Welcome to **E-XFL.COM** ## Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. ## **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|---| | Product Status | Obsolete | | Number of LABs/CLBs | 1846 | | Number of Logic Elements/Cells | 18460 | | Total RAM Bits | 1669248 | | Number of I/O | 361 | | Number of Gates | - | | Voltage - Supply | 1.425V ~ 1.575V | | Mounting Type | Surface Mount | | Operating Temperature | 0°C ~ 85°C (TJ) | | Package / Case | 484-BBGA, FCBGA | | Supplier Device Package | 484-FBGA (23x23) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/ep1s20f484c5 | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong ## **About This Handbook** This handbook provides comprehensive information about the Altera® Stratix family of devices. # How to Find Information You can find more information in the following ways: - The Adobe Acrobat Find feature, which searches the text of a PDF document. Click the binoculars toolbar icon to open the Find dialog box. - Acrobat bookmarks, which serve as an additional table of contents in PDF documents. - Thumbnail icons, which provide miniature previews of each page, provide a link to the pages. - Numerous links, shown in green text, which allow you to jump to related information. ## How to Contact Altera For the most up-to-date information about Altera products, go to the Altera world-wide web site at www.altera.com. For technical support on this product, go to www.altera.com/mysupport. For additional information about Altera products, consult the sources shown below. | Information Type | USA & Canada | All Other Locations | |---|--|--| | Technical support | www.altera.com/mysupport/ | www.altera.com/mysupport/ | | | (800) 800-EPLD (3753)
(7:00 a.m. to 5:00 p.m. Pacific Time) | +1 408-544-8767
7:00 a.m. to 5:00 p.m. (GMT -8:00)
Pacific Time | | Product literature | www.altera.com | www.altera.com | | Altera literature services | literature@altera.com | literature@altera.com | | Non-technical customer service (800) 767-3753 | | + 1 408-544-7000
7:00 a.m. to 5:00 p.m. (GMT -8:00)
Pacific Time | | FTP site | ftp.altera.com | ftp.altera.com | Altera Corporation ix # Typographic Conventions This document uses the typographic conventions shown below. | Visual Cue | Meaning | |---|---| | Bold Type with Initial
Capital Letters | Command names, dialog box titles, checkbox options, and dialog box options are shown in bold, initial capital letters. Example: Save As dialog box. | | bold type | External timing parameters, directory names, project names, disk drive names, filenames, filename extensions, and software utility names are shown in bold type. Examples: f _{MAX} , \qdesigns directory, d: drive, chiptrip.gdf file. | | Italic Type with Initial Capital
Letters | Document titles are shown in italic type with initial capital letters. Example: AN 75: High-Speed Board Designs. | | Italic type | Internal timing parameters and variables are shown in italic type. Examples: t_{PlA} , $n+1$. | | | Variable names are enclosed in angle brackets (< >) and shown in italic type. Example: <file name="">, <pre><pre><pre></pre></pre></pre></file> | | Initial Capital Letters | Keyboard keys and menu names are shown with initial capital letters. Examples: Delete key, the Options menu. | | "Subheading Title" | References to sections within a document and titles of on-line help topics are shown in quotation marks. Example: "Typographic Conventions." | | Courier type | Signal and port names are shown in lowercase Courier type. Examples: $\mathtt{data1}$, \mathtt{tdi} , \mathtt{input} . Active-low signals are denoted by suffix \mathtt{n} , $\mathtt{e.g.}$, \mathtt{resetn} . | | | Anything that must be typed exactly as it appears is shown in Courier type. For example: c:\qdesigns\tutorial\chiptrip.gdf. Also, sections of an actual file, such as a Report File, references to parts of files (e.g., the AHDL keyword SUBDESIGN), as well as logic function names (e.g., TRI) are shown in Courier. | | 1., 2., 3., and
