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Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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Features

Features The Stratix family offers the following features:

■ 10,570 to 79,040 LEs; see Table 1–1
■ Up to 7,427,520 RAM bits (928,440 bytes) available without reducing 

logic resources
■ TriMatrixTM memory consisting of three RAM block sizes to 

implement true dual-port memory and first-in first-out (FIFO) 
buffers

■ High-speed DSP blocks provide dedicated implementation of 
multipliers (faster than 300 MHz), multiply-accumulate functions, 
and finite impulse response (FIR) filters

■ Up to 16 global clocks with 22 clocking resources per device region
■ Up to 12 PLLs (four enhanced PLLs and eight fast PLLs) per device 

provide spread spectrum, programmable bandwidth, clock switch-
over, real-time PLL reconfiguration, and advanced multiplication 
and phase shifting

■ Support for numerous single-ended and differential I/O standards
■ High-speed differential I/O support on up to 116 channels with up 

to 80 channels optimized for 840 megabits per second (Mbps)
■ Support for high-speed networking and communications bus 

standards including RapidIO, UTOPIA IV, CSIX, HyperTransportTM 
technology, 10G Ethernet XSBI, SPI-4 Phase 2 (POS-PHY Level 4), 
and SFI-4

■ Differential on-chip termination support for LVDS
■ Support for high-speed external memory, including zero bus 

turnaround (ZBT) SRAM, quad data rate (QDR and QDRII) SRAM, 
double data rate (DDR) SDRAM, DDR fast cycle RAM (FCRAM), 
and single data rate (SDR) SDRAM

■ Support for 66-MHz PCI (64 and 32 bit) in -6 and faster speed-grade 
devices, support for 33-MHz PCI (64 and 32 bit) in -8 and faster 
speed-grade devices

■ Support for 133-MHz PCI-X 1.0 in -5 speed-grade devices
■ Support for 100-MHz PCI-X 1.0 in -6 and faster speed-grade devices
■ Support for 66-MHz PCI-X 1.0 in -7 speed-grade devices
■ Support for multiple intellectual property megafunctions from 

Altera MegaCore® functions and Altera Megafunction Partners 
Program (AMPPSM) megafunctions

■ Support for remote configuration updates
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Figure 2–7. LE in Dynamic Arithmetic Mode

Note to Figure 2–7:
(1) The addnsub signal is tied to the carry input for the first LE of a carry chain only.

Carry-Select Chain

The carry-select chain provides a very fast carry-select function between 
LEs in arithmetic mode. The carry-select chain uses the redundant carry 
calculation to increase the speed of carry functions. The LE is configured 
to calculate outputs for a possible carry-in of 1 and carry-in of 0 in 
parallel. The carry-in0 and carry-in1 signals from a lower-order bit 
feed forward into the higher-order bit via the parallel carry chain and feed 
into both the LUT and the next portion of the carry chain. Carry-select 
chains can begin in any LE within an LAB. 

The speed advantage of the carry-select chain is in the parallel pre-
computation of carry chains. Since the LAB carry-in selects the 
precomputed carry chain, not every LE is in the critical path. Only the 
propagation delay between LAB carry-in generation (LE 5 and LE 10) are 
now part of the critical path. This feature allows the Stratix architecture to 
implement high-speed counters, adders, multipliers, parity functions, 
and comparators of arbitrary width. 
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Logic Elements

Figure 2–8 shows the carry-select circuitry in an LAB for a 10-bit full 
adder. One portion of the LUT generates the sum of two bits using the 
input signals and the appropriate carry-in bit; the sum is routed to the 
output of the LE. The register can be bypassed for simple adders or used 
for accumulator functions. Another portion of the LUT generates carry-
out bits. An LAB-wide carry in bit selects which chain is used for the 
addition of given inputs. The carry-in signal for each chain, carry-in0 
or carry-in1, selects the carry-out to carry forward to the carry-in 
signal of the next-higher-order bit. The final carry-out signal is routed to 
an LE, where it is fed to local, row, or column interconnects. 

