
Intel - EP1S20F672C6N Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	1846
Number of Logic Elements/Cells	18460
Total RAM Bits	1669248
Number of I/O	426
Number of Gates	-
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	672-BBGA
Supplier Device Package	672-FBGA (27x27)
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep1s20f672c6n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

About This Handbook


This handbook provides comprehensive information about the Altera® Stratix family of devices.

How to Find You can find more information in the following ways: Information The Adobe Acrobat Find feature, which searches the text of a PDF document. Click the binoculars toolbar icon to open the Find dialog box. Acrobat bookmarks, which serve as an additional table of contents in PDF documents. Thumbnail icons, which provide miniature previews of each page, provide a link to the pages. Numerous links, shown in green text, which allow you to jump to related information.

How to Contact Altera

For the most up-to-date information about Altera products, go to the Altera world-wide web site at www.altera.com. For technical support on this product, go to www.altera.com/mysupport. For additional information about Altera products, consult the sources shown below.

Information Type	USA & Canada	All Other Locations
Technical support	www.altera.com/mysupport/	www.altera.com/mysupport/
	(800) 800-EPLD (3753) (7:00 a.m. to 5:00 p.m. Pacific Time)	+1 408-544-8767 7:00 a.m. to 5:00 p.m. (GMT -8:00) Pacific Time
Product literature	www.altera.com	www.altera.com
Altera literature services	literature@altera.com	literature@altera.com
Non-technical customer service	(800) 767-3753	+ 1 408-544-7000 7:00 a.m. to 5:00 p.m. (GMT -8:00) Pacific Time
FTP site	ftp.altera.com	ftp.altera.com

Each LE's programmable register can be configured for D, T, JK, or SR operation. Each register has data, true asynchronous load data, clock, clock enable, clear, and asynchronous load/preset inputs. Global signals, general-purpose I/O pins, or any internal logic can drive the register's clock and clear control signals. Either general-purpose I/O pins or internal logic can drive the clock enable, preset, asynchronous load, and asynchronous data. The asynchronous load data input comes from the data3 input of the LE. For combinatorial functions, the register is bypassed and the output of the LUT drives directly to the outputs of the LE.

Each LE has three outputs that drive the local, row, and column routing resources. The LUT or register output can drive these three outputs independently. Two LE outputs drive column or row and direct link routing connections and one drives local interconnect resources. This allows the LUT to drive one output while the register drives another output. This feature, called register packing, improves device utilization because the device can use the register and the LUT for unrelated

Figure 2–5. Stratix LE

Dynamic Arithmetic Mode

The dynamic arithmetic mode is ideal for implementing adders, counters, accumulators, wide parity functions, and comparators. An LE in dynamic arithmetic mode uses four 2-input LUTs configurable as a dynamic adder/subtractor. The first two 2-input LUTs compute two summations based on a possible carry-in of 1 or 0; the other two LUTs generate carry outputs for the two chains of the carry select circuitry. As shown in Figure 2–7, the LAB carry-in signal selects either the carry-in0 or carry-in1 chain. The selected chain's logic level in turn determines which parallel sum is generated as a combinatorial or registered output. For example, when implementing an adder, the sum output is the selection of two possible calculated sums: data1 + data2 + carry-in0 or data1 + data2 + carry-in1. The other two LUTs use the data1 and data2 signals to generate two possible carry-out signals—one for a carry of 1 and the other for a carry of 0. The carry-in0 signal acts as the carry select for the carry-out 0 output and carry-in1 acts as the carry select for the carry-out1 output. LEs in arithmetic mode can drive out registered and unregistered versions of the LUT output.

The dynamic arithmetic mode also offers clock enable, counter enable, synchronous up/down control, synchronous clear, synchronous load, and dynamic adder/subtractor options. The LAB local interconnect data inputs generate the counter enable and synchronous up/down control signals. The synchronous clear and synchronous load options are LAB-wide signals that affect all registers in the LAB. The Quartus II software automatically places any registers that are not used by the counter into other LABs. The addnsub LAB-wide signal controls whether the LE acts as an adder or subtractor.

