12 this pin is CLK7n. Stratix devices can drive any enhanced PLL driven through the global clock or regional clock network to any general I/O pin as an external output clock. The jitter on the output clock is not guaranteed for these cases. The pllenable pin is a dedicated pin that enables/disables PLLs. When the pllenable pin is low, the clock output ports are driven by GND and all the PLLs go out of lock. When the pllenable pin goes high again, the PLLs relock and resynchronize to the input clocks. You can choose which PLLs are controlled by the pllenable signal by connecting the pllenable input port of the altpll megafunction to the common pllenable input pin. The areset signals are reset/resynchronization inputs for each PLL. The areset signal should be asserted every time the PLL loses lock to guarantee correct phase relationship between the PLL output clocks. Users should include the areset signal in designs if any of the following conditions are true: - PLL Reconfiguration or Clock switchover enables in the design. - Phase relationships between output clocks need to be maintained after a loss of lock condition The device input pins or logic elements (LEs) can drive these input signals. When driven high, the PLL counters will reset, clearing the PLL output and placing the PLL out of lock. The VCO will set back to its nominal setting (~700 MHz). When driven low again, the PLL will resynchronize to its input as it relocks. If the target VCO frequency is below this nominal frequency, then the output frequency will start at a higher value than desired as the PLL locks. If the system cannot tolerate this, the clkena signal can disable the output clocks until the PLL locks. The pfdena signals control the phase frequency detector (PFD) output with a programmable gate. If you disable the PFD, the VCO operates at its last set value of control voltage and frequency with some long-term drift to a lower frequency. The system continues running when the PLL goes out of lock or the input clock is disabled. By maintaining the last locked frequency, the system has time to store its current settings before shutting down. You can either use your own control signal or a clkloss status signal to trigger pfdena. The clkena signals control the enhanced PLL regional and global outputs. Each regional and global output port has its own clkena signal. The clkena signals synchronously disable or enable the clock at the PLL output port by gating the outputs of the g and l counters. The clkena signals are registered on the falling edge of the counter output clock to enable or disable the clock without glitches. Figure 2–57 shows the waveform example for a PLL clock port enable. The PLL can remain locked independent of the clkena signals since the loop-related counters are not affected. This feature is useful for applications that require a low power or sleep mode. Upon re-enabling, the PLL does not need a Figure 2–64. Stratix IOE in Bidirectional I/O Configuration Note (1) Note to Figure 2-64: (1) All input signals to the IOE can be inverted at the IOE. The Stratix device IOE includes programmable delays that can be activated to ensure zero hold times, input IOE register-to-logic array register transfers, or logic array-to-output IOE register transfers. A path in which a pin directly drives a register may require the delay to ensure zero hold time, whereas a path in which a pin drives a register through combinatorial logic may not require the