The Quartus II Compiler automatically creates carry chain logic during 
design processing, or you can create it manually during design entry. 
Parameterized functions such as LPM functions automatically take 
advantage of carry chains for the appropriate functions.

The Quartus II Compiler creates carry chains longer than 10 LEs by 
linking LABs together automatically. For enhanced fitting, a long carry 
chain runs vertically allowing fast horizontal connections to TriMatrix™ 
memory and DSP blocks. A carry chain can continue as far as a full 
column.
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In addition to true dual-port memory, the memory blocks support simple 
dual-port and single-port RAM. Simple dual-port memory supports a 
simultaneous read and write and can either read old data before the write 
occurs or just read the don’t care bits. Single-port memory supports non-
simultaneous reads and writes, but the q[] port will output the data once 
it has been written to the memory (if the outputs are not registered) or 
after the next rising edge of the clock (if the outputs are registered). For 
more information, see Chapter 2, TriMatrix Embedded Memory Blocks in 
Stratix & Stratix GX Devices of the Stratix Device Handbook, Volume 2. 
Figure 2–13 shows these different RAM memory port configurations for 
TriMatrix memory.

Figure 2–13. Simple Dual-Port & Single-Port Memory Configurations

Note to Figure 2–13:
(1) Two single-port memory blocks can be implemented in a single M4K block as long 

as each of the two independent block sizes is equal to or less than half of the M4K 
block size.

The memory blocks also enable mixed-width data ports for reading and 
writing to the RAM ports in dual-port RAM configuration. For example, 
the memory block can be written in ×1 mode at port A and read out in ×16 
mode from port B.
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Figure 2–14. Shift Register Memory Configuration

Memory Block Size

TriMatrix memory provides three different memory sizes for efficient 
application support. The large number of M512 blocks are ideal for 
designs with many shallow first-in first-out (FIFO) buffers. M4K blocks 
provide additional resources for channelized functions that do not 
require large amounts of storage. The M-RAM blocks provide a large 
single block of RAM ideal for data packet storage. The different-sized 
blocks allow Stratix devices to efficiently support variable-sized memory 
in designs.

The Quartus II software automatically partitions the user-defined 
memory into the embedded memory blocks using the most efficient size 
combinations. You can also manually assign the memory to a specific 
block size or a mixture of block sizes.
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The read and write operation of the memory is controlled by the WREN 
signal, which sets the ports into either read or write modes. There is no 
separate read enable (RE) signal.

Writing into RAM is controlled by both the WREN and byte enable 
(byteena) signals for each port. The default value for the byteena 
signal is high, in which case writing is controlled only by the WREN signal. 
The byte enables are available for the ×18, ×36, and ×72 modes. In the 
×144 simple dual-port mode, the two sets of byteena signals 
(byteena_a and byteena_b) are combined to form the necessary 
16 byte enables. Tables 2–10 and 2–11 summarize the byte selection.   

Table 2–9. M-RAM Block Configurations (True Dual-Port)

Port A
Port B

64K × 9 32K × 18 16K × 36 8K × 72

64K × 9 v v v v

32K × 18 v v v v

16K × 36 v v v v

8K × 72 v v v v

Table 2–10. Byte Enable for M-RAM Blocks Notes (1), (2)

byteena[3..0] datain ×18 datain ×36 datain ×72

[0] = 1 [8..0] [8..0] [8..0]

[1] = 1 [17..9] [17..9] [17..9]

[2] = 1 – [26..18] [26..18]

[3] = 1 – [35..27] [35..27]

[4] = 1 – – [44..36]

[5] = 1 – – [53..45]

[6] = 1 – – [62..54]

[7] = 1 – – [71..63]
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Input/Output Clock Mode

Input/output clock mode can be implemented for both the true and 
simple dual-port memory modes. On each of the two ports, A or B, one 
clock controls all registers for inputs into the memory block: data input, 
wren, and address. The other clock controls the block’s data output 
registers. Each memory block port, A or B, also supports independent 
clock enables and asynchronous clear signals for input and output 
registers. Figures 2–25 and 2–26 show the memory block in input/output 
clock mode.
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Pipeline/Post Multiply Register

The output of 9 × 9- or 18 × 18-bit multipliers can optionally feed a register 
to pipeline multiply-accumulate and multiply-add/subtract functions. 
For 36 × 36-bit multipliers, this register will pipeline the multiplier 
function.