TriMatrix memory architecture can implement pipelined RAM by registering both the input and output signals to the RAM block. All TriMatrix memory block inputs are registered providing synchronous write cycles. In synchronous operation, the memory block generates its own self-timed strobe write enable (WREN) signal derived from the global or regional clock. In contrast, a circuit using asynchronous RAM must generate the RAM WREN signal while ensuring its data and address signals meet setup and hold time specifications relative to the WREN signal. The output registers can be bypassed. Flow-through reading is possible in the simple dual-port mode of M512 and M4K RAM blocks by clocking the read enable and read address registers on the negative clock edge and bypassing the output registers.

Two single-port memory blocks can be implemented in a single M4K block as long as each of the two independent block sizes is equal to or less than half of the M4K block size.

The Quartus II software automatically implements larger memory by combining multiple TriMatrix memory blocks. For example, two 256 × 16-bit RAM blocks can be combined to form a 256 × 32-bit RAM block. Memory performance does not degrade for memory blocks using the maximum number of words available in one memory block. Logical memory blocks using less than the maximum number of words use physical blocks in parallel, eliminating any external control logic that would increase delays. To create a larger high-speed memory block, the Quartus II software automatically combines memory blocks with LE control logic.

Clear Signals

When applied to input registers, the asynchronous clear signal for the TriMatrix embedded memory immediately clears the input registers. However, the output of the memory block does not show the effects until the next clock edge. When applied to output registers, the asynchronous clear signal clears the output registers and the effects are seen immediately.

Parity Bit Support

The memory blocks support a parity bit for each byte. The parity bit, along with internal LE logic, can implement parity checking for error detection to ensure data integrity. You can also use parity-size data words to store user-specified control bits. In the M4K and M-RAM blocks, byte enables are also available for data input masking during write operations.

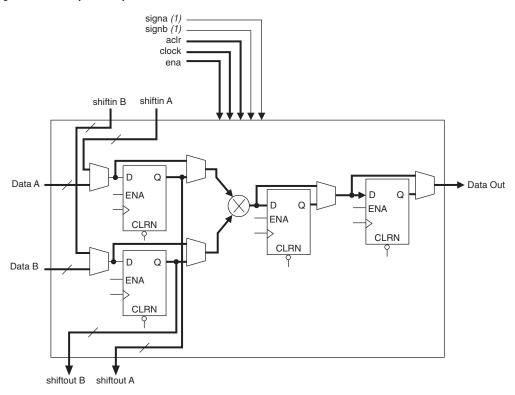
Shift Register Support

You can configure embedded memory blocks to implement shift registers for DSP applications such as pseudo-random number generators, multichannel filtering, auto-correlation, and cross-correlation functions. These and other DSP applications require local data storage, traditionally implemented with standard flip-flops, which can quickly consume many logic cells and routing resources for large shift registers. A more efficient alternative is to use embedded memory as a shift register block, which saves logic cell and routing resources and provides a more efficient implementation with the dedicated circuitry.

The size of a $w \times m \times n$ shift register is determined by the input data width (*w*), the length of the taps (*m*), and the number of taps (*n*). The size of a $w \times m \times n$ shift register must be less than or equal to the maximum number of memory bits in the respective block: 576 bits for the M512 RAM block and 4,608 bits for the M4K RAM block. The total number of shift register outputs (number of taps $n \times$ width w) must be less than the maximum data width of the RAM block (18 for M512 blocks, 36 for M4K blocks). To create larger shift registers, the memory blocks are cascaded together.

Data is written into each address location at the falling edge of the clock and read from the address at the rising edge of the clock. The shift register mode logic automatically controls the positive and negative edge clocking to shift the data in one clock cycle. Figure 2–14 shows the TriMatrix memory block in the shift register mode. Table 2–12 shows the input and output data signal connections for the column units (B1 to B6 and A1 to A6). It also shows the address and control signal input connections to the row units (R1 to R11).

Unit Interface Block	Input Signals	Output Signals
R1	addressa[70]	
R2	addressa[158]	
R3	byte_enable_a[70] renwe_a	
R4	-	
R5	-	
R6	clock_a clocken_a clock_b clocken_b	
R7	-	
R8	-	
R9	byte_enable_b[70] renwe_b	
R10	addressb[158]	
R11	addressb[70]	
B1	datain_b[7160]	dataout_b[7160]
B2	datain_b[5948]	dataout_b[5948]
B3	datain_b[4736]	dataout_b[4736]
B4	datain_b[3524]	dataout_b[3524]
B5	datain_b[2312]	dataout_b[2312]
B6	datain_b[110]	dataout_b[110]
A1	datain_a[7160]	dataout_a[7160]
A2	datain_a[5948]	dataout_a[5948]
A3	datain_a[4736]	dataout_a[4736]
A4	datain_a[3524]	dataout_a[3524]
A5	datain_a[2312]	dataout_a[2312]
A6	datain_a[110]	dataout_a[110]

