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Logic Elements

With the LAB-wide addnsub control signal, a single LE can implement a 
one-bit adder and subtractor. This saves LE resources and improves 
performance for logic functions such as DSP correlators and signed 
multipliers that alternate between addition and subtraction depending 
on data.

The LAB row clocks [7..0] and LAB local interconnect generate the LAB-
wide control signals. The MultiTrackTM interconnect’s inherent low skew 
allows clock and control signal distribution in addition to data. Figure 2–4 
shows the LAB control signal generation circuit.

Figure 2–4. LAB-Wide Control Signals

Logic Elements The smallest unit of logic in the Stratix architecture, the LE, is compact 
and provides advanced features with efficient logic utilization. Each LE 
contains a four-input LUT, which is a function generator that can 
implement any function of four variables. In addition, each LE contains a 
programmable register and carry chain with carry select capability. A 
single LE also supports dynamic single bit addition or subtraction mode 
selectable by an LAB-wide control signal. Each LE drives all types of 
interconnects: local, row, column, LUT chain, register chain, and direct 
link interconnects. See Figure 2–5.
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Logic Elements

Figure 2–8 shows the carry-select circuitry in an LAB for a 10-bit full 
adder. One portion of the LUT generates the sum of two bits using the 
input signals and the appropriate carry-in bit; the sum is routed to the 
output of the LE. The register can be bypassed for simple adders or used 
for accumulator functions. Another portion of the LUT generates carry-
out bits. An LAB-wide carry in bit selects which chain is used for the 
addition of given inputs. The carry-in signal for each chain, carry-in0 
or carry-in1, selects the carry-out to carry forward to the carry-in 
signal of the next-higher-order bit. The final carry-out signal is routed to 
an LE, where it is fed to local, row, or column interconnects. 

The Quartus II Compiler automatically creates carry chain logic during 
design processing, or you can create it manually during design entry. 
Parameterized functions such as LPM functions automatically take 
advantage of carry chains for the appropriate functions.

The Quartus II Compiler creates carry chains longer than 10 LEs by 
linking LABs together automatically. For enhanced fitting, a long carry 
chain runs vertically allowing fast horizontal connections to TriMatrix™ 
memory and DSP blocks. A carry chain can continue as far as a full 
column.
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Stratix Architecture

Figure 2–8. Carry Select Chain 

Clear & Preset Logic Control

LAB-wide signals control the logic for the register’s clear and preset 
signals. The LE directly supports an asynchronous clear and preset 
function. The register preset is achieved through the asynchronous load 
of a logic high. The direct asynchronous preset does not require a NOT-
gate push-back technique. Stratix devices support simultaneous preset/ 
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Stratix Architecture

C8 interconnects span eight LABs, M512, or M4K blocks up or down from 
a source LAB. Every LAB has its own set of C8 interconnects to drive 
either up or down. C8 interconnect connections between the LABs in a 
column are similar to the C4 connections shown in Figure 2–11 with the 
exception that they connect to eight LABs above and below. The C8 
interconnects can drive and be driven by all types of architecture blocks 
similar to C4 interconnects. C8 interconnects can drive each other to 
extend their range as well as R8 interconnects for column-to-column 
connections. C8 interconnects are faster than two C4 interconnects. 

C16 column interconnects span a length of 16 LABs and provide the 
fastest resource for long column connections between LABs, TriMatrix 
memory blocks, DSP blocks, and IOEs. C16 interconnects can cross M-
RAM blocks and also drive to row and column interconnects at every 
fourth LAB. C16 interconnects drive LAB local interconnects via C4 and 
R4 interconnects and do not drive LAB local interconnects directly.

All embedded blocks communicate with the logic array similar to LAB-
to-LAB interfaces. Each block (i.e., TriMatrix memory and DSP blocks) 
connects to row and column interconnects and has local interconnect 
regions driven by row and column interconnects. These blocks also have 
direct link interconnects for fast connections to and from a neighboring 
LAB. All blocks are fed by the row LAB clocks, labclk[7..0].
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TriMatrix Memory

Similar to all RAM blocks, M-RAM blocks can have different clocks on 
their inputs and outputs. All input registers—renwe, datain, address, 
and byte enable registers—are clocked together from either of the two 
clocks feeding the block. The output register can be bypassed. The eight 
labclk signals or local interconnect can drive the control signals for the 
A and B ports of the M-RAM block. LEs can also control the clock_a, 
clock_b, renwe_a, renwe_b, clr_a, clr_b, clocken_a, and 
clocken_b signals as shown in Figure 2–19.