a., b., c., etc. | Numbered steps are used in a list of items when the sequence of the items is important, such as the steps listed in a procedure. | | • • | Bullets are used in a list of items when the sequence of the items is not important. | | ✓ | The checkmark indicates a procedure that consists of one step only. | | | The hand points to information that requires special attention. | | 4 | The angled arrow indicates you should press the Enter key. | | | The feet direct you to more information on a particular topic. | x Altera Corporation | Table 1–1. Stratix Device Features — EP1S10, EP1S20, EP1S25, EP1S30 | | | | | | | | |---|---------|-----------|-----------|-----------|--|--|--| | Feature | EP1S10 | EP1S20 | EP1S25 | EP1S30 | | | | | LEs | 10,570 | 18,460 | 25,660 | 32,470 | | | | | M512 RAM blocks (32 × 18 bits) | 94 | 194 | 224 | 295 | | | | | M4K RAM blocks (128 × 36 bits) | 60 | 82 | 138 | 171 | | | | | M-RAM blocks (4K × 144 bits) | 1 | 2 | 2 | 4 | | | | | Total RAM bits | 920,448 | 1,669,248 | 1,944,576 | 3,317,184 | | | | | DSP blocks | 6 | 10 | 10 | 12 | | | | | Embedded multipliers (1) | 48 | 80 | 80 | 96 | | | | | PLLs | 6 | 6 | 6 | 10 | | | | | Maximum user I/O pins | 426 | 586 | 706 | 726 | | | | | Table 1–2. Stratix Device Features — EP1S40, EP1S60, EP1S80 | | | | | | | |---|-----------|-----------|-----------|--|--|--| | Feature | EP1S40 | EP1S60 | EP1S80 | | | | | LEs | 41,250 | 57,120 | 79,040 | | | | | M512 RAM blocks (32 × 18 bits) | 384 | 574 | 767 | | | | | M4K RAM blocks (128 × 36 bits) | 183 | 292 | 364 | | | | | M-RAM blocks (4K × 144 bits) | 4 | 6 | 9 | | | | | Total RAM bits | 3,423,744 | 5,215,104 | 7,427,520 | | | | | DSP blocks | 14 | 18 | 22 | | | | | Embedded multipliers (1) | 112 | 144 | 176 | | | | | PLLs | 12 | 12 | 12 | | | | | Maximum user I/O pins | 822 | 1,022 | 1,238 | | | | ### Note to Tables 1–1 and 1–2: ⁽¹⁾ This parameter lists the total number of 9×9 -bit multipliers for each device. For the total number of 18×18 -bit multipliers per device, divide the total number of 9×9 -bit multipliers by 2. For the total number of 36×36 -bit multipliers per device, divide the total number of 9×9 -bit multipliers by 8. Table 2–2 shows the Stratix device's routing scheme. | Table 2–2. Strat | ix De | vice F | Routin | ng Scl | heme | | | | | | | | | | | | | |-----------------------------|-----------|----------------|--------------------|--------------------------|-----------------|-----------------|------------------|-----------------|-----------------|------------------|----------|----------------|---------------|-------------|------------|------------|----------| | | | Destination | | | | | | | | | | | | | | | | | Source | LUT Chain | Register Chain | Local Interconnect | Direct Link Interconnect | R4 Interconnect | R8 Interconnect | R24 Interconnect | C4 Interconnect | C8 Interconnect | C16 Interconnect | TE | M512 RAM Block | M4K RAM Block | M-RAM Block | DSP Blocks | Column 10E | Row IOE | | LUT Chain | | | | | | | | | | | > | | | | | | | | Register Chain | | | | | | | | | | | \ | | | | | | | | Local
Interconnect | | | | | | | | | | | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | \ | | Direct Link
Interconnect | | | ✓ | | | | | | | | | | | | | | | | R4 Interconnect | | | ✓ | | ✓ | | ✓ | ✓ | | ✓ | | | | | | | | | R8 Interconnect | | | ✓ | | | ✓ | | | ✓ | | | | | | | | | | R24
Interconnect | | | | | ✓ | | ~ | ✓ | | ✓ | | | | | | | | | C4 Interconnect | | | ✓ | | ✓ | | | ✓ | | | | | | | | | | | C8 Interconnect | | | ✓ | | | ✓ | | | ✓ | | | | | | | | | | C16
Interconnect | | | | | ✓ | | \ | \ | | ✓ | | | | | | | | | LE | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | | ✓ | ✓ | | | | | | | | | | M512 RAM
Block | | | ✓ | ✓ | ✓ | ✓ | | \ | ✓ | | | | | | | | | | M4K RAM Block | | | ✓ | ✓ | ✓ | ✓ | | ✓ | ✓ | | | | | | | | | | M-RAM Block | | | | | | | | ✓ | ✓ | | | | | | | | | | DSP Blocks | | | ✓ | ✓ | ✓ | ✓ | | ✓ | ✓ | | | | | | | | | | Column IOE | | | | ✓ | | | | ✓ | ✓ | ✓ | | | | | | | | | Row IOE | | | | ✓ | | ✓ | ✓ | ✓ | ✓ | ✓ | | | | | | | | ## Read/Write Clock Mode The memory blocks implement read/write clock mode for simple dual-port memory. You can use up to two clocks in this mode. The write clock controls the block's data inputs, wraddress, and wren. The read clock controls the data output, rdaddress, and rden. The memory blocks support independent clock enables for each clock and asynchronous clear signals for the read- and write-side registers. Figure 2–27 shows a memory block in read/write clock mode. single DSP block can implement two sums or differences from two 18×18 -bit multipliers each or four sums or differences from two 9×9 -bit multipliers each. You can use the two-multipliers adder mode for complex multiplications, which are written as: $$(a+jb)\times(c+jd) = [(a\times c) - (b\times d)] + j\times[(a\times d) + (b\times c)]$$ The two-multipliers adder mode allows a single DSP block to calculate the real part $[(a \times c) - (b \times d)]$ using one subtractor and the