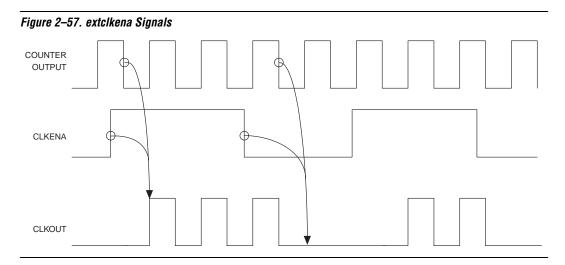

Pipeline/Post Multiply Register

The output of 9 × 9- or 18 × 18-bit multipliers can optionally feed a register to pipeline multiply-accumulate and multiply-add/subtract functions. For 36 × 36-bit multipliers, this register will pipeline the multiplier function.

Adder/Output Blocks

The result of the multiplier sub-blocks are sent to the adder/output block which consist of an adder/subtractor/accumulator unit, summation unit, output select multiplexer, and output registers. The results are used to configure the adder/output block as a pure output, accumulator, a simple two-multiplier adder, four-multiplier adder, or final stage of the 36-bit multiplier. You can configure the adder/output block to use output registers in any mode, and must use output registers for the accumulator. The system cannot use adder/output blocks independently of the multiplier. Figure 2–34 shows the adder and output stages.

Figure 2–35. Simple Multiplier Mode



Note to Figure 2-35:

(1) These signals are not registered or registered once to match the data path pipeline.

DSP blocks can also implement one 36×36 -bit multiplier in multiplier mode. DSP blocks use four 18×18 -bit multipliers combined with dedicated adder and internal shift circuitry to achieve 36-bit multiplication. The input shift register feature is not available for the 36×36 -bit multiplier. In 36×36 -bit mode, the device can use the register that is normally a multiplier-result-output register as a pipeline stage for the 36×36 -bit multiplier. Figure 2–36 shows the 36×36 -bit multiply mode. resynchronization or relock period. The clkena signal can also disable clock outputs if the system is not tolerant to frequency overshoot during resynchronization.

The extclkena signals work in the same way as the clkena signals, but they control the external clock output counters (e0, e1, e2, and e3). Upon re-enabling, the PLL does not need a resynchronization or relock period unless the PLL is using external feedback mode. In order to lock in external feedback mode, the external output must drive the board trace back to the FBIN pin.

Fast PLLs

Stratix devices contain up to eight fast PLLs with high-speed serial interfacing ability, along with general-purpose features. Figure 2–58 shows a diagram of the fast PLL.

Table 2–39). EP1S40 Diffe	erential Cha	nnels (Part 2	2 of 2)	Vote (1,)					
	Transmitter/	Total	Maximum	Center Fast PLLs				Corn	ier Fas	t PLLs	(2), (3)
Package	Receiver	Channels	Speed (Mbps)	PLL1	PLL2	PLL3	PLL4	PLL7	PLL8	PLL9	PLL10
956-pin	Transmitter	80	840	18	17	17	18	20	20	20	20
BGA	(4)	840 (5)	35	35	35	35	20	20	20	20	
	Receiver	80	840	20	20	20	20	18	17	17	18
			840 (5)	40	40	40	40	18	17	17	18
1,020-pin FineLine	Transmitter (4)	80 (10) (7)	840	18 (2)	17 (3)	17 (3)	18 (2)	20	20	20	20
BGA			840 <i>(5), (8)</i>	35 (5)	35 (5)	35 (5)	35 (5)	20	20	20	20
	Receiver	80 (10) (7)	840	20	20	20	20	18 (2)	17 (3)	17 (3)	18 (2)
			840 <i>(5), (8)</i>	40	40	40	40	18 (2)	17 (3)	17 (3)	18 (2)
1,508-pin FineLine	Transmitter (4)	80 (10) (7)	840	18 (2)	17 (3)	17 (3)	18 (2)	20	20	20	20
BGA			840 <i>(5), (8)</i>	35 (5)	35 (5)	35 (5)	35 (5)	20	20	20	20
	Receiver	80 (10) (7)	840	20	20	20	20	18 (2)	17 (3)	17 (3)	18 (2)
			840 <i>(5), (8)</i>	40	40	40	40	18 (2)	17 (3)	17 (3)	18 (2)