delay. Programmable delays exist for decreasing input-pin-to-logic-array and IOE input register delays. The Quartus II Compiler can program these delays to automatically minimize setup time while providing a zero hold time. Programmable delays can increase the register-to-pin delays for output Table 2–37 shows the number of channels that each fast PLL can clock in EP1S10, EP1S20, and EP1S25 devices. Tables 2–38 through Table 2–41 show this information for EP1S30, EP1S40, EP1S60, and EP1S80 devices. | Table 2- | Table 2–37. EP1S10, EP1S20 & EP1S25 Device Differential Channels (Part 1 of 2) Note (1) | | | | | | | | | | | | | |----------|---|-----------------|----------|-----------------|------------------|-------|-------|-------|--|--|--|--|--| | | | Transmitter/ | Total | Maximum | Center Fast PLLs | | | | | | | | | | Device | Package | Receiver | Channels | Speed
(Mbps) | PLL 1 | PLL 2 | PLL 3 | PLL 4 | | | | | | | EP1S10 | 484-pin FineLine BGA | Transmitter (2) | 20 | 840 (4) | 5 | 5 | 5 | 5 | | | | | | | | | | | 840 (3) | 10 | 10 | 10 | 10 | | | | | | | | | Receiver | 20 | 840 (4) | 5 | 5 | 5 | 5 | | | | | | | | | | | 840 (3) | 10 | 10 | 10 | 10 | | | | | | | | 672-pin FineLine BGA | Transmitter (2) | 36 | 624 (4) | 9 | 9 | 9 | 9 | | | | | | | | 672-pin BGA | | | 624 (3) | 18 | 18 | 18 | 18 | | | | | | | | | Receiver | 36 | 624 (4) | 9 | 9 | 9 | 9 | | | | | | | | | | | 624 (3) | 18 | 18 | 18 | 18 | | | | | | | | 780-pin FineLine BGA | Transmitter (2) | 44 | 840 (4) | 11 | 11 | 11 | 11 | | | | | | | | | | | 840 (3) | 22 | 22 | 22 | 22 | | | | | | | | | Receiver | 44 | 840 (4) | 11 | 11 | 11 | 11 | | | | | | | | | | | 840 (3) | 22 | 22 | 22 | 22 | | | | | | | EP1S20 | 484-pin FineLine BGA | Transmitter (2) | 24 | 840 (4) | 6 | 6 | 6 | 6 | | | | | | | | | | | 840 (3) | 12 | 12 | 12 | 12 | | | | | | | | | Receiver | 20 | 840 (4) | 5 | 5 | 5 | 5 | | | | | | | | | | | 840 (3) | 10 | 10 | 10 | 10 | | | | | | | | 672-pin FineLine BGA | Transmitter (2) | 48 | 624 (4) | 12 | 12 | 12 | 12 | | | | | | | | 672-pin BGA | | | 624 (3) | 24 | 24 | 24 | 24 | | | | | | | | | Receiver | 50 | 624 (4) | 13 | 12 | 12 | 13 | | | | | | | | | | | 624 (3) | 25 | 25 | 25 | 25 | | | | | | | | 780-pin FineLine BGA | Transmitter (2) | 66 | 840 (4) | 17 | 16 | 16 | 17 | | | | | | | | | | | 840 (3) | 33 | 33 | 33 | 33 | | | | | | | | | Receiver | 66 | 840 (4) | 17 | 16 | 16 | 17 | | | | | | | | | | | 840 (3) | 33 | 33 | 33 | 33 | | | | | | | Table 2-40. | Table 2–40. EP1S60 Differential Channels (Part 2 of 2) Note (1) | | | | | | | | | | | | | | |-----------------------|---|-----------------------|-----------------|------------|------------|------------|------------|-----------|------------|------------|----------|--|--|--| | | Transmitter/ | Total | Maximum | C | enter F | ast PLI | .s | Corn | er Fasi | t PLLs (| (2), (3) | | | | | Package | Receiver | Channels | Speed
(Mbps) | PLL1 | PLL2 | PLL3 | PLL4 | PLL7 | PLL8 | PLL9 | PLL10 | | | | | 1,020-pin
FineLine | Transmitter (4) | 80 (12)
<i>(7)</i> | 840 | 12
(2) | 10
(4) | 10
(4) | 12
(2) | 20 | 20 | 20 | 20 | | | | | BGA | | | 840 (5), (8) | 22
(6) | 22
(6) | 22
(6) | 22
(6) | 20 | 20 | 20 | 20 | | | | | | Receiver | 80 (10)
<i>(7)</i> | 840 | 20 | 20 | 20 | 20 | 12
(8) | 10
(10) | 10
(10) | 12 (8) | | | | | | | | 840 (5), (8) | 40 | 40 | 40 | 40 | 12
(8) | 10
(10) | 10
(10) | 12 (8) | | | | | 1,508-pin
FineLine | Transmitter (4) | 80 (36)
<i>(7)</i> | 840 | 12
(8) | 10
(10) | 10
(10) | 12