Adder/Output Blocks

The result of the multiplier sub-blocks are sent to the adder/output block 
which consist of an adder/subtractor/accumulator unit, summation unit, 
output select multiplexer, and output registers. The results are used to 
configure the adder/output block as a pure output, accumulator, a simple 
two-multiplier adder, four-multiplier adder, or final stage of the 36-bit 
multiplier. You can configure the adder/output block to use output 
registers in any mode, and must use output registers for the accumulator. 
The system cannot use adder/output blocks independently of the 
multiplier. Figure 2–34 shows the adder and output stages.
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The DSP block is divided into eight block units that interface with eight 
LAB rows on the left and right. Each block unit can be considered half of 
an 18 × 18-bit multiplier sub-block with 18 inputs and 18 outputs. A local 
interconnect region is associated with each DSP block. Like an LAB, this 
interconnect region can be fed with 10 direct link interconnects from the 
LAB to the left or right of the DSP block in the same row. All row and 
column routing resources can access the DSP block’s local interconnect 
region. The outputs also work similarly to LAB outputs as well. Nine 
outputs from the DSP block can drive to the left LAB through direct link 
interconnects and nine can drive to the right LAB though direct link 
interconnects. All 18 outputs can drive to all types of row and column 
routing. Outputs can drive right- or left-column routing. Figures 2–40 
and 2–41 show the DSP block interfaces to LAB rows. 

Figure 2–40. DSP Block Interconnect Interface
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Enhanced PLLs 11 and 12 support one single-ended output each (see 
Figure 2–56). These outputs do not have their own VCC and GND signals. 
Therefore, to minimize jitter, do not place switching I/O pins next to this 
output pin.

Figure 2–56. External Clock Outputs for Enhanced PLLs 11 & 12

Note to Figure 2–56:
(1) For PLL 11, this pin is CLK13n; for PLL 12 this pin is CLK7n.

Stratix devices can drive any enhanced PLL driven through the global 
clock or regional clock network to any general I/O pin as an external 
output clock. The jitter on the output clock is not guaranteed for these 
cases.

1.5-V HSTL Class II v v v

1.8-V HSTL Class I v v v

1.8-V HSTL Class II v v v

SSTL-18 Class I v v v

SSTL-18 Class II v v v

SSTL-2 Class I v v v

SSTL-2 Class II v v v

SSTL-3 Class I v v v

SSTL-3 Class II v v v

AGP (1×  and 2× ) v v v

CTT v v v

Table 2–20. I/O Standards Supported for Enhanced PLL Pins (Part 2 of 2)

I/O Standard
Input Output

INCLK FBIN PLLENABLE EXTCLK

CLK13n, I/O, PLL11_OUT
or CLK6n, I/O, PLL12_OUT (1)

From Internal
Logic or IOE

g0
Counter
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Figure 2–59. Stratix IOE Structure

The IOEs are located in I/O blocks around the periphery of the Stratix 
device. There are up to four IOEs per row I/O block and six IOEs per 
column I/O block. The row I/O blocks drive row, column, or direct link 
interconnects. The column I/O blocks drive column interconnects. 
Figure 2–60 shows how a row I/O block connects to the logic array. 
Figure 2–61 shows how a column I/O block connects to the logic array.
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and/or output enable registers. A programmable delay exists to increase 
the tZX delay to the output pin, which is required for ZBT interfaces. 
Table 2–24 shows the programmable delays for Stratix devices.