Table 2–11. M-RAM Combined Byte Selection for ×144 Mode Notes (1), (2)

byteena[15..0] datain ×144

[0] = 1 [8..0]

[1] = 1 [17..9]

[2] = 1 [26..18]

[3] = 1 [35..27]

[4] = 1 [44..36]

[5] = 1 [53..45]

[6] = 1 [62..54]

[7] = 1 [71..63]

[8] = 1 [80..72]

[9] = 1 [89..81]

[10] = 1 [98..90]

[11] = 1 [107..99]

[12] = 1 [116..108]

[13] = 1 [125..117]

[14] = 1 [134..126]

[15] = 1 [143..135]

Notes to Tables 2–10 and 2–11:
(1) Any combination of byte enables is possible.
(2) Byte enables can be used in the same manner with 8-bit words, i.e., in × 16, × 32, 

× 64, and × 128 modes.
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Stratix Architecture

Figure 2–61. Column I/O Block Connection to the Interconnect

Notes to Figure 2–61:
(1) The 16 control signals are composed of four output enables io_boe[3..0], four clock enables io_bce[3..0], 

four clocks io_bclk[3..0], and four clear signals io_bclr[3..0].
(2) The 42 data and control signals consist of 12 data out lines; six lines each for DDR applications 

io_dataouta[5..0] and io_dataoutb[5..0], six output enables io_coe[5..0], six input clock enables 
io_cce_in[5..0], six output clock enables io_cce_out[5..0], six clocks io_cclk[5..0], and six clear 
signals io_cclr[5..0].
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I/O Structure

Tables 2–25 and 2–26 show the performance specification for DDR 
SDRAM, RLDRAM II, QDR SRAM, QDRII SRAM, and ZBT SRAM 
interfaces in EP1S10 through EP1S40 devices and in EP1S60 and EP1S80 
devices. The DDR SDRAM and QDR SRAM numbers in Table 2–25 have 
been verified with hardware characterization with third-party DDR 
SDRAM and QDR SRAM devices over temperature and voltage 
extremes.

Table 2–25. External RAM Support in EP1S10 through EP1S40 Devices

DDR Memory Type I/O 
Standard

Maximum Clock Rate (MHz)

-5 Speed 
Grade -6 Speed Grade -7 Speed Grade -8 Speed Grade

Flip-Chip Flip-Chip Wire-
Bond

Flip-
Chip

Wire-
Bond

Flip-
Chip

Wire-
Bond

DDR SDRAM (1), (2) SSTL-2 200 167 133 133 100 100 100

DDR SDRAM - side 
banks (2), (3), (4)

SSTL-2 150 133 110 133 100 100 100

RLDRAM II (4) 1.8-V HSTL 200 (5) (5) (5) (5) (5) (5)

QDR SRAM (6) 1.5-V HSTL 167 167 133 133 100 100 100

QDRII SRAM (6) 1.5-V HSTL 200 167 133 133 100 100 100

ZBT SRAM (7) LVTTL 200 200 200 167 167 133 133

Notes to Table 2–25:
(1) These maximum clock rates apply if the Stratix device uses DQS phase-shift circuitry to interface with DDR 

SDRAM. DQS phase-shift circuitry is only available in the top and bottom I/O banks (I/O banks 3, 4, 7, and 8). 
(2) For more information on DDR SDRAM, see AN 342: Interfacing DDR SDRAM with Stratix & Stratix GX Devices.
(3) DDR SDRAM is supported on the Stratix device side I/O banks (I/O banks 1, 2, 5, and 6) without dedicated DQS 

phase-shift circuitry. The read DQS signal is ignored in this mode.
(4) These performance specifications are preliminary.
(5) This device does not support RLDRAM II.
(6) For more information on QDR or QDRII SRAM, see AN 349: QDR SRAM Controller Reference Design for Stratix & 

Stratix GX Devices.
(7) For more information on ZBT SRAM, see AN 329: ZBT SRAM Controller Reference Design for Stratix & Stratix GX 

Devices.