Table 2–40.	Table 2–40. EP1S60 Differential Channels (Part 1 of 2) Note (1)											
Destroye	Transmitter/	Total	Maximum	Center Fast PLLs			Corner Fast PLLs (2), (3)					
Package	Receiver	Channels	Speed (Mbps)	PLL1	PLL2	PLL3	PLL4	PLL7	PLL8	PLL9	PLL10	
956-pin	Transmitter 80	80	840	12	10	10	12	20	20	20	20	
BGA	(4)		840 (5), (8)	22	22	22	22	20	20	20	20	
	Receiver	80	840	20	20	20	20	12	10	10	12	
			840 <i>(5), (8)</i>	40	40	40	40	12	10	10	12	

Table 2-40.	EP1S60 Diffe	rential Chai	nnels (Part 2	? of 2)	lote (1)						
	Transmitter/	Total	Maximum	Center Fast PLLs				Corn	er Fast	PLLs	(2), (3)
Package	- Receiver	Channels	Speed (Mbps)	PLL1	PLL2	PLL3	PLL4	PLL7	PLL8	PLL9	PLL10
1,020-pin FineLine	Transmitter (4)	80 (12) (7)	840	12 (2)	10 (4)	10 (4)	12 (2)	20	20	20	20
BGA	3GA		840 <i>(5), (8)</i>	22 (6)	22 (6)	22 (6)	22 (6)	20	20	20	20
	Receiver	r 80 (10) (7)	840	20	20	20	20	12 (8)	10 (10)	10 (10)	12 (8)
			840 <i>(5), (8)</i>	40	40	40	40	12 (8)	10 (10)	10 (10)	12 (8)
1,508-pin FineLine		· ,	840	12 (8)	10 (10)	10 (10)	12 (8)	20	20	20	20
BGA			840 <i>(5),(8)</i>	22 (18)	22 (18)	22 (18)	22 (18)	20	20	20	20
	Receiver	80 (36) (7)	840	20	20	20	20	12 (8)	10 (10)	10 (10)	12 (8)
			840 <i>(5),(8)</i>	40	40	40	40	12 (8)	10 (10)	10 (10)	12 (8)

Table 2–41.	EP1S80 Differ	ential Chan	nels (Part 1	of 2)	Vote (1)						
	Transmitter/	Total	Maximum	C	enter F	ast PLI	.s	Corr	ner Fast	t PLLs (2	2), (3)
Package Receiver	Channels	Speed (Mbps)	PLL1	PLL2	PLL3	PLL4	PLL7	PLL8	PLL9	PLL10	
956-pin	Transmitter	(7)	840	10	10	10	10	20	20	20	20
BGA	(4)		840 (5),(8)	20	20	20	20	20	20	20	20
	Receiver	80	840	20	20	20	20	10	10	10	10
			840 (5),(8)	40	40	40	40	10	10	10	10
1,020-pin FineLine	Transmitter (4)	92 (12) (7)	840	10 (2)	10 (4)	10 (4)	10 (2)	20	20	20	20
BGA			840 (5),(8)	20 (6)	20 (6)	20 (6)	20 (6)	20	20	20	20
	Receiver	90 (10) (7)	840	20	20	20	20	10 (2)	10 (3)	10 (3)	10 (2)
			840 (5),(8)	40	40	40	40	10 (2)	10 (3)	10 (3)	10 (2)

Table 2–41.	EP1S80 Differ	ential Chan	nels (Part 2	? of 2) /	Vote (1)						
	Transmitter/	Total	Maximum	Center Fast PLLs				Corner Fast PLLs (2), (3)			
Package	Receiver	Channels	Speed (Mbps)	PLL1	PLL2	PLL3	PLL4	PLL7	PLL8	PLL9	PLL10
FineLine (4)	Transmitter (4)	80 (72) (7)	840	10 (10)	10 (10)	10 (10)	10 (10)	20 (8)	20 (8)	20 (8)	20 (8)
BGA			840 <i>(5),(8)</i>	20 (20)	20 (20)	20 (20)	20 (20)	20 (8)	20 (8)	20 (8)	20 (8)
	Receiver	80 (56) (7)	840	20	20	20	20	10 (14)	10 (14)	10 (14)	10 (14)
			840 <i>(5),(8)</i>	40	40	40	40	10 (14)	10 (14)	10 (14)	10 (14)