imaginary part $[(a \times d) + (b \times c)]$ using one adder, for data widths up to 18 bits. Two complex multiplications are possible for data widths up to 9 bits using four adder/subtractor/accumulator blocks. Figure 2–38 shows an 18-bit two-multipliers adder. Figure 2–38. Two-Multipliers Adder Mode Implementing Complex Multiply ## Four-Multipliers Adder Mode In the four-multipliers adder mode, the DSP block adds the results of two first -stage adder/subtractor blocks. One sum of four 18×18 -bit multipliers or two different sums of two sets of four 9×9 -bit multipliers can be implemented in a single DSP block. The product width for each multiplier must be the same size. The four-multipliers adder mode is useful for FIR filter applications. Figure 2–39 shows the four multipliers adder mode. clock signals are routed from LAB row clocks and are generated from specific LAB rows at the DSP block interface. The LAB row source for control signals, data inputs, and outputs is shown in Table 2–17. | Table 2-17. D | Table 2–17. DSP Block Signal Sources & Destinations | | | | | | |-------------------------|---|-------------|--------------|--|--|--| | LAB Row at
Interface | Control Signals
Generated | Data Inputs | Data Outputs | | | | | 1 | signa | A1[170] | OA[170] | | | | | 2 | aclr0
accum_sload0 | B1[170] | OB[170] | | | | | 3 | addnsub1
clock0
ena0 | A2[170] | OC[170] | | | | | 4 | aclr1
clock1
ena1 | B2[170] | OD[170] | | | | | 5 | aclr2
clock2
ena2 | A3[170] | OE[170] | | | | | 6 | sign_b
clock3
ena3 | B3[170] | OF[170] | | | | | 7 | clear3
accum_sload1 | A4[170] | OG[170] | | | | | 8 | addnsub3 | B4[170] | OH[170] | | | | ## PLLs & Clock Networks Stratix devices provide a hierarchical clock structure and multiple PLLs with advanced features. The large number of clocking resources in combination with the clock synthesis precision provided by enhanced and fast PLLs provides a complete clock management solution. ## **Global & Hierarchical Clocking** Stratix devices provide 16 dedicated global clock networks, 16 regional clock networks (four per device quadrant), and 8 dedicated fast regional clock networks (for EP1S10, EP1S20, and EP1S25 devices), and 16 dedicated fast regional clock networks (for EP1S30 EP1S40, and EP1S60, and EP1S80 devices). These clocks are organized into a hierarchical clock structure that allows for up to 22 clocks per device region with low skew and delay. This hierarchical clocking scheme provides up to 48 unique clock domains within Stratix devices. ## **Enhanced PLLs** Stratix devices contain up to four enhanced PLLs with advanced clock management features. Figure 2–52 shows a diagram of the enhanced PLL. Figure 2-52. Stratix Enhanced PLL #### Notes to Figure 2-52: - (1) External feedback is available in PLLs 5 and 6. - (2) This single-ended external output is available from the g0 counter for PLLs 11 and 12. - (3) These four counters and external outputs are available in PLLs 5 and 6. - (4) This connection is only available on EP1S40 and larger Stratix devices. For example, PLLs 5 and 11 are adjacent and PLLs 6 and 12 are adjacent. The EP1S40 device in the 780-pin FineLine BGA package does not support PLLs 11 and 12. VCO period from up to eight taps for individual fine step selection. Also, each clock output counter can use a unique initial count setting to achieve individual coarse shift selection in steps of one VCO period. The combination of coarse and fine shifts allows phase shifting for the entire input clock period. The equation to determine the precision of the phase shifting in degrees is: 45° ÷ post-scale counter value. Therefore, the maximum step size is 45° , and smaller steps are possible depending on the multiplication and division ratio necessary on the output counter port. This type of phase shift provides the highest precision since it is the least sensitive to process, supply, and temperature variation. #### **Clock Delay** In addition to the phase shift feature, the ability to fine tune the Δt clock delay provides advanced time delay shift control on each of the four PLL outputs. There are time delays for each post-scale counter (e, g, or l) from the PLL, the n counter, and m counter. Each of these can shift in 250-ps increments for a range of 3.0 ns. The m delay shifts all outputs earlier in time, while n delay shifts all outputs later in time. Individual delays on post-scale counters (e, g, and l) provide positive delay for each output. Table 2–21 shows the combined delay for each output for normal