Altera Corporation 3–13
July 2005 Stratix Device Handbook, Volume 1

Configuration & Testing

For Stratix, the CRC is computed by the Quartus II software and 
downloaded into the device as a part of the configuration bit stream. The 
CRC_ERROR pin reports a soft error when configuration SRAM data is 
corrupted, triggering device reconfiguration.

Custom-Built Circuitry

Dedicated circuitry is built in the Stratix devices to perform error 
detection automatically. You can use the built-in dedicated circuitry for 
error detection using CRC feature in Stratix devices, eliminating the need 
for external logic. This circuitry will perform error detection 
automatically when enabled. This error detection circuitry in Stratix 
devices constantly checks for errors in the configuration SRAM cells 
while the device is in user mode. You can monitor one external pin for the 
error and use it to trigger a re-configuration cycle. Select the desired time 
between checks by adjusting a built-in clock divider.

Software Interface

In the Quartus II software version 4.1 and later, you can turn on the 
automated error detection CRC feature in the Device & Pin Options 
dialog box. This dialog box allows you to enable the feature and set the 
internal frequency of the CRC between 400 kHz to 100 MHz. This controls 
the rate that the CRC circuitry verifies the internal configuration SRAM 
bits in the FPGA device.

For more information on CRC, see AN 357: Error Detection Using CRC in 
Altera FPGA Devices.

Temperature 
Sensing Diode

Stratix devices include a diode-connected transistor for use as a 
temperature sensor in power management. This diode is used with an 
external digital thermometer device such as a MAX1617A or MAX1619 
from MAXIM Integrated Products. These devices steer bias current 
through the Stratix diode, measuring forward voltage and converting this 
reading to temperature in the form of an 8-bit signed number (7 bits plus 
sign). The external device’s output represents the junction temperature of 
the Stratix device and can be used for intelligent power management.

The diode requires two pins (tempdiodep and tempdioden) on the 
Stratix device to connect to the external temperature-sensing device, as 
shown in Figure 3–5. The temperature sensing diode is a passive element 
and therefore can be used before the Stratix device is powered. 
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DC & Switching Characteristics

Table 4–18. SSTL-18 Class I Specifications

Symbol Parameter Conditions Minimum Typical Maximum Unit

VCCIO Output supply voltage 1.65 1.8 1.95 V

VREF Reference voltage 0.8 0.9 1.0 V

VTT Termination voltage VREF – 0.04 VREF VREF + 0.04 V

VIH(DC) High-level DC input voltage VREF + 
0.125

V

VIL(DC) Low-level DC input voltage VREF – 0.125 V

VIH(AC) High-level AC input voltage VREF + 
0.275

V

VIL(AC) Low-level AC input voltage VREF – 0.275 V

VOH High-level output voltage IOH = –6.7 mA 
(3)

VTT + 0.475 V

VOL Low-level output voltage IOL = 6.7 mA (3) VTT – 0.475 V

Table 4–19. SSTL-18 Class II Specifications

Symbol Parameter Conditions Minimum Typical Maximum Unit

VCCIO Output supply voltage 1.65 1.8 1.95 V

VREF Reference voltage 0.8 0.9 1.0 V

VTT Termination voltage VREF – 0.04 VREF VREF + 0.04 V

VIH(DC) High-level DC input voltage VREF + 
0.125

V

VIL(DC) Low-level DC input voltage VREF – 0.125 V

VIH(AC) High-level AC input voltage VREF + 
0.275

V

VIL(AC) Low-level AC input voltage VREF – 0.275 V

VOH High-level output voltage IOH = –13.4 mA 
(3)

VTT + 0.630 V

VOL Low-level output voltage IOL = 13.4 mA (3) VTT – 0.630 V
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Operating Conditions