The IOE registers in Stratix devices share the same source for clear or 
preset. You can program preset or clear for each individual IOE. You can 
also program the registers to power up high or low after configuration is 
complete. If programmed to power up low, an asynchronous clear can 
control the registers. If programmed to power up high, an asynchronous 
preset can control the registers. This feature prevents the inadvertent 
activation of another device’s active-low input upon power-up. If one 
register in an IOE uses a preset or clear signal then all registers in the IOE 
must use that same signal if they require preset or clear. Additionally a 
synchronous reset signal is available for the IOE registers.

Double-Data Rate I/O Pins

Stratix devices have six registers in the IOE, which support DDR 
interfacing by clocking data on both positive and negative clock edges. 
The IOEs in Stratix devices support DDR inputs, DDR outputs, and 
bidirectional DDR modes.

When using the IOE for DDR inputs, the two input registers clock double 
rate input data on alternating edges. An input latch is also used within the 
IOE for DDR input acquisition. The latch holds the data that is present 
during the clock high times. This allows both bits of data to be 
synchronous with the same clock edge (either rising or falling). 
Figure 2–65 shows an IOE configured for DDR input. Figure 2–66 shows 
the DDR input timing diagram.

Table 2–24. Stratix Programmable Delay Chain

Programmable Delays Quartus II Logic Option

Input pin to logic array delay Decrease input delay to internal cells

Input pin to input register delay Decrease input delay to input register

Output pin delay Increase delay to output pin

Output enable register tCO delay Increase delay to output enable pin

Output tZX delay Increase tZX delay to output pin

Output clock enable delay Increase output clock enable delay

Input clock enable delay Increase input clock enable delay

Logic array to output register delay Decrease input delay to output register

Output enable clock enable delay Increase output enable clock enable delay
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Tables 2–25 and 2–26 show the performance specification for DDR 
SDRAM, RLDRAM II, QDR SRAM, QDRII SRAM, and ZBT SRAM 
interfaces in EP1S10 through EP1S40 devices and in EP1S60 and EP1S80 
devices. The DDR SDRAM and QDR SRAM numbers in Table 2–25 have 
been verified with hardware characterization with third-party DDR 
SDRAM and QDR SRAM devices over temperature and voltage 
extremes.

Table 2–25. External RAM Support in EP1S10 through EP1S40 Devices

DDR Memory Type I/O 
Standard

Maximum Clock Rate (MHz)

-5 Speed 
Grade -6 Speed Grade -7 Speed Grade -8 Speed Grade

Flip-Chip Flip-Chip Wire-
Bond

Flip-
Chip

Wire-
Bond

Flip-
Chip

Wire-
Bond

DDR SDRAM (1), (2) SSTL-2 200 167 133 133 100 100 100

DDR SDRAM - side 
banks (2), (3), (4)

SSTL-2 150 133 110 133 100 100 100

RLDRAM II (4) 1.8-V HSTL 200 (5) (5) (5) (5) (5) (5)

QDR SRAM (6) 1.5-V HSTL 167 167 133 133 100 100 100

QDRII SRAM (6) 1.5-V HSTL 200 167 133 133 100 100 100

ZBT SRAM (7) LVTTL 200 200 200 167 167 133 133

Notes to Table 2–25:
(1) These maximum clock rates apply if the Stratix device uses DQS phase-shift circuitry to interface with DDR 

SDRAM. DQS phase-shift circuitry is only available in the top and bottom I/O banks (I/O banks 3, 4, 7, and 8). 
(2) For more information on DDR SDRAM, see AN 342: Interfacing DDR SDRAM with Stratix & Stratix GX Devices.
(3) DDR SDRAM is supported on the Stratix device side I/O banks (I/O banks 1, 2, 5, and 6) without dedicated DQS 

phase-shift circuitry. The read DQS signal is ignored in this mode.
(4) These performance specifications are preliminary.
(5) This device does not support RLDRAM II.
(6) For more information on QDR or QDRII SRAM, see AN 349: QDR SRAM Controller Reference Design for Stratix & 