Notes to Tables 2–38 *through* 2–41:

- (1) The first row for each transmitter or receiver reports the number of channels driven directly by the PLL. The second row below it shows the maximum channels a PLL can drive if cross bank channels are used from the adjacent center PLL. For example, in the 780-pin FineLine BGA EP1S30 device, PLL 1 can drive a maximum of 18 transmitter channels at 840 Mbps or a maximum of 35 transmitter channels at 840 Mbps. The Quartus II software may also merge transmitter and receiver PLLs when a receiver is driving a transmitter. In this case, one fast PLL can drive both the maximum numbers of receiver and transmitter channels.
- (2) Some of the channels accessible by the center fast PLL and the channels accessible by the corner fast PLL overlap. Therefore, the total number of channels is not the addition of the number of channels accessible by PLLs 1, 2, 3, and 4 with the number of channels accessible by PLLs 7, 8, 9, and 10. For more information on which channels overlap, see the Stratix device pin-outs at **www.altera.com**.
- (3) The corner fast PLLs in this device support a data rate of 840 Mbps for channels labeled "high" speed in the device pin-outs at www.altera.com.
- (4) The numbers of channels listed include the transmitter clock output (tx_outclock) channel. An extra data channel can be used if a DDR clock is needed.
- (5) These channels span across two I/O banks per side of the device. When a center PLL clocks channels in the opposite bank on the same side of the device it is called cross-bank PLL support. Both center PLLs can clock cross-bank channels simultaneously if say PLL_1 is clocking all receiver channels and PLL_2 is clocking all transmitter channels. You cannot have two adjacent PLLs simultaneously clocking cross-bank receiver channels or two adjacent PLLs simultaneously clocking transmitter channels. Cross-bank allows for all receiver channels on one side of the device to be clocked on one clock while all transmitter channels on the device are clocked on the other center PLL. Crossbank PLLs are supported at full-speed, 840 Mbps. For wire-bond devices, the full-speed is 624 Mbps.
- (6) PLLs 7, 8, 9, and 10 are not available in this device.
- (7) The number in parentheses is the number of slow-speed channels, guaranteed to operate at up to 462 Mbps. These channels are independent of the high-speed differential channels. For the location of these channels, see the device pin-outs at www.altera.com.
- (8) See the Stratix device pin-outs at **www.altera.com**. Channels marked "high" speed are 840 MBps and "low" speed channels are 462 MBps.

The high-speed differential I/O circuitry supports the following high speed I/O interconnect standards and applications:

- UTOPIA IV
- SPI-4 Phase 2 (POS-PHY Level 4)
- SFI-4
- 10G Ethernet XSBI

4. DC & Switching Characteristics

S51004-3.4

Operating Conditions

Stratix[®] devices are offered in both commercial and industrial grades. Industrial devices are offered in -6 and -7 speed grades and commercial devices are offered in -5 (fastest), -6, -7, and -8 speed grades. This section specifies the operation conditions for operating junction temperature, V_{CCINT} and V_{CCIO} voltage levels, and input voltage requirements. The voltage specifications in this section are specified at the pins of the device (and not the power supply). If the device operates outside these ranges, then all DC and AC specifications are not guaranteed. Furthermore, the reliability of the device may be affected. The timing parameters in this chapter apply to both commercial and industrial temperature ranges unless otherwise stated.

Tables 4–1 through 4–8 provide information on absolute maximum ratings.

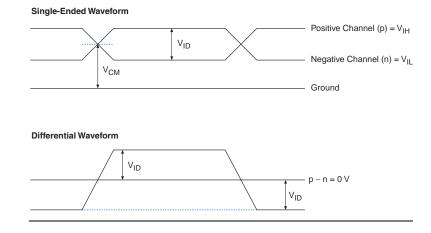

Table 4–1	. Stratix Device Absolute Ma	ximum Ratings Notes (1), (2)			
Symbol	Parameter	Conditions	Minimum	Maximum	Unit
V _{CCINT}	Supply voltage	With respect to ground	-0.5	2.4	V
V _{CCIO}	-		-0.5	4.6	V
VI	DC input voltage (3)		-0.5	4.6	V
I _{OUT}	DC output current, per pin		-25	40	mA
T _{STG}	Storage temperature	No bias	-65	150	°C
TJ	Junction temperature	BGA packages under bias		135	°C