(8) | 20 | 20 | 20 | 20 | | | | | BGA | | | 840 (5),(8) | 22
(18) | 22
(18) | 22
(18) | 22
(18) | 20 | 20 | 20 | 20 | | | | | | Receiver | 80 (36)
(7) | 840 | 20 | 20 | 20 | 20 | 12
(8) | 10
(10) | 10
(10) | 12 (8) | | | | | | | | 840 (5),(8) | 40 | 40 | 40 | 40 | 12
(8) | 10
(10) | 10
(10) | 12 (8) | | | | | Table 2-41. | Table 2–41. EP1S80 Differential Channels (Part 1 of 2) Note (1) | | | | | | | | | | | | | | |-----------------------|---|-----------------------|-----------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|---------|--|--|--| | | Transmitter/ | Total | Maximum | C | enter F | ast PLI | -S | Corr | ner Fas | t PLLs (2 | 2), (3) | | | | | Package | Receiver | Channels | Speed
(Mbps) | PLL1 | PLL2 | PLL3 | PLL4 | PLL7 | PLL8 | PLL9 | PLL10 | | | | | 956-pin | Transmitter | 80 (40) | 840 | 10 | 10 | 10 | 10 | 20 | 20 | 20 | 20 | | | | | BGA | (4) | (7) | 840 (5),(8) | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | | | | | | Receiver | 80 | 840 | 20 | 20 | 20 | 20 | 10 | 10 | 10 | 10 | | | | | | | | 840 (5),(8) | 40 | 40 | 40 | 40 | 10 | 10 | 10 | 10 | | | | | 1,020-pin
FineLine | Transmitter (4) | 92 (12)
<i>(7)</i> | 840 | 10
(2) | 10
(4) | 10
(4) | 10
(2) | 20 | 20 | 20 | 20 | | | | | BGA | | | 840 (5),(8) | 20
(6) | 20
(6) | 20
(6) | 20
(6) | 20 | 20 | 20 | 20 | | | | | | Receiver | 90 (10)
(7) | 840 | 20 | 20 | 20 | 20 | 10
(2) | 10
(3) | 10 (3) | 10 (2) | | | | | | | | 840 (5),(8) | 40 | 40 | 40 | 40 | 10
(2) | 10
(3) | 10 (3) | 10 (2) | | | | | Table 4–53. Stratix Regional Clock External I/O Ti | iming Parameters (Part 2 | |--|--------------------------| | of 2) Notes (1), (2) | | | | | | Symbol | Parameter | |--------------------|--| | t _{XZPLL} | Synchronous IOE output enable register to output pin disable delay using regional clock fed by Enhanced PLL with default phase setting | | t _{ZXPLL} | Synchronous IOE output enable register to output pin enable delay using regional clock fed by Enhanced PLL with default phase setting | #### *Notes to Table 4–53:* - (1) These timing parameters are sample-tested only. - (2) These timing parameters are for column and row IOE pins. You should use the Quartus II software to verify the external timing for any pin. Table 4–54 shows the external I/O timing parameters when using global clock networks. | Table 4–3 (2) | 54. Stratix Global Clock External I/O Timing Parameters Notes (1), | |-----------------------|---| | Symbol | Parameter | | t _{INSU} | Setup time for input or bidirectional pin using IOE input register with global clock fed by ${\tt CLK}$ pin | | t _{INH} | Hold time for input or bidirectional pin using IOE input register with global clock fed by CLK pin | | t _{OUTCO} | Clock-to-output delay output or bidirectional pin using IOE output register with global clock fed by CLK pin | | t _{INSUPLL} | Setup time for input or bidirectional pin using IOE input register with global clock fed by Enhanced PLL with default phase setting | | t _{INHPLL} | Hold time for input or bidirectional pin using IOE input register with global clock fed by Enhanced PLL with default phase setting | | t _{OUTCOPLL} | Clock-to-output delay output or bidirectional pin using IOE output register with global clock Enhanced PLL with default phase setting | | t _{XZPLL} | Synchronous IOE output enable register to output pin disable delay using global clock fed by Enhanced PLL with default phase setting | | t _{ZXPLL} | Synchronous IOE output enable register to output pin enable