Table 4–20. SSTL-2 Class I Specifications

Symbol Parameter Conditions Minimum Typical Maximum Unit

VCCIO Output supply voltage 2.375 2.5 2.625 V

VTT Termination voltage VREF – 0.04 VREF VREF + 0.04 V

VREF Reference voltage 1.15 1.25 1.35 V

VIH(DC) High-level DC input voltage VREF + 0.18 3.0 V

VIL(DC) Low-level DC input voltage –0.3 VREF – 0.18 V

VIH(AC) High-level AC input voltage VREF + 0.35 V

VIL(AC) Low-level AC input voltage VREF – 0.35 V

VOH High-level output voltage IOH = –8.1 mA 
(3)

VTT + 0.57 V

VOL Low-level output voltage IOL = 8.1 mA (3) VTT – 0.57 V

Table 4–21. SSTL-2 Class II Specifications

Symbol Parameter Conditions Minimum Typical Maximum Unit

VCCIO Output supply voltage 2.375 2.5 2.625 V

VTT Termination voltage VREF – 0.04 VREF VREF + 0.04 V

VREF Reference voltage 1.15 1.25 1.35 V

VIH(DC) High-level DC input voltage VREF + 0.18 VCCIO + 0.3 V

VIL(DC) Low-level DC input voltage –0.3 VREF – 0.18 V

VIH(AC) High-level AC input voltage VREF + 0.35 V

VIL(AC) Low-level AC input voltage VREF – 0.35 V

VOH High-level output voltage IOH = –16.4 mA 
(3)

VTT + 0.76 V

VOL Low-level output voltage IOL = 16.4 mA (3) VTT – 0.76 V

Table 4–22. SSTL-3 Class I Specifications (Part 1 of 2)

Symbol Parameter Conditions Minimum Typical Maximum Unit

VCCIO Output supply voltage 3.0 3.3 3.6 V

VTT Termination voltage VREF – 0.05 VREF VREF + 0.05 V

VREF Reference voltage 1.3 1.5 1.7 V

VIH(DC) High-level DC input voltage VREF + 0.2 VCCIO + 0.3 V

VIL(DC) Low-level DC input voltage –0.3 VREF – 0.2 V

VIH(AC) High-level AC input voltage VREF + 0.4 V
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Timing Model

Table 4–102 shows the reporting methodology used by the Quartus II 
software for minimum timing information for output pins.

Table 4–102. Reporting Methodology For Minimum Timing For Single-Ended Output Pins (Part 1 of 2) 
Notes (1), (2), (3)

I/O Standard

Loading and Termination Measurement 
Point

RUP

Ω
RDN

Ω
RS

Ω
RT

Ω
VCCIO

(V)
VTT
(V)