Stratix GX Devices.
(7) For more information on ZBT SRAM, see AN 329: ZBT SRAM Controller Reference Design for Stratix & Stratix GX 

Devices.
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The only way you can use the rx_data_align is if one of the following 
is true:

■ The receiver PLL is only clocking receive channels (no resources for 
the transmitter)

■ If all channels can fit in one I/O bank

Table 2–38. EP1S30 Differential Channels Note (1)

Package Transmitter
/Receiver

Total 
Channels

Maximum 
Speed 
(Mbps)

Center Fast PLLs Corner Fast PLLs (2), (3)

PLL1 PLL2 PLL3 PLL4 PLL7 PLL8 PLL9 PLL10 

780-pin 
FineLine 
BGA

Transmitter 
(4)

70 840 18 17 17 18 (6) (6) (6) (6)

840 (5) 35 35 35 35 (6) (6) (6) (6)

Receiver 66 840 17 16 16 17 (6) (6) (6) (6)

840 (5) 33 33 33 33 (6) (6) (6) (6)

956-pin 
BGA

Transmitter 
(4)

80 840 19 20 20 19 20 20 20 20

840 (5) 39 39 39 39 20 20 20 20

Receiver 80 840 20 20 20 20 19 20 20 19

840 (5) 40 40 40 40 19 20 20 19

1,020-pin 
FineLine 
BGA

Transmitter 
(4)

80 (2) (7) 840 19 
(1)

20 20 19 
(1)

20 20 20 20

840 (5),(8) 39 
(1)

39 
(1)

39 
(1)

39 
(1)

20 20 20 20

Receiver 80 (2) (7) 840 20 20 20 20 19 (1) 20 20 19 (1)

840 (5),(8) 40 40 40 40 19 (1) 20 20 19 (1)

Table 2–39. EP1S40 Differential Channels (Part 1 of 2) Note (1)

Package Transmitter/
Receiver

Total 
Channels

Maximum 
Speed 
(Mbps)

Center Fast PLLs Corner Fast PLLs (2), (3)

PLL1 PLL2 PLL3 PLL4 PLL7 PLL8 PLL9 PLL10 

780-pin 
FineLine 
BGA

Transmitter 
(4)

68 840 18 16 16 18 (6) (6) (6) (6)

840 (5) 34 34 34 34 (6) (6) (6) (6)

Receiver 66 840 17 16 16 17 (6) (6) (6) (6)

840 (5) 33 33 33 33 (6) (6) (6) (6)
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Table 4–15. PCI-X 1.0 Specifications

Symbol Parameter Conditions Minimum Typical Maximum Unit

VCCIO Output supply voltage 3.0 3.6 V

VIH High-level input voltage 0.5 ×  
VCCIO

VCCIO + 
0.5

V

VIL Low-level input voltage –0.5 0.35 ×  
VCCIO

V

VIPU Input pull-up voltage 0.7 ×  
VCCIO

V

VOH High-level output voltage IOUT = –500 μA 0.9 ×  
VCCIO

V

VOL Low-level output voltage IOUT = 1,500 μA 0.1 ×  
VCCIO

V

Table 4–16. GTL+ I/O Specifications

Symbol Parameter Conditions Minimum Typical Maximum Unit

VTT Termination voltage 1.35 1.5 1.65 V

VREF Reference voltage 0.88 1.0 1.12 V

VIH High-level input voltage VREF + 0.1 V

VIL Low-level input voltage VREF – 0.1 V

VOL Low-level output voltage IOL = 34 mA (3) 0.65 V

Table 4–17. GTL I/O Specifications

Symbol Parameter Conditions Minimum Typical Maximum Unit

VTT Termination voltage 1.14 1.2 1.26 V

VREF Reference voltage 0.74 0.8 0.86 V

VIH High-level input voltage VREF + 
0.05

V

VIL Low-level input voltage VREF – 
0.05

V

VOL Low-level output voltage IOL = 40 mA (3) 0.4 V
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tM4KDATAAH A port data hold time after clock