Table 4–2. Si	Table 4–2. Stratix Device Recommended Operating Conditions (Part 1 of 2)							
Symbol	Parameter	Conditions	Minimum	Maximum	Unit			
V _{CCINT}	Supply voltage for internal logic and input buffers	(4)	1.425	1.575	V			

Table 4–9. Overshoot Input Voltage w	Table 4–9. Overshoot Input Voltage with Respect to Duty Cycle (Part 2 of 2)							
Vin (V) Maximum Duty Cycle (%)								
4.3	30							
4.4	17							
4.5	10							

Figures 4–1 and 4–2 show receiver input and transmitter output waveforms, respectively, for all differential I/O standards (LVDS, 3.3-V PCML, LVPECL, and HyperTransport technology).

Figure 4–1. Receiver Input Waveforms for Differential I/O Standards

Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Unit
V _{ICM}	Input common mode voltage (6)	LVDS 0.3 V ≤V _{ID} ≤1.0 V <i>W</i> = 1 through 10	100		1,100	mV
		LVDS $0.3 V \leq V_{ID} \leq 1.0 V$ W = 1 through 10	1,600		1,800	mV
		LVDS 0.2 V \leq V _{ID} \leq 1.0 V W = 1	1,100		1,600	mV
		LVDS 0.1 V \leq V _{ID} \leq 1.0 V W = 2 through 10	1,100		1,600	mV
V _{OD} (1)	Output differential voltage (single-ended)	R _L = 100 Ω	250	375	550	mV
ΔV_{OD}	Change in V _{OD} between high and low	R _L = 100 Ω			50	mV
V _{OCM}	Output common mode voltage	R _L = 100 Ω	1,125	1,200	1,375	mV
ΔV_{OCM}	Change in V _{OCM} between high and low	R _L = 100 Ω			50	mV
RL	Receiver differential input discrete resistor (external to Stratix devices)		90	100	110	Ω

Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Unit
V _{CCIO}	Output supply voltage		2.375	2.5	2.625	V
V _{TT}	Termination voltage		$V_{REF} - 0.04$	V_{REF}	V _{REF} + 0.04	V
V _{REF}	Reference voltage		1.15	1.25	1.35	V
V _{IH(DC)}	High-level DC input voltage		V _{REF} + 0.18		3.0	V
V _{IL(DC)}	Low-level DC input voltage		-0.3		V _{REF} - 0.18	V
V _{IH(AC)}	High-level AC input voltage		V _{REF} + 0.35			V
V _{IL(AC)}	Low-level AC input voltage				$V_{REF} - 0.35$	V
V _{OH}	High-level output voltage	I _{OH} = -8.1 mA (3)	V _{TT} + 0.57			V
V _{OL}	Low-level output voltage	I _{OL} = 8.1 mA <i>(3)</i>			V _{TT} – 0.57	V

Table 4–21. SSTL-2 Class II Specifications													
Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Unit							
V _{CCIO}	Output supply voltage		2.375	2.5	2.625	V							
V _{TT}	Termination voltage		$V_{\text{REF}} - 0.04$	V _{REF}	V _{REF} + 0.04	V							
V _{REF}	Reference voltage		1.15	1.25	1.35	V							
V _{IH(DC)}	High-level DC input voltage		V _{REF} + 0.18		$V_{CCIO} + 0.3$	V							
V _{IL(DC)}	Low-level DC input voltage		-0.3		V _{REF} - 0.18	V							
V _{IH(AC)}	High-level AC input voltage		V _{REF} + 0.35			V							
V _{IL(AC)}	Low-level AC input voltage				$V_{REF} - 0.35$	V							
V _{OH}	High-level output voltage	I _{OH} = -16.4 mA (3)	V _{TT} + 0.76			V							
V _{OL}	Low-level output voltage	I _{OL} = 16.4 mA <i>(3)</i>			V _{TT} – 0.76	V							