delay using global clock fed by Enhanced PLL with default phase setting | #### Notes to Table 4-54: - (1) These timing parameters are sample-tested only. - (2) These timing parameters are for column and row IOE pins. You should use the Quartus II software to verify the external timing for any pin. | Table 4-65. I | Table 4–65. EP1S20 External I/O Timing on Row Pins Using Regional Clock Networks Note (1) | | | | | | | | | | | | | | | |-----------------------|---|---------|---------|----------------|-------|---------|---------|-----|------|--|--|--|--|--|--| | Davamatav | -5 Spee | d Grade | -6 Spee | -6 Speed Grade | | d Grade | -8 Spee | | | | | | | | | | Parameter | Min | Max | Min | Max | Min | Max | Min | Max | Unit | | | | | | | | t _{INSU} | 1.815 | | 1.967 | | 2.258 | | NA | | ns | | | | | | | | t _{INH} | 0.000 | | 0.000 | | 0.000 | | NA | | ns | | | | | | | | t _{OUTCO} | 2.633 | 5.235 | 2.663 | 5.595 | 2.663 | 6.070 | NA | NA | ns | | | | | | | | t _{XZ} | 2.660 | 5.289 | 2.660 | 5.651 | 2.660 | 6.138 | NA | NA | ns | | | | | | | | t _{ZX} | 2.660 | 5.289 | 2.660 | 5.651 | 2.660 | 6.138 | NA | NA | ns | | | | | | | | t _{INSUPLL} | 1.060 | | 1.112 | | 1.277 | | NA | | ns | | | | | | | | t _{INHPLL} | 0.000 | | 0.000 | | 0.000 | | NA | | ns | | | | | | | | t _{OUTCOPLL} | 1.325 | 2.770 | 1.325 | 2.908 | 1.325 | 2.978 | NA | NA | ns | | | | | | | | t _{XZPLL} | 1.352 | 2.824 | 1.352 | 2.964 | 1.352 | 3.046 | NA | NA | ns | | | | | | | | t _{ZXPLL} | 1.352 | 2.824 | 1.352 | 2.964 | 1.352 | 3.046 | NA | NA | ns | | | | | | | | Table 4–66. I | Table 4–66. EP1S20 External I/O Timing on Row Pins Using Global Clock Networks Note (1) | | | | | | | | | | | | | | |-----------------------|---|---------|---------|----------------|-------|---------|---------|------|------|--|--|--|--|--| | Davamatav | -5 Spee | d Grade | -6 Spee | -6 Speed Grade | | d Grade | -8 Spee | Unit | | | | | | | | Parameter | Min | Max | Min | Max | Min | Max | Min | Max | Unit | | | | | | | t _{INSU} | 1.742 | | 1.887 | | 2.170 | | NA | | ns | | | | | | | t _{INH} | 0.000 | | 0.000 | | 0.000 | | NA | | ns | | | | | | | t _{OUTCO} | 2.674 | 5.308 | 2.674 | 5.675 | 2.674 | 6.158 | NA | NA | ns | | | | | | | t _{XZ} | 2.701 | 5.362 | 2.701 | 5.731 | 2.701 | 6.226 | NA | NA | ns | | | | | | | t _{ZX} | 2.701 | 5.362 | 2.701 | 5.731 | 2.701 | 6.226 | NA | NA | ns | | | | | | | t _{INSUPLL} | 1.353 | | 1.418 | | 1.613 | | NA | | ns | | | | | | | t _{INHPLL} | 0.000 | | 0.000 | | 0.000 | | NA | | ns | | | | | | | t _{OUTCOPLL} | 1.158 | 2.447 | 1.158 | 2.602 | 1.158 | 2.642 | NA | NA | ns | | | | | | | t _{XZPLL} | 1.185 | 2.531 | 1.158 | 2.602 | 1.185 | 2.710 | NA | NA | ns | | | | | | | t _{ZXPLL} | 1.185 | 2.531 | 1.158 | 2.602 | 1.185 | 2.710 | NA | NA | ns | | | | | | *Note to Tables 4–61 to 4–66:* ⁽¹⁾ Only EP1S25, EP1S30, and EP1S40 have a speed grade of -8. Tables 4–79 through 4–84 show the external timing parameters on column and row pins for EP1S40 devices. | Table 4–79. EP1S40 External I/O Timing on Column Pins Using Fast Regional Clock Networks | | | | | | | | | | |--|-------------------|-------|---------|----------------|-------|----------------|-------|----------------|------| | Parameter | -5 Speed Grade -6 | | -6 Spee | -6 Speed Grade | | -7 Speed Grade | | -8 Speed Grade | | | | Min | Max | Min | Max | Min | Max | Min | Max | Unit | | t _{INSU} | 2.696 | | 2.907 | | 3.290 | | 2.899 | | ns | | t _{INH} | 0.000 | | 0.000 | | 0.000 | | 0.000 | | ns | | t _{OUTCO} | 2.506 | 5.015 | 2.506 | 5.348 | 2.506 | 5.809 | 2.698 | 7.286 | ns | | t _{XZ} | 2.446 | 4.889 | 2.446 | 5.216 | 2.446 | 5.685 | 2.638 | 7.171 | ns | | t _{ZX} | 2.446 | 4.889 | 2.446 | 5.216 | 2.446 | 5.685 | 2.638 | 7.171 | ns | | Table 4–80. EP1S40 External I/O Timing on Column Pins Using Regional Clock Networks | | | | | | | | | | |---|----------------|-------|----------------|-------|----------------|-------|----------------|-------|------| | Parameter | -5 Speed Grade | | -6 Speed Grade | | -7 Speed Grade | | -8 Speed Grade | | 11:4 | | | Min | Max | Min | Max | Min | Max | Min | Max | Unit | | t _{INSU} | 2.413 | | 2.581 | | 2.914 | | 2.938 | | ns | | t _{INH} | 0.000 | | 0.000 | | 0.000 | | 0.000 | | ns | | t _{outco} | 2.668 | 5.254 | 2.668 | 5.628 | 2.668 | 6.132 | 2.869 | 7.307 | ns | | t _{XZ} | 2.608 | 5.128 | 2.608 | 5.496 | 2.608 | 6.008 | 2.809 | 7.192 | ns | | t _{ZX} | 2.608 | 5.128 | 2.608 | 5.496 | 2.608 | 6.008 | 2.809 | 7.192 | ns | | t _{INSUPLL} | 1.385 | | 1.376 | | 1.609 | | 1.837 | | ns | | t _{INHPLL} | 0.000 | | 0.000 | | 0.000 | | 0.000 | | ns | | toutcopll | 1.117 | 2.382 | 1.117 | 2.552 | 1.117 | 2.504 | 1.117 | 2.542 | ns | | t _{XZPLL} | 1.057 | 2.256 | 1,057 | 2.420 | 1.057 | 2.380 | 1.057 | 2.427 | ns | | t _{ZXPLL} | 1.057 | 2.256 | 1,057 | 2.420 | 1.057 | 2.380 | 1.057 | 2.427 | ns | #### Skew on Input Pins Table 4–99 shows the package skews that were considered to get the worst case I/O skew value. You can use these values, for example, when calculating the timing budget on the input (read) side of a memory interface. | Table 4–99. Package Skew on Input Pins | | | | | | |--|----------------------|--|--|--|--| | Package Parameter | Worst-Case Skew (ps) | | | | | | Pins in the same I/O bank | 50 | | | | | | Pins in top/bottom (vertical I/O) banks | 50 | | | | | | Pins in left/right side (horizontal I/O) banks | 50 | | | | | | Pins across the entire device | 100 | | | | | #### PLL Counter & Clock Network Skews Table 4–100 shows the clock skews between different clock outputs from the Stratix device PLL. | Table 4–100. PLL Counter & Clock Network Skews | | | | | | |---|----------------------|--|--|--|--| | Parameter | Worst-Case Skew (ps) | | | | | | Clock skew between two external clock outputs driven by the same counter | 100 | | | | | | Clock skew between two external clock outputs driven by the different counters with the same settings | 150 | | | | | | Dual-purpose PLL dedicated clock output used as I/O pin vs. regular I/O pin | 270 (1) | | | | | | Clock skew between any two outputs of the PLL that drive global clock networks | 150 | | | | | Note to Table 4-100: (1) The Quartus II software models 270 ps of delay on the PLL dedicated clock output (PLL6_OUT[3..0]p/n and PLL5_OUT[3..0]p/n) pins both when used as clocks and when used as I/O pins. ## I/O Timing Measurement Methodology Different I/O standards require different baseline loading techniques for reporting timing delays. Altera characterizes timing delays with the required termination and loading for each I/O standard. The timing information is specified from the input clock pin up to the output pin of Table 4–121. Stratix Maximum Output Clock Rate (Using I/O Pins) for PLL[1, 2, 3, 4] Pins in Flip-Chip Packages | I/O Standard | -5 Speed
Grade | -6 Speed
Grade | -7 Speed
Grade | -8 Speed