CL

(pF)
VMEAS

3.3-V LVTTL – – 0 – 3.600 3.600 10 1.800

2.5-V LVTTL – – 0 – 2.630 2.630 10 1.200

1.8-V LVTTL – – 0 – 1.950 1.950 10 0.880

1.5-V LVTTL – – 0 – 1.600 1.600 10 0.750

3.3-V LVCMOS – – 0 – 3.600 3.600 10 1.800

2.5-V LVCMOS – – 0 – 2.630 2.630 10 1.200

1.8-V LVCMOS – – 0 – 1.950 1.950 10 0.880

1.5-V LVCMOS – – 0 – 1.600 1.600 10 0.750

3.3-V GTL – – 0 25 3.600 1.260 30 0.860

2.5-V GTL – – 0 25 2.630 1.260 30 0.860

3.3-V GTL+ – – 0 25 3.600 1.650 30 1.120

2.5-V GTL+ – – 0 25 2.630 1.650 30 1.120

3.3-V SSTL-3 Class II – – 25 25 3.600 1.750 30 1.750

3.3-V SSTL-3 Class I – – 25 50 3.600 1.750 30 1.750

2.5-V SSTL-2 Class II – – 25 25 2.630 1.390 30 1.390

2.5-V SSTL-2 Class I – – 25 50 2.630 1.390 30 1.390

1.8-V SSTL-18 Class II – – 25 25 1.950 1.040 30 1.040

1.8-V SSTL-18 Class I – – 25 50 1.950 1.040 30 1.040

1.5-V HSTL Class II – – 0 25 1.600 0.800 20 0.900

1.5-V HSTL Class I – – 0 50 1.600 0.800 20 0.900

1.8-V HSTL Class II – – 0 25 1.950 0.900 20 1.000

1.8-V HSTL Class I – – 0 50 1.950 0.900 20 1.000

3.3-V PCI (4) –/25 25/– 0 – 3.600 1.950 10 1.026/2.214

3.3-V PCI-X 1.0 (4) –/25 25/– 0 – 3.600 1.950 10 1.026/2.214

3.3-V Compact PCI (4) –/25 25/– 0 – 3.600 3.600 10 1.026/2.214

3.3-V AGP 1× (4) –/25 25/– 0 – 3.600 3.600 10 1.026/2.214



Altera Corporation 4–65
January 2006 Stratix Device Handbook, Volume 1

DC & Switching Characteristics

Figure 4–8 shows the measurement setup for output disable and output 
enable timing. The TCHZ stands for clock to high Z time delay and is the 
same as TXZ. The TCLZ stands for clock to low Z (driving) time delay and 
is the same as TZX.

Figure 4–8. Measurement Setup for TXZ and TZX

3.3-V CTT – – 25 50 3.600 1.650 30 1.650

Notes to Table 4–102:
(1) Input measurement point at internal node is 0.5 × VCCINT.
(2) Output measuring point for data is VMEAS. When two values are given, the first is the measurement point on the 

rising edge and the other is for the falling edge.
(3) Input stimulus edge rate is 0 to VCCINT in 0.5 ns (internal signal) from the driver preceding the I/O buffer.
(4) The first value is for the output rising edge and the second value is for the output falling edge. The hyphen (-) 

indicates infinite resistance or disconnection.

Table 4–102. Reporting Methodology For Minimum Timing For Single-Ended Output Pins (Part 2 of 2) 
Notes (1), (2), (3)

I/O Standard

Loading and Termination Measurement 
Point

RUP

Ω
RDN

Ω
RS

Ω
RT

Ω
VCCIO

(V)
VTT
(V)

CL

(pF)
VMEAS

200mV 

200mV 
200mV 

200mV 

CLK  

OUT  

OUT  

T CHZ 

T CLZ 

V  T =1.5V

C TOTAL=10pF

R =50Ω 
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DC & Switching Characteristics

Tables 4–109 and 4–110 show the adder delays for the column and row 
IOE programmable delays. These delays are controlled with the 
Quartus II software logic options listed in the Parameter column.

Table 4–109. Stratix IOE Programmable Delays on Column Pins  Note (1)

Parameter Setting
-5 Speed Grade -6 Speed Grade -7 Speed Grade -8 Speed Grade

Unit
Min Max Min Max Min Max Min Max

Decrease input delay 
to internal cells

Off 3,970 4,367 5,022 5,908 ps

Small 3,390 3,729 4,288 5,045 ps

Medium 2,810 3,091 3,554 4,181 ps

Large 224 235 270 318 ps

On 224 235 270 318 ps

Decrease input delay 
to input register

Off 3,900 4,290 4,933 5,804 ps

On 0 0 0 0 ps

Decrease input delay 
to output register

Off 1,240 1,364 1,568 1,845 ps

On 0 0 0 0 ps

Increase delay to 
output pin

Off 0 0 0 0 ps

On 397 417 417 417 ps

Increase delay to 
output enable pin

Off 0 0 0 0 ps

On 338 372 427 503 ps

Increase output clock 
enable delay

Off 0 0 0 0 ps

Small 540 594 683 804 ps

Large 1,016 1,118 1,285 1,512 ps

On 1,016 1,118 1,285 1,512 ps

Increase input clock 
enable delay

Off 0 0 0 0 ps

Small 540 594 683 804 ps

Large 1,016 1,118 1,285 1,512 ps

On 1,016 1,118 1,285 1,512 ps

Increase output 
enable clock enable 
delay

Off 0 0 0 0 ps

Small 540 594 683 804 ps

Large 1,016 1,118 1,285 1,512 ps

On 1,016 1,118 1,285 1,512 ps

Increase tZX delay to 
output pin

Off 0 0 0 0 ps

On 2,199 2,309 2,309 2,309 ps
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Tables 4–125 and 4–126 show the high-speed I/O timing for Stratix devices.