tM4KADDRASU A port address setup time before clock

tM4KADDRAH A port address hold time after clock

tM4KDATABSU B port data setup time before clock

tM4KDATABH B port data hold time after clock

tM4KADDRBSU B port address setup time before clock

tM4KADDRBH B port address hold time after clock

tM4KDATACO1 Clock-to-output delay when using output registers

tM4KDATACO2 Clock-to-output delay without output registers

tM4KCLKHL Register minimum clock high or low time. This is a limit on 
the min time for the clock on the registers in these blocks. 
The actual performance is dependent upon the internal 
point-to-point delays in the blocks and may give slower 
performance as shown inTable 4–36 on page 4–20 and as 
reported by the timing analyzer in the Quartus II software.

tM4KCLR Minimum clear pulse width

Table 4–42. M-RAM Block Internal Timing Microparameter 
Descriptions (Part 1 of 2)

Symbol Parameter

tMRAMRC Synchronous read cycle time

tMRAMWC Synchronous write cycle time

tMRAMWERESU Write or read enable setup time before clock

tMRAMWEREH Write or read enable hold time after clock

tMRAMCLKENSU Clock enable setup time before clock

tMRAMCLKENH Clock enable hold time after clock

tMRAMBESU Byte enable setup time before clock

tMRAMBEH Byte enable hold time after clock

tMRAMDATAASU A port data setup time before clock

tMRAMDATAAH A port data hold time after clock

tMRAMADDRASU A port address setup time before clock

tMRAMADDRAH A port address hold time after clock

tMRAMDATABSU B port setup time before clock

Table 4–41. M4K Block Internal Timing Microparameter Descriptions (Part 
2 of 2)

Symbol Parameter
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tPIPE2OUTREG2ADD  2,002  2,203  2,533  2,980 ps

tPIPE2OUTREG4ADD  2,899  3,189  3,667  4,314 ps

tPD9  3,709  4,081  4,692  5,520 ps

tPD18  4,795  5,275  6,065  7,135 ps

tPD36  7,495  8,245  9,481  11,154 ps

tCLR 450  500  575  676  ps

tCLKHL 1,350  1,500  1,724  2,029  ps

Table 4–48. M512 Block Internal Timing Microparameters

Symbol
-5 -6 -7 -8

Unit
Min Max Min Max Min Max Min Max

tM512RC  3,340  3,816  4,387  5,162 ps

tM512WC  3,138  3,590  4,128  4,860 ps

tM512WERESU 110  123  141  166  ps

tM512WEREH 34  38  43  51  ps

tM512CLKENSU 215 215 247 290 ps

tM512CLKENH –70 –70 –81 –95 ps

tM512DATASU 110  123  141  166  ps

tM512DATAH 34  38  43  51  ps

tM512WADDRSU 110  123  141  166  ps

tM512WADDRH 34  38  43  51  ps

tM512RADDRSU 110  123  141  166  ps

tM512RADDRH 34  38  43  51  ps

tM512DATACO1  424  472  541  637 ps

tM512DATACO2  3,366  3,846  4,421  5,203 ps

tM512CLKHL 1,000  1,111  1,190  1,400  ps

tM512CLR 170  189  217  255  ps

Table 4–47. DSP Block Internal Timing Microparameters (Part 2 of 2)

Symbol
-5 -6 -7 -8

Unit
Min Max Min Max Min Max Min Max
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External Timing Parameters

External timing parameters are specified by device density and speed 
grade. Figure 4–4 shows the pin-to-pin timing model for bidirectional 
IOE pin timing. All registers are within the IOE.