Grade | Unit | |-------------------------------|-------------------|-------------------|-------------------|-------------------|------| | LVTTL | 400 | 350 | 300 | 300 | MHz | | 2.5 V | 400 | 350 | 300 | 300 | MHz | | 1.8 V | 400 | 350 | 300 | 300 | MHz | | 1.5 V | 350 | 300 | 300 | 300 | MHz | | LVCMOS | 400 | 350 | 300 | 300 | MHz | | GTL | 200 | 167 | 125 | 125 | MHz | | GTL+ | 200 | 167 | 125 | 125 | MHz | | SSTL-3 Class I | 167 | 150 | 133 | 133 | MHz | | SSTL-3 Class II | 167 | 150 | 133 | 133 | MHz | | SSTL-2 Class I | 150 | 133 | 133 | 133 | MHz | | SSTL-2 Class II | 150 | 133 | 133 | 133 | MHz | | SSTL-18 Class I | 150 | 133 | 133 | 133 | MHz | | SSTL-18 Class II | 150 | 133 | 133 | 133 | MHz | | 1.5-V HSTL Class I | 250 | 225 | 200 | 200 | MHz | | 1.5-V HSTL Class II | 225 | 225 | 200 | 200 | MHz | | 1.8-V HSTL Class I | 250 | 225 | 200 | 200 | MHz | | 1.8-V HSTL Class II | 225 | 225 | 200 | 200 | MHz | | 3.3-V PCI | 250 | 225 | 200 | 200 | MHz | | 3.3-V PCI-X 1.0 | 225 | 225 | 200 | 200 | MHz | | Compact PCI | 400 | 350 | 300 | 300 | MHz | | AGP 1× | 400 | 350 | 300 | 300 | MHz | | AGP 2× | 400 | 350 | 300 | 300 | MHz | | CTT | 300 | 250 | 200 | 200 | MHz | | LVPECL (2) | 717 | 717 | 500 | 500 | MHz | | PCML (2) | 420 | 420 | 420 | 420 | MHz | | LVDS (2) | 717 | 717 | 500 | 500 | MHz | | HyperTransport technology (2) | 420 | 420 | 420 | 420 | MHz | # Table 4–123. Stratix Maximum Output Clock Rate (Using I/O Pins) for PLL[1, 2, 3, 4] Pins in Wire-Bond Packages (Part 2 of 2) | I/O Standard | -6 Speed
Grade | -7 Speed
Grade | -8 Speed
Grade | Unit | | |-------------------------------|-------------------|-------------------|-------------------|------|--| | LVDS (2) | 400 | 311 | 311 | MHz | | | HyperTransport technology (2) | 420 | 400 | 400 | MHz | | #### Notes to Tables 4-120 through 4-123: - (1) Differential SSTL-2 outputs are only available on column clock pins. - (2) These parameters are only available on row I/O pins. - (3) SSTL-2 in maximum drive strength condition. See Table 4–101 on page 4–62 for more information on exact loading conditions for each I/O standard. - (4) SSTL-2 in minimum drive strength with \leq 10pF output load condition. - (5) SSTL-2 in minimum drive strength with > 10pF output load condition. - (6) Differential SSTL-2 outputs are only supported on column clock pins. | Differential HSTL Specifications 4–15
DSP | Parameters 4–39
Row Pin | |---|--| | Block Diagram | Fast Regional Clock External I/O Timing | | Configuration | Parameters 4–40 | | for 18 x 18-Bit 2–55 | Global Clock External I/O Timing | | for 9 x 9-Bit 2–56 | Parameters 4–41 | | Block Interconnect Interface 2–71 | Regional Clock External I/O Timing | | Block Interface 2–70 | Parameters 4–41 | | Block Signal Sources & Destinations 2–73 | EP1S25 Devices | | Blocks | Column Pin | | Arranged in Columns 2–53 | Fast Regional Clock External I/O Timing | | in Stratix Devices 2–54 | Parameters 4–42 | | Input Register Modes 2-60 | Global Clock External I/O Timing | | Input Registers 2–58 | Parameters 4–43 | | Multiplier | Regional Clock External I/O Timing | | 2–60 | Parameters 4–42 | | Block 2–57 | Row Pin | | Signed Representation 2-60 | Fast Regional Clock External I/O Timing | | Sub-Block 2–57 | Parameters 4–43 | | Sub-Blocks Using Input Shift Register | Global Clock External I/O Timing | | Connections 2–59 | Parameters 4–44 | | Pipeline/Post Multiply Register 2–61 | Regional Clock External I/O Timing | | | Parameters 4–44 | | E | EP1S30 Devices | | L | Column Pin | | EP1S10 Devices | Fast Regional Clock External I/O Timing | | Column Pin | Parameters 4–45 | | Fast Regional Clock External I/O Timing | Global Clock External I/O Timing | | Parameters 4–36 | Parameters 4–45 | | Global Clock External I/O Timing