or zero delay buffer mode where Δt_e , Δt_o , or Δt_l is unique for each PLL output. The t_{OUTPUT} for a single output can range from -3 ns to +6 ns. The total delay shift difference between any two PLL outputs, however, must be less than ± 3 ns. For example, shifts on two outputs of -1 and +2 ns is allowed, but not -1 and +2.5 ns because these shifts would result in a difference of 3.5 ns. If the design uses external feedback, the Δt_e delay will remove delay from outputs, represented by a negative sign (see Table 2–21). This effect occurs because the Δt_e delay is then part of the feedback loop. | Table 2–21. Output Clock Delay for Enhanced PLLs | | | | | |---|---|--|--|--| | Normal or Zero Delay Buffer Mode External Feedback Mode | | | | | | $\begin{split} \Delta t_{e \text{OUTPUT}} &= \Delta t_n - \!\!\! \Delta t_m + \Delta t_e \\ \Delta t_{g \text{OUTPUT}} &= \Delta t_n - \!\!\! \Delta t_m + \Delta t_g \\ \Delta t_{l \text{OUTPUT}} &= \Delta t_n - \!\!\! \Delta t_m + \Delta t_l \end{split}$ | $\begin{split} \Delta \mathbf{t}_{\text{OUTPUT}} &= \Delta \mathbf{t}_{n} - \Delta \mathbf{t}_{m} - \Delta \mathbf{t}_{e} \ (1) \\ \Delta \mathbf{t}_{\text{gOUTPUT}} &= \Delta \mathbf{t}_{n} - \Delta \mathbf{t}_{m} + \Delta \mathbf{t}_{g} \\ \Delta \mathbf{t}_{\text{DUTPUT}} &= \Delta \mathbf{t}_{n} - \Delta \mathbf{t}_{m} + \Delta \mathbf{t}_{l} \end{split}$ | | | | Note to Table 2-21: (1) Δt_e removes delay from outputs in external feedback mode. | Table 2-27. | Table 2–27. DQS & DQ Bus Mode Support (Part 2 of 2) Note (1) | | | | | | |-------------|---|------------------------|-------------------------|-------------------------|--|--| | Device | Package | Number of ×8
Groups | Number of ×16
Groups | Number of ×32
Groups | | | | EP1S25 | 672-pin BGA
672-pin FineLine BGA | 16 (3) | 8 | 4 | | | | | 780-pin FineLine BGA
1,020-pin FineLine BGA | 20 | 8 | 4 | | | | EP1S30 | 956-pin BGA
780-pin FineLine BGA
1,020-pin FineLine BGA | 20 | 8 | 4 | | | | EP1S40 | 956-pin BGA
1,020-pin FineLine BGA
1,508-pin FineLine BGA | 20 | 8 | 4 | | | | EP1S60 | 956-pin BGA
1,020-pin FineLine BGA
1,508-pin FineLine BGA | 20 | 8 | 4 | | | | EP1S80 | 956-pin BGA
1,508-pin FineLine BGA
1,923-pin FineLine BGA | 20 | 8 | 4 | | | #### *Notes to Table 2–27:* - See the Selectable I/O Standards in Stratix & Stratix GX Devices chapter in the Stratix Device Handbook, Volume 2 for V_{RFF} guidelines. - (2) These packages have six groups in I/O banks 3 and 4 and six groups in I/O banks 7 and 8. - (3) These packages have eight groups in I/O banks 3 and 4 and eight groups in I/O banks 7 and 8. - (4) This package has nine groups in I/O banks 3 and 4 and nine groups in I/O banks 7 and 8. - (5) These packages have three groups in I/O banks 3 and 4 and four groups in I/O banks 7 and 8. A compensated delay element on each DQS pin automatically aligns input DQS synchronization signals with the data window of their corresponding DQ data signals. The DQS signals drive a local DQS bus in the top and bottom I/O banks. This DQS bus is an additional resource to the I/O clocks and is used to clock DQ input registers with the DQS signal. Two separate single phase-shifting reference circuits are located on the top and bottom of the Stratix device. Each circuit is driven by a system reference clock through the CLK pins that is the same frequency as the DQS signal. Clock pins CLK [15..12] p feed the phase-shift circuitry on the top of the device and clock pins CLK [7..4] p feed the phase-shift circuitry on the bottom of the device. The phase-shifting reference circuit on the top of the device controls the compensated delay elements for all 10 DQS pins located at the top of the device. The phase-shifting reference circuit on the bottom of the device controls the compensated delay elements for all 10 DQS pins located on the bottom of the device. All 10 delay elements (DQS signals) on either the top or bottom of the device I/O pin has an individual slew-rate control, allowing you to specify the slew rate on a pin-by-pin basis. The slew-rate control affects both the rising and falling edges. #### **Bus Hold** Each Stratix device I/O pin provides an optional bus-hold feature. The bus-hold circuitry can weakly hold the signal on an I/O pin at its last-driven state. Since the bus-hold feature holds the last-driven state of the pin until the next input signal is present, an external pull-up or pull-down resistor is not needed to hold a signal level when the bus is tri-stated. Table 2–29 shows bus hold