Table 4–22	Table 4–22. SSTL-3 Class I Specifications (Part 1 of 2)												
Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Unit							
V _{CCIO}	Output supply voltage		3.0	3.3	3.6	V							
V _{TT}	Termination voltage		$V_{\text{REF}} - 0.05$	V _{REF}	V _{REF} + 0.05	V							
V _{REF}	Reference voltage		1.3	1.5	1.7	V							
V _{IH(DC)}	High-level DC input voltage		V _{REF} + 0.2		$V_{CCIO} + 0.3$	V							
V _{IL(DC)}	Low-level DC input voltage		-0.3		V _{REF} - 0.2	V							
V _{IH(AC)}	High-level AC input voltage		V _{REF} + 0.4			V							

Table 4–43. Routing Delay Internal Timing Microparameter Descriptions (Part 2 of 2)

Symbol	Parameter
t _{C4}	Delay for a C4 line with average loading; covers a distance of four LAB rows.
t _{C8}	Delay for a C8 line with average loading; covers a distance of eight LAB rows.
t _{C16}	Delay for a C16 line with average loading; covers a distance of 16 LAB rows.
t _{LOCAL}	Local interconnect delay, for connections within a LAB, and for the final routing hop of connections to LABs, DSP blocks, RAM blocks and I/Os.

Devementer	-	5	-	-6		7	-8		119
Parameter	Min	Max	Min	Max	Min	Max	Min	Max	Unit
t _{SU}	10		10		11		13		ps
t _H	100		100		114		135		ps
t _{co}		156		176		202		238	ps
t _{LUT}		366		459		527		621	ps
t _{CLR}	100		100		114		135		ps
t _{PRE}	100		100		114		135		ps
t _{CLKHL}	1000		1111		1190		1400		ps

Table 4–45. IOE Internal TSU Microparameter by Device Density (Part 1 of 2)													
Device	Symbol	-5		-6		-7		-8		Unit			
		Min	Max	Min	Max	Min	Max	Min	Max				
EP1S10	t _{SU_R}	76		80		80		80		ps			
	t _{SU_C}	176		80		80		80		ps			
EP1S20	t _{SU_R}	76		80		80		80		ps			
	t _{SU_C}	76		80		80		80		ps			
EP1S25	t _{SU_R}	276		280		280		280		ps			
	t _{SU_C}	276		280		280		280		ps			
EP1S30	t _{SU_R}	76		80		80		80		ps			
	t _{SU_C}	176		180		180		180		ps			

Table 4–50. M-RAM Block Internal Timing Microparameters (Part 2 of 2)													
Symbol	-5		-6		-7		-8		Unit				
	Min	Max	Min	Max	Min	Max	Min	Max	Unit				
t _{MRAMBESU}	25		25		28		33		ps				
t _{MRAMBEH}	18		20		23		27		ps				
t _{MRAMDATAASU}	25		25		28		33		ps				
t _{MRAMDATAAH}	18		20		23		27		ps				
t _{MRAMADDRASU}	25		25		28		33		ps				
t _{MRAMADDRAH}	18		20		23		27		ps				
t _{MRAMDATABSU}	25		25		28		33		ps				
t _{MRAMDATABH}	18		20		23		27		ps				
t _{MRAMADDRBSU}	25		25		28		33		ps				
t _{MRAMADDRBH}	18		20		23		27		ps				
t _{MRAMDATACO1}		1,038		1,053		1,210		1,424	ps				
t _{MRAMDATACO2}		4,362		4,939		5,678		6,681	ps				
t _{MRAMCLKHL}	1,000		1,111		1,190		1,400		ps				
t _{MRAMCLR}	135		150		172		202		ps				

Table 4–51. Routing Delay Internal Timing Parameters													
Symbol	-5		-6		-7		-8		Unit				
	Min	Max	Min	Max	Min	Max	Min	Max					
t _{R4}		268		295		339		390	ps				
t _{R8}		371		349		401		461	ps				
t _{R24}		465		512		588		676	ps				
t _{C4}		440		484		557		641	ps				
t _{C8}		577		634		730		840	ps				
t _{C16}		445		489		563		647	ps				
t _{local}		313		345		396		455	ps				

Routing delays vary depending on the load on that specific routing line. The Quartus II software reports the routing delay information when running the timing analysis for a design. **Table 4–101. Reporting Methodology For Maximum Timing For Single-Ended Output Pins (Part 2 of 2)** Notes (1), (2), (3)