Parameters 4–37 | Regional Clock External I/O Timing Parameters 4–45 | | Regional Clock External I/O Timing | Row Pin | | Parameters 4–36 | Fast Regional Clock External I/O Timing | | Row Pin | Parameters 4–46 | | Fast Regional Clock External I/O Timing | Global Clock External I/O Timing | | Parameters 4–37 | Parameters 4–47 | | Global Clock External I/O Timing | Regional Clock External I/O Timing | | Parameters 4–38 | Parameters 4–47 | | Regional Clock External I/O Timing | EP1S40 Devices | | Parameters 4–38 | Column Pin | | EP1S20 Devices | Fast Regional Clock External I/O Timing | | Column Pin | Parameters 4–48 | | Fast Regional Clock External I/O Timing | Global Clock External I/O Timing | | Parameters 4–39 | Parameters 4–49 | | Global Clock External I/O Timing | Regional Clock External I/O Timing | | Parameters 4–40 | Parameters 4–48 | | Regional Clock External I/O Timing | Row Pin | Altera Corporation Index-3 | Fast Regional Clock External I/O Timing | 1 | |--|--| | Parameters 4–49 | I/O | | Global Clock External I/O Timing | Standards | | Parameters 4–50 Regional Clock External I/O Timing | 1.5-V 4–14, 4–15 | | Parameters 4–50 | I/O Specifications 4–4 | | EP1S60 Devices | 1.8-V | | Column Pin | I/O Specifications 4–4 | | Fast Regional Clock External I/O Timing | 2.5-V | | Parameters 4–51 | I/O Specifications 4–3 | | Global Clock External I/O Timing | 3.3-V 4–13 | | Parameters 4–52 | LVDS I/O Specifications 4–6 | | Regional Clock External I/O Timing | PCI Specifications 4–9 | | Parameters 4–51 | PCML Specifications 4–8 | | M-RAM | Advanced I/O Standard Support 2–122 | | Interface Locations 2–38 | Column I/O Block Connection to the | | Row Pin | Interconnect 2–107 | | Fast Regional Clock External I/O Timing | Column Pin | | Parameters 4–52 | Input Delay Adders 4–66 | | Global Clock External I/O Timing | Control Signal Selection per IOE 2–109 | | Parameters 4–53 | CTT I/O Specifications 4–16
Differential LVDS Input On-Chip | | Regional Clock External I/O Timing | Termination 2–128 | | Parameters 4–53 | External I/O Delay Parameters 4–66 | | EP1S80 Devices | GTL+ I/O Specifications 4–10 | | Column Pin | High-Speed Differential I/O | | Fast Regional Clock External I/O Timing | Support 2–130 | | Parameters 4–54 | HyperTransport Technology | | Global Clock External I/O Timing | Specifications 4–9 | | Parameters 4–55 | I/O Banks 2–125 | | Regional Clock External I/O Timing | I/O Structure 2–104 | | Parameters 4–54 | I/O Support by Bank 2–126 | | Global Clock External I/O Timing Parameters 4–56 | IOE Structure 2–105 | | Row Pin | LVCMOS Specifications 4–3 | | Fast Regional Clock External I/O Timing | LVDS Performance on Fast PLL | | Parameters 4–55 | Input 2–103 | | Regional Clock External I/O Timing | LVPECL Specifications 4–8 | | Parameters 4–56 | LVTTL Specifications 4–3 | | Turumeters 1 00 | MultiVolt I/O Interface 2–129 | | | MultiVolt I/O Support 2–130 | | Н | Output Delay Adders for Fast Slew Rate | | HSTL | on Column Pins 4–68 | | Class I Specifications 4–14, 4–15 | Output Delay Adders for Fast Slew Rate | | Class II Specifications 4–14, 4–15 | on Row Pins 4–69 | | 1 | Output Delay Adders for Slow Slew Rate | | | on Column Pins 4–70 | | | Package Options & I/O Pin Counts 1–4 | | | Receiver Input Waveforms for Differential | Index-4 Altera Corporation