Figure 4–4. External Timing in Stratix Devices

All external timing parameters reported in this section are defined with 
respect to the dedicated clock pin as the starting point. All external I/O 
timing parameters shown are for 3.3-V LVTTL I/O standard with the 
24-mA current strength and fast slew rate. For external I/O timing using 
standards other than LVTTL or for different current strengths, use the I/O 
standard input and output delay adders in Tables 4–103 through 4–108.
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Timing Model

Table 4–122. Stratix Maximum Output Clock Rate for PLL[5, 6, 11, 12] Pins 
in Wire-Bond Packages (Part 1 of 2)

I/O Standard -6 Speed 
Grade

-7 Speed 
Grade

-8 Speed 
Grade Unit

LVTTL 175 150 150 MHz

2.5 V 175 150 150 MHz

1.8 V 175 150 150 MHz

1.5 V 175 150 150 MHz

LVCMOS 175 150 150 MHz

GTL 125 100 100 MHz

GTL+ 125 100 100 MHz

SSTL-3 Class I 110 90 90 MHz

SSTL-3 Class II 133 125 125 MHz

SSTL-2 Class I 166 133 133 MHz

SSTL-2 Class II 133 100 100 MHz

SSTL-18 Class I 110 100 100 MHz

SSTL-18 Class II 110 100 100 MHz

1.5-V HSTL Class I 167 167 167 MHz

1.5-V HSTL Class II 167 133 133 MHz

1.8-V HSTL Class I 167 167 167 MHz

1.8-V HSTL Class II 167 133 133 MHz

3.3-V PCI 167 167 167 MHz

3.3-V PCI-X 1.0 167 133 133 MHz

Compact PCI 175 150 150 MHz

AGP 1× 175 150 150 MHz

AGP 2× 175 150 150 MHz

CTT 125 100 100 MHz

Differential 1.5-V HSTL 
C1

167 133 133 MHz

Differential 1.8-V HSTL 
Class I

167 167 167 MHz

Differential 1.8-V HSTL 
Class II

167 133 133 MHz

Differential SSTL-2  (1) 110 100 100 MHz

LVPECL (2) 311 275 275 MHz

PCML (2) 250 200 200 MHz
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Table 4–126. High-Speed I/O Specifications for Wire-Bond Packages (Part 1 of 2)

Symbol Conditions
-6 Speed Grade -7 Speed Grade -8 Speed Grade

Unit
Min Typ Max Min Typ Max Min Typ Max

fHSCLK (Clock 
frequency)
(LVDS,LVPECL, 
HyperTransport 
technology)
fHSCLK = fHSDR / W

W = 4 to 30 (Serdes used) 10 156 10 115.5 10 115.5 MHz

W = 2 (Serdes bypass) 50 231 50 231 50 231 MHz

W = 2 (Serdes used) 150 312 150 231 150 231 MHz

W = 1 (Serdes bypass) 100 311 100 270 100 270 MHz

W = 1 (Serdes used) 300 624 300 462 300 462 MHz

fHSDR Device operation, 
(LVDS,LVPECL, 
HyperTransport 
technology)

J = 10 300 624 300 462 300 462 Mbps

J = 8 300 624 300 462 300 462 Mbps

J = 7 300 624 300 462 300 462 Mbps

J = 4 300 624 300 462 300 462 Mbps

J = 2 100 462 100 462 100 462 Mbps

J = 1 (LVDS and LVPECL 
only)

100 311 100 270 100 270 Mbps

fH S C L K (Clock 
frequency)
(PCML)
fHSCLK = fHSDR / W

W = 4 to 30 (Serdes used) 10 77.75 MHz

W = 2 (Serdes bypass) 50 150 50 77.5 50 77.5 MHz

W = 2 (Serdes used) 150 155.5 MHz

W = 1 (Serdes bypass) 100 200 100 155 100 155 MHz

W = 1 (Serdes used) 300 311 MHz

Device operation, 
fH S D R

(PCML)

J = 10 300 311 Mbps

J = 8 300 311 Mbps

J = 7 300 311 Mbps

J = 4 300 311 Mbps

J = 2 100 300 100 155 100 155 Mbps

J = 1 100 200 100 155 100 155 Mbps

TCCS All 400 400 400 ps