Table 4–125. High-Speed I/O Specifications for Flip-Chip Packages (Part 1 of 4) Notes (1), (2)

Symbol Conditions
-5 Speed Grade -6 Speed Grade -7 Speed Grade -8 Speed Grade

Unit
Min Typ Max Min Typ Max Min Typ Max Min Typ Max

fHSCLK (Clock 
frequency)
(LVDS, 
LVPECL, 
HyperTransport 
technology)
fHSCLK = fHSDR / 
W

W = 4 to 30 
(Serdes used)

10 210 10 210 10 156 10 115.5 MHz

W = 2 (Serdes 
bypass)

50 231 50 231 50 231 50 231 MHz

W = 2 (Serdes 
used)

150 420 150 420 150 312 150 231 MHz

W = 1 (Serdes 
bypass)

100 462 100 462 100 462 100 462 MHz

W = 1 (Serdes 
used)

300 717 300 717 300 624 300 462 MHz

fHSDR Device 
operation
(LVDS, 
LVPECL, 
HyperTransport 
technology)

J = 10 300 840 300 840 300 640 300 462 Mbps

J = 8 300 840 300 840 300 640 300 462 Mbps

J = 7 300 840 300 840 300 640 300 462 Mbps

J = 4 300 840 300 840 300 640 300 462 Mbps

J = 2 100 462 100 462 100 640 100 462 Mbps

J = 1 (LVDS 
and LVPECL 
only)

100 462 100 462 100 640 100 462 Mbps
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tDUTY LVDS (J = 2 
through 10)

47.5 50 52.5 47.5 50 52.5 47.5 50 52.5 47.5 50 52.5 %

LVDS (J =1) 
and LVPECL, 
PCML, 
HyperTransport 
technology

45 50 55 45 50 55 45 50 55 45 50 55 %

tLOCK All 100 100 100 100 μs

Notes to Table 4–125:
(1) When J = 4, 7, 8, and 10, the SERDES block is used.
(2) When J = 2 or J = 1, the SERDES is bypassed.

Table 4–125. High-Speed I/O Specifications for Flip-Chip Packages (Part 4 of 4) Notes (1), (2)

Symbol Conditions
-5 Speed Grade -6 Speed Grade -7 Speed Grade -8 Speed Grade

Unit
Min Typ Max Min Typ Max Min Typ Max Min Typ Max
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PLL Specifications

Tables 4–131 through 4–133 describe the Stratix device fast PLL 
specifications.

Table 4–131. Fast PLL Specifications for -5 & -6 Speed Grade Devices

Symbol Parameter Min Max Unit

fIN CLKIN frequency (1), (2), (3) 10 717 MHz

fINPFD Input frequency to PFD 10 500 MHz

fOUT Output frequency for internal global or 
regional clock (3) 

9.375 420 MHz

fOUT_DIFFIO Output frequency for external clock 
driven out on a differential I/O data 
channel (2)

(5) (5)

fVCO VCO operating frequency 300 1,000 MHz

tINDUTY CLKIN duty cycle 40 60 %

tINJITTER Period jitter for CLKIN pin ±200 ps

tDUTY Duty cycle for DFFIO 1× CLKOUT pin (6) 45 55 %

tJITTER Period jitter for DIFFIO clock out (6) (5) ps

tLOCK Time required for PLL to acquire lock 10 100 μs

m Multiplication factors for m counter (6) 1 32 Integer

l0, l1, g0 Multiplication factors for l0, l1, and g0 
counter (7), (8)

1 32 Integer

tARESET Minimum pulse width on areset 
signal

10 ns

Table 4–132. Fast PLL Specifications for -7 Speed Grades (Part 1 of 2)

Symbol Parameter Min Max Unit

fIN CLKIN frequency (1), (3) 10 640 MHz

fINPFD Input frequency to PFD 10 500 MHz

fOUT Output frequency for internal global or 
regional clock (4)

9.375 420 MHz

fOUT_DIFFIO Output frequency for external clock 
driven out on a differential I/O data 
channel

(5) (5) MHz

fVCO VCO operating frequency 300 700 MHz

tINDUTY CLKIN duty cycle 40 60 %

tINJITTER Period jitter for CLKIN pin ±200 ps

tDUTY Duty cycle for DFFIO 1× CLKOUT pin (6) 45 55 %