		Measurement Point						
I/O Standard	R _{UP} Ω	R _{DN} Ω	R _s Ω	R _T Ω	V _{ccio} (V)	VTT (V)	C _L (pF)	V _{MEAS}
3.3-V SSTL-3 Class I	-	-	25	50	2.950	1.250	30	1.250
2.5-V SSTL-2 Class II	-	-	25	25	2.370	1.110	30	1.110
2.5-V SSTL-2 Class I	-	-	25	50	2.370	1.110	30	1.110
1.8-V SSTL-18 Class II	-	-	25	25	1.650	0.760	30	0.760
1.8-V SSTL-18 Class I	-	-	25	50	1.650	0.760	30	0.760
1.5-V HSTL Class II	-	-	0	25	1.400	0.700	20	0.680
1.5-V HSTL Class I	-	-	0	50	1.400	0.700	20	0.680
1.8-V HSTL Class II	-	-	0	25	1.650	0.700	20	0.880
1.8-V HSTL Class I	-	-	0	50	1.650	0.700	20	0.880
3.3-V PCI (4)	-/25	25/-	0	-	2.950	2.950	10	0.841/1.814
3.3-V PCI-X 1.0 (4)	-/25	25/-	0	-	2.950	2.950	10	0.841/1.814
3.3-V Compact PCI (4)	-/25	25/-	0	-	2.950	2.950	10	0.841/1.814
3.3-V AGP 1X (4)	-/25	25/-	0	-	2.950	2.950	10	0.841/1.814
3.3-V CTT	-	-	25	50	2.050	1.350	30	1.350

Notes to Table 4–101:

(1) Input measurement point at internal node is $0.5 \times V_{\text{CCINT}}$.

(2) Output measuring point for data is V_{MEAS}.

(3) Input stimulus edge rate is 0 to V_{CCINT} in 0.5 ns (internal signal) from the driver preceding the IO buffer.

(4) The first value is for output rising edge and the second value is for output falling edge. The hyphen (-) indicates infinite resistance or disconnection.

Differential HSTL Specifications 4–15 DSP Block Diagram Configuration for 18 x 18-Bit 2-55 for 9 x 9-Bit 2–56 Block Interconnect Interface 2–71 Block Interface 2–70 Block Signal Sources & Destinations 2–73 Blocks Arranged in Columns 2–53 in Stratix Devices 2-54 Input Register Modes 2-60 Input Registers 2–58 Multiplier 2 - 60Block 2-57 Signed Representation 2–60 Sub-Block 2-57 Sub-Blocks Using Input Shift Register Connections 2–59 Pipeline/Post Multiply Register 2-61

Ε

EP1S10 Devices Column Pin Fast Regional Clock External I/O Timing Parameters 4–36 Global Clock External I/O Timing Parameters 4-37 Regional Clock External I/O Timing Parameters 4–36 Row Pin Fast Regional Clock External I/O Timing Parameters 4-37 Global Clock External I/O Timing Parameters 4-38 Regional Clock External I/O Timing Parameters 4–38 EP1S20 Devices Column Pin Fast Regional Clock External I/O Timing Parameters 4-39 Global Clock External I/O Timing Parameters 4-40 Regional Clock External I/O Timing

Parameters 4-39 Row Pin Fast Regional Clock External I/O Timing Parameters 4–40 Global Clock External I/O Timing Parameters 4-41 Regional Clock External I/O Timing Parameters 4-41 EP1S25 Devices Column Pin Fast Regional Clock External I/O Timing Parameters 4-42 Global Clock External I/O Timing Parameters 4-43 Regional Clock External I/O Timing Parameters 4-42 Row Pin Fast Regional Clock External I/O Timing Parameters 4-43 Global Clock External I/O Timing Parameters 4-44 Regional Clock External I/O Timing Parameters 4–44 **EP1S30** Devices Column Pin Fast Regional Clock External I/O Timing Parameters 4–45 Global Clock External I/O Timing Parameters 4-45 Regional Clock External I/O Timing Parameters 4-45 Row Pin Fast Regional Clock External I/O Timing Parameters 4-46 Global Clock External I/O Timing Parameters 4-47 Regional Clock External I/O Timing Parameters 4-47 **EP1S40** Devices Column Pin Fast Regional Clock External I/O Timing Parameters 4–48 Global Clock External I/O Timing Parameters 4–49 Regional Clock External I/O Timing Parameters 4-48 Row Pin