support for different pin types. | Table 2–29. Bus Hold Support | | | | | |------------------------------|----------|--|--|--| | Pin Type | Bus Hold | | | | | I/O pins | ✓ | | | | | CLK[150] | | | | | | CLK[0,1,2,3,8,9,10,11] | | | | | | FCLK | ~ | | | | | FPLL[710]CLK | | | | | The bus-hold circuitry also pulls undriven pins away from the input threshold voltage where noise can cause unintended high-frequency switching. You can select this feature individually for each I/O pin. The bus-hold output drives no higher than $V_{\rm CCIO}$ to prevent overdriving signals. If the bus-hold feature is enabled, the programmable pull-up option cannot be used. Disable the bus-hold feature when using opendrain outputs with the GTL+ I/O standard or when the I/O pin has been configured for differential signals. The bus-hold circuitry uses a resistor with a nominal resistance (R_{BH}) of approximately 7 k Ω to weakly pull the signal level to the last-driven state. See the DC & Switching Characteristics chapter of the Stratix Device Handbook, Volume 1 for the specific sustaining current driven through this resistor and overdrive current used to identify the next-driven input level. This information is provided for each V_{CCIO} voltage level. The bus-hold circuitry is active only after configuration. When going into user mode, the bus-hold circuit captures the value on the pin present at the end of configuration. **Figure 2–70. Stratix I/O Banks** Notes (1), (2), (3) #### *Notes to Figure 2–70:* - (1) Figure 2–70 is a top view of the silicon die. This will correspond to a top-down view for non-flip-chip packages, but will be a reverse view for flip-chip packages. - (2) Figure 2–70 is a graphic representation only. See the device pin-outs on the web (www.altera.com) and the Quartus II software for exact locations. - (3) Banks 9 through 12 are enhanced PLL external clock output banks. - (4) If the high-speed differential I/O pins are not used for high-speed differential signaling, they can support all of the I/O standards except HSTL Class I and II, GTL, SSTL-18 Class II, PCI, PCI-X 1.0, and AGP 1×/2×. - (5) For guidelines for placing single-ended I/O pads next to differential I/O pads, see the Selectable I/O Standards in Stratix and Stratix GX Devices chapter in the Stratix Device Handbook, Volume 2. | JTAG Instruction | Instruction Code | Description | |---------------------------|------------------|--| | SAMPLE/PRELOAD | 00 0000 0101 | Allows a snapshot of signals at the device pins to be captured and examined during normal device operation, and permits an initial data pattern to be output at the device pins. Also used by the SignalTap II embedded logic analyzer. | | EXTEST (1) | 00 0000 0000 | Allows the external circuitry and board-level interconnects to be tested by forcing a test pattern at the output pins and capturing test results at the input pins. | | BYPASS | 11 1111 1111 | Places the 1-bit bypass register between the TDI and TDO pins, which allows the BST data to pass synchronously through selected devices to adjacent devices during normal device operation. | | USERCODE | 00 0000 0111 | Selects the 32-bit USERCODE register and places it between the TDI and TDO pins, allowing the USERCODE to be serially shifted out of TDO. | | IDCODE | 00 0000 0110 | Selects the IDCODE register and places it between TDI and TDO, allowing the IDCODE to be serially shifted out of TDO. | | HIGHZ (1) | 00 0000 1011 | Places the 1-bit bypass register between the TDI and TDO pins, which allows the BST data to pass synchronously through selected devices to adjacent devices during normal device operation, while tri-stating all of the I/O pins. | | CLAMP (1) | 00 0000 1010 | Places the 1-bit bypass register between the TDI and TDO pins, which allows the BST data to pass synchronously through selected devices to adjacent devices during normal device operation while holding I/O pins to a state defined by the data in the boundary-scan register. | | ICR instructions | | Used when configuring an Stratix device via the JTAG port with a MasterBlaster™, ByteBlasterMV™, or ByteBlaster™ II download cable, or when using a Jam File or Jam Byte-Code File via an embedded processor or JRunner. | | PULSE_NCONFIG | 00 0000 0001 | Emulates pulsing the nCONFIG pin low to trigger reconfiguration even though the physical pin is unaffected. | | CONFIG_IO | 00 0000 1101 | Allows configuration of I/O standards through the JTAG chain for JTAG testing. Can be executed before, after, or during configuration. Stops configuration if executed during configuration. Once issued, the CONFIG_IO instruction will hold nSTATUS low to reset the configuration device. nSTATUS is held low until the device is reconfigured. | | SignalTap II instructions | | Monitors internal device operation with the SignalTap II embedded logic analyzer. | ## Note to Table 3–1: (1) Bus hold and weak pull-up resistor features override the high-impedance state of HIGHZ, CLAMP, and EXTEST. The Stratix device instruction register length is 10 bits and the USERCODE register length is 32 bits. Tables 3–2 and 3–3 show the boundary-scan register length and device IDCODE information for Stratix devices. | Table 3–2. Stratix Boundary-Scan Register Length | | | | | |--|-------|--|--|--| | Device Boundary-Scan Register Le | | | | | | EP1S10 | 1,317 | | | | | EP1S20 | 1,797 | | | | | EP1S25 | 2,157 | | | | | EP1S30 | 2,253 | | | | | EP1S40 | 2,529 | | | | | EP1S60 | 3,129 | | | | | EP1S80 | 3,777 | | | | | Table 3–3 | Table 3–3. 32-Bit Stratix Device IDCODE | | | | | | | | |-----------|---|-----------------------|------------------------------------|-----------------|--|--|--|--| | | IDCODE (32 Bits) (1) | | | | | | | | | Device | Version (4 Bits) | Part Number (16 Bits) | Manufacturer Identity
(11 Bits) | LSB (1 Bit) (2) | | | | | | EP1S10 | 0000 | 0010 0000 0000 0001 | 000 0110 1110 | 1 | | | | | | EP1S20 | 0000 | 0010 0000 0000 0010 | 000 0110 1110 | 1 | | | | | | EP1S25 | 0000 | 0010 0000 0000 0011 | 000 0110 1110 | 1 | | | | | | EP1S30 | 0000 | 0010 0000 0000 0100 | 000 0110 1110 | 1 | | | | | | EP1S40 | 0000 | 0010 0000 0000 0101 | 000 0110 1110 | 1 | | | | | | EP1S60 | 0000 | 0010 0000 0000 0110 | 000 0110 1110 | 1 | | | | | | EP1S80 | 0000 | 0010 0000 0000 0111 | 000 0110 1110 | 1 | | | | | Notes to Tables 3-2 and 3-3: - (1) The most significant bit (MSB) is on the left. - (2) The IDCODE's least significant bit (LSB) is always 1. ## Stratix External I/O Timing These timing parameters are for both column IOE and row IOE pins. In EP1S30 devices and above, you can decrease the t_{SU} time by using the FPLLCLK, but may get positive hold time in EP1S60 and EP1S80 devices. You should use the Quartus II software to verify the external devices for any pin. Tables 4–55 through 4–60 show the external timing parameters on column and row pins for EP1S10 devices. | Table 4–55. EP1S10 External I/O Timing on Column Pins Using Fast Regional Clock Networks Note (1) | | | | | | | | | | |---|---------|---------|---------|---------|---------|---------|---------|---------|------| | Parameter | -5 Spee | d Grade | -6 Spee | d Grade | -7 Spee | d Grade | -8 Spee | d Grade | 11 | | | Min | Max | Min | Max | Min | Max | Min | Max | Unit | | t _{INSU} | 2.238 | | 2.325 | | 2.668 | | NA | | ns | | t _{INH} | 0.000 | | 0.000 | | 0.000 | | NA | | ns | | t _{OUTCO} | 2.240 | 4.549 | 2.240 | 4.836 | 2.240 | 5.218 | NA | NA | ns | | t _{XZ} | 2.180 | 4.423 | 2.180 | 4.704 | 2.180 | 5.094 | NA | NA | ns | | t _{ZX} | 2.180 | 4.423 | 2.180 | 4.704 | 2.180 | 5.094 | NA | NA | ns | | Table 4–56. l | Table 4–56. EP1S10 External I/O Timing on Column Pins Using Regional Clock Networks Note (1) | | | | | | | | | | |-----------------------|--|---------|---------|---------|---------|---------|---------|---------|------|--| | | -5 Spee | d Grade | -6 Spee | d Grade | -7 Spee | d Grade | -8 Spee | d Grade | | | | Parameter | Min | Max | Min | Max | Min | Max | | | Unit | | | t _{INSU} | 1.992 | | 2.054 | | 2.359 | | NA | | ns | | | t _{INH} | 0.000 | | 0.000 | | 0.000 | | NA | | ns | | | t _{оитсо} | 2.395 | 4.795 | 2.395 | 5.107 | 2.395 | 5.527 | NA | NA | ns | | | t _{XZ} | 2.335 | 4.669 | 2.335 | 4.975 | 2.335 | 5.403 | NA | NA | ns | | | t _{ZX} | 2.335 | 4.669 | 2.335 | 4.975 | 2.335 | 5.403 | NA | NA | ns | | | t _{INSUPLL} | 0.975 | | 0.985 | | 1.097 | | NA | | ns | | | t _{INHPLL} | 0.000 | | 0.000 | | 0.000 | | NA | NA | ns | | | t _{OUTCOPLL} | 1.262 | 2.636 | 1.262 | 2.680 | 1.262 | 2.769 | NA | NA | ns | | | t _{XZPLL} | 1.202 | 2.510 | 1.202 | 2.548 | 1.202 | 2.645 | NA | NA | ns | | | t _{ZXPLL} | 1.202 | 2.510 | 1.202 | 2.548 | 1.202 | 2.645 | NA | NA | ns | | | Table 4-95. E | Table 4–95. EP1S80 External I/O Timing on Row Pins Using Regional Clock Networks Note (1) | | | | | | | | | |-----------------------|---|---------|---------|---------|---------|---------|---------|---------|------| | Parameter | -5 Spee | d Grade | -6 Spee | d Grade | -7 Spee | d Grade | -8 Spee | d Grade | Unit | | | Min | Max | Min | Max | Min | Max | Min | Max | | | t _{INSU} | 2.295 | | 2.454 | | 2.767 | | NA | | ns | | t _{INH} | 0.000 | | 0.000 | | 0.000 | | NA | | ns | | t _{оитсо} | 2.917 | 5.732 | 2.917 | 6.148 | 2.917 | 6.705 | NA | NA | ns | | t _{XZ} | 2.944 | 5.786 | 2.944 | 6.204 | 2.944 | 6.773 | NA | NA | ns | | t _{ZX} | 2.944 | 5.786 | 2.944 | 6.204 | 2.944 | 6.773 | NA | NA | ns | | t _{INSUPLL} | 1.011 | | 1.161 | | 1.372 | | NA | | ns | | t _{INHPLL} | 0.000 | | 0.000 | | 0.000 | | NA | | ns | | t _{OUTCOPLL} | 1.808 | 3.169 | 1.808 | 3.209 | 1.808 | 3.233 | NA | NA | ns | | t _{XZPLL} | 1.835 | 3.223 | 1.835 | 3.265 | 1.835 | 3.301 | NA | NA | ns | | t _{ZXPLL} | 1.835 | 3.223 | 1.835 | 3.265 | 1.835 | 3.301 | NA | NA | ns | | Table 4-96. | Table 4–96. EP1880 External I/O Timing on Rows Using Pin Global Clock Networks Note (1) | | | | | | | | | |-----------------------|---|---------|---------|---------|---------|---------|---------|---------|------| | Cumbal | -5 Spee | d Grade | -6 Spee | d Grade | -7 Spee | d Grade | -8 Spee | d Grade | Heit | | Symbol | Min | Max | Min | Max | Min | Max | Min | Max | Unit | | t _{INSU} | 1.362 | | 1.451 | | 1.613 | | NA | | ns | | t _{INH} | 0.000 | | 0.000 | | 0.000 | | NA | | ns | | t _{outco} | 3.457 | 6.665 | 3.457 | 7.151 | 3.457 | 7.859 | NA | NA | ns | | t _{XZ} | 3.484 | 6.719 | 3.484 | 7.207 | 3.484 | 7.927 | NA | NA | ns | | t _{ZX} | 3.484 | 6.719 | 3.484 | 7.207 | 3.484 | 7.927 | NA | NA | ns | | t _{INSUPLL} | 0.994 | | 1.143 | | 1.351 | | NA | | ns | | t _{INHPLL} | 0.000 | | 0.000 | | 0.000 | | NA | | ns | | t _{OUTCOPLL} | 1.821 | 3.186 | 1.821 | 3.227 | 1.821 | 3.254 | NA | NA | ns | | t _{XZPLL} | 1.848 | 3.240 | 1.848 | 3.283 | 1.848 | 3.322 | NA | NA | ns | | t _{ZXPLL} | 1.848 | 3.240 | 1.848 | 3.283 | 1.848 | 3.322 | NA | NA | ns | *Note to Tables 4–91 to 4–96:* ⁽¹⁾ Only EP1S25, EP1S30, and EP1S40 devices have the -8 speed grade. Table 4–117. Stratix Maximum Input Clock Rate for CLK[7..4] & CLK[15..12] Pins in Wire-Bond Packages (Part 2 of 2) | I/O Standard | -6 Speed
Grade | -7 Speed
Grade | -8 Speed
Grade | Unit | |-------------------------------|-------------------|-------------------|-------------------|------| | GTL+ | 250 | 200 | 200 | MHz | | SSTL-3 Class I | 300 | 250 | 250 | MHz | | SSTL-3 Class II | 300 | 250 | 250 | MHz | | SSTL-2 Class I | 300 | 250 | 250 | MHz | | SSTL-2 Class II | 300 | 250 | 250 | MHz | | SSTL-18 Class I | 300 | 250 | 250 | MHz | | SSTL-18 Class II | 300 | 250 | 250 | MHz | | 1.5-V HSTL Class I | 300 | 180 | 180 | MHz | | 1.5-V HSTL Class II | 300 | 180 | 180 | MHz | | 1.8-V HSTL Class I | 300 | 180 | 180 | MHz | | 1.8-V HSTL Class II | 300 | 180 | 180 | MHz | | 3.3-V PCI | 422 | 390 | 390 | MHz | | 3.3-V PCI-X 1.0 | 422 | 390 | 390 | MHz | | Compact PCI | 422 | 390 | 390 | MHz | | AGP 1× | 422 | 390 | 390 | MHz | | AGP 2× | 422 | 390 | 390 | MHz | | CTT | 250 | 180 | 180 | MHz | | Differential 1.5-V HSTL
C1 | 300 | 180 | 180 | MHz | | LVPECL (1) | 422 | 400 | 400 | MHz | | PCML (1) | 215 | 200 | 200 | MHz | | LVDS (1) | 422 | 400 | 400 | MHz | | HyperTransport technology (1) | 422 | 400 | 400 | MHz | Table 4–118. Stratix Maximum Input Clock Rate for CLK[0, 2, 9, 11] Pins & FPLL[10..7]CLK Pins in Wire-Bond Packages (Part 1 of 2) | I/O Standard | -6 Speed
Grade | -7 Speed
Grade | -8 Speed
Grade | Unit | |--------------|-------------------|-------------------|-------------------|------| | LVTTL | 422 | 390 | 390 | MHz | | 2.5 V | 422 | 390 | 390 | MHz | | 1.8 V | 422 | 390 | 390 | MHz | | 1.5 V | 422 | 390 | 390 | MHz | Table 4–121. Stratix Maximum Output Clock Rate (Using I/O Pins) for PLL[1, 2, 3, 4] Pins in Flip-Chip Packages | I/O Standard | -5 Speed
Grade | -6 Speed
Grade | -7 Speed
Grade | -8 Speed
Grade | Unit | |-------------------------------|-------------------|-------------------|-------------------|-------------------|------| | LVTTL | 400 | 350 | 300 | 300 | MHz | | 2.5 V | 400 | 350 | 300 | 300 | MHz | | 1.8 V | 400 | 350 | 300 | 300 | MHz | | 1.5 V | 350 | 300 | 300 | 300 | MHz | | LVCMOS | 400 | 350 | 300 | 300 | MHz | | GTL | 200 | 167 | 125 | 125 | MHz | | GTL+ | 200 | 167 | 125 | 125 | MHz | | SSTL-3 Class I | 167 | 150 | 133 | 133 | MHz | | SSTL-3 Class II | 167 | 150 | 133 | 133 | MHz | | SSTL-2 Class I | 150 | 133 | 133 | 133 | MHz | | SSTL-2 Class II | 150 | 133 | 133 | 133 | MHz | | SSTL-18 Class I | 150 | 133 | 133 | 133 | MHz | | SSTL-18 Class II | 150 | 133 | 133 | 133 | MHz | | 1.5-V HSTL Class I | 250 | 225 | 200 | 200 | MHz | | 1.5-V HSTL Class II | 225 | 225 | 200 | 200 | MHz | | 1.8-V HSTL Class I | 250 | 225 | 200 | 200 | MHz | | 1.8-V HSTL Class II | 225 | 225 | 200 | 200 | MHz | | 3.3-V PCI | 250 | 225 | 200 | 200 | MHz | | 3.3-V PCI-X 1.0 | 225 | 225 | 200 | 200 | MHz | | Compact PCI | 400 | 350 | 300 | 300 | MHz | | AGP 1× | 400 | 350 | 300 | 300 | MHz | | AGP 2× | 400 | 350 | 300 | 300 | MHz | | CTT | 300 | 250 | 200 | 200 | MHz | | LVPECL (2) | 717 | 717 | 500 | 500 | MHz | | PCML (2) | 420 | 420 | 420 | 420 | MHz | | LVDS (2) | 717 | 717 | 500 | 500 | MHz | | HyperTransport technology (2) | 420 | 420 | 420 | 420 | MHz | ## PLL Specifications Tables 4–127 through 4–129 describe the Stratix device enhanced PLL specifications. | Table 4–127. | Enhanced PLL Specifications for -5 Sp | eed Gra | des (| Part 1 of 2) | | |--------------------------|--|---------------|-------|--|--------------| | Symbol | Parameter | Min | Тур | Max | Unit | | f _{IN} | Input clock frequency | 3
(1), (2) | | 684 | MHz | | f _{INPFD} | Input frequency to PFD | 3 | | 420 | MHz | | f _{INDUTY} | Input clock duty cycle | 40 | | 60 | % | | f _{EINDUTY} | External feedback clock input duty cycle | 40 | | 60 | % | | t _{INJITTER} | Input clock period jitter | | | ±200 (3) | ps | | t _{EINJITTER} | External feedback clock period jitter | | | ±200 (3) | ps | | t _{FCOMP} | External feedback clock compensation time (4) | | | 6 | ns | | f _{OUT} | Output frequency for internal global or regional clock | 0.3 | | 500 | MHz | | f _{OUT_EXT} | Output frequency for external clock (3) | 0.3 | | 526 | MHz | | t _{OUTDUTY} | Duty cycle for external clock output (when set to 50%) | 45 | | 55 | % | | t _{JITTER} | Period jitter for external clock output (6) | | | ±100 ps for >200-MHz outclk
±20 mUI for <200-MHz outclk | ps or
mUI | | t _{CONFIG5,6} | Time required to reconfigure the scan chains for PLLs 5 and 6 | | | 289/f _{SCANCLK} | | | t _{CONFIG11,12} | Time required to reconfigure the scan chains for PLLs 11 and 12 | | | 193/f _{SCANCLK} | | | t _{SCANCLK} | scanclk frequency (5) | | | 22 | MHz | | t _{DLOCK} | Time required to lock dynamically (after switchover or reconfiguring any non-post-scale counters/delays) (7) | | | 100 | μs | | t _{LOCK} | Time required to lock from end of device configuration | 10 | | 400 | μs | | f _{VCO} | PLL internal VCO operating range | 300 | | 800 (8) | MHz | | t _{LSKEW} | Clock skew between two external clock outputs driven by the same counter | | ±50 | | ps | | Table 4-12 | 9. Enhanced PLL Specifications for -7 | Speed ! | Grade | (Part 2 of 2) | | |--------------------------|---|---------|-------|--|--------------| | Symbol | Parameter | Min | Тур | Max | Unit | | t _{OUTDUTY} | Duty cycle for external clock output (when set to 50%) | 45 | | 55 | % | | t _{JITTER} | Period jitter for external clock output (6) | | | ±100 ps for >200-MHz outclk
±20 mUI for <200-MHz outclk | ps or
mUI | | t _{CONFIG5,6} | Time required to reconfigure the scan chains for PLLs 5 and 6 | | | 289/f _{SCANCLK} | | | t _{CONFIG11,12} | Time required to reconfigure the scan chains for PLLs 11 and 12 | | | 193/f _{SCANCLK} | | | t _{SCANCLK} | scanclk frequency (5) | | | 22 | MHz | | t _{DLOCK} | Time required to lock dynamically (after switchover or reconfiguring any non-post-scale counters/delays) (7) (11) | (9) | | 100 | μs | | t _{LOCK} | Time required to lock from end of device configuration (11) | 10 | | 400 | μs | | f _{VCO} | PLL internal VCO operating range | 300 | | 600 (8) | MHz | | t _{LSKEW} | Clock skew between two external clock outputs driven by the same counter | | ±50 | | ps | | t _{SKEW} | Clock skew between two external clock outputs driven by the different counters with the same settings | | ±75 | | ps | | f _{SS} | Spread spectrum modulation frequency | 30 | | 150 | kHz | | % spread | Percentage spread for spread spectrum frequency (10) | 0.5 | | 0.6 | % | | t _{ARESET} | Minimum pulse width on areset signal | 10 | | | ns | | Table 4–130. Enhanced PLL Specifications for -8 Speed Grade (Part 1 of 3) | | | | | | | | |---|--|---------------|-----|----------|------|--|--| | Symbol | Parameter | Min | Тур | Max | Unit | | | | f _{IN} | Input clock frequency | 3
(1), (2) | | 480 | MHz | | | | f _{INPFD} | Input frequency to PFD | 3 | | 420 | MHz | | | | f _{INDUTY} | Input clock duty cycle | 40 | | 60 | % | | | | f _{EINDUTY} | External feedback clock input duty cycle | 40 | | 60 | % | | | | t _{INJITTER} | Input clock period jitter | | | ±200 (3) | ps | | |