
Intel - EP1S25F780I6N Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

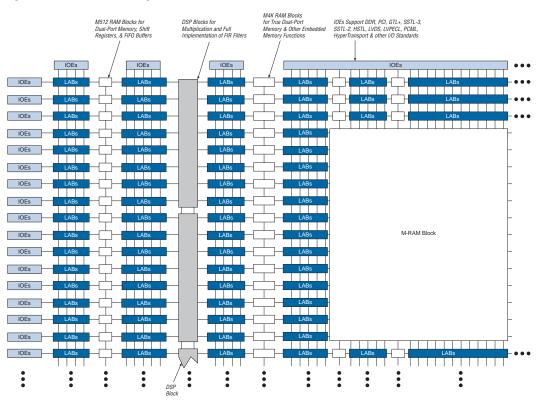
Details

Product Status	Obsolete
Number of LABs/CLBs	2566
Number of Logic Elements/Cells	25660
Total RAM Bits	1944576
Number of I/O	597
Number of Gates	-
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	780-BBGA
Supplier Device Package	780-FBGA (29x29)
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep1s25f780i6n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Typographic Conventions


This document uses the typographic conventions shown below.


Visual Cue	Meaning
Bold Type with Initial Capital Letters	Command names, dialog box titles, checkbox options, and dialog box options are shown in bold, initial capital letters. Example: Save As dialog box.
bold type	External timing parameters, directory names, project names, disk drive names, filenames, filename extensions, and software utility names are shown in bold type. Examples: f _{MAX} , \qdesigns directory, d: drive, chiptrip.gdf file.
Italic Type with Initial Capital Letters	Document titles are shown in italic type with initial capital letters. Example: AN 75: High-Speed Board Designs.
Italic type	Internal timing parameters and variables are shown in italic type. Examples: t_{PlA} , $n + 1$.
	Variable names are enclosed in angle brackets (< >) and shown in italic type. Example: <i><file name=""></file></i> , <i><project name="">.pof</project></i> file.
Initial Capital Letters	Keyboard keys and menu names are shown with initial capital letters. Examples: Delete key, the Options menu.
"Subheading Title"	References to sections within a document and titles of on-line help topics are shown in quotation marks. Example: "Typographic Conventions."
Courier type	Signal and port names are shown in lowercase Courier type. Examples: data1, tdi, input. Active-low signals are denoted by suffix n, e.g., resetn.
	Anything that must be typed exactly as it appears is shown in Courier type. For example: c:\qdesigns\tutorial\chiptrip.gdf. Also, sections of an actual file, such as a Report File, references to parts of files (e.g., the AHDL keyword SUBDESIGN), as well as logic function names (e.g., TRI) are shown in Courier.
1., 2., 3., and a., b., c., etc.	Numbered steps are used in a list of items when the sequence of the items is important, such as the steps listed in a procedure.
••	Bullets are used in a list of items when the sequence of the items is not important.
\checkmark	The checkmark indicates a procedure that consists of one step only.
	The hand points to information that requires special attention.
Ţ	The angled arrow indicates you should press the Enter key.
•••	The feet direct you to more information on a particular topic.

dedicated clocks, these registers provide exceptional performance and interface support with external memory devices such as DDR SDRAM, FCRAM, ZBT, and QDR SRAM devices.

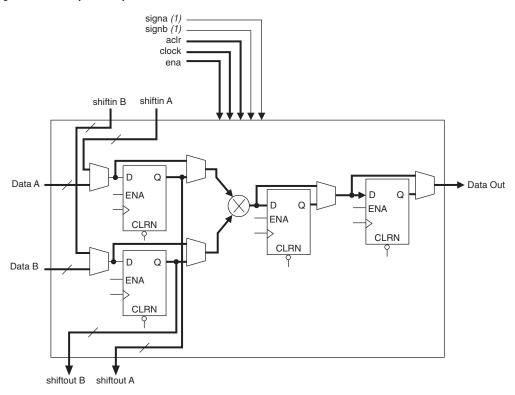
High-speed serial interface channels support transfers at up to 840 Mbps using LVDS, LVPECL, 3.3-V PCML, or HyperTransport technology I/O standards.

Figure 2–1 shows an overview of the Stratix device.

Table 2–1. Stratix Device Resources						
Device	M512 RAM Columns/Blocks	M4K RAM Columns/Blocks	M-RAM Blocks	DSP Block Columns/Blocks	LAB Columns	LAB Rows
EP1S10	4 / 94	2 / 60	1	2/6	40	30
EP1S20	6 / 194	2 / 82	2	2 / 10	52	41
EP1S25	6 / 224	3 / 138	2	2 / 10	62	46
EP1S30	7 / 295	3 / 171	4	2 / 12	67	57
EP1S40	8 / 384	3 / 183	4	2 / 14	77	61
EP1S60	10 / 574	4 / 292	6	2 / 18	90	73
EP1S80	11 / 767	4 / 364	9	2 / 22	101	91

The number of M512 RAM, M4K RAM, and DSP blocks varies by device along with row and column numbers and M-RAM blocks. Table 2–1 lists the resources available in Stratix devices.

Logic Array Blocks


Each LAB consists of 10 LEs, LE carry chains, LAB control signals, local interconnect, LUT chain, and register chain connection lines. The local interconnect transfers signals between LEs in the same LAB. LUT chain connections transfer the output of one LE's LUT to the adjacent LE for fast sequential LUT connections within the same LAB. Register chain connections transfer the output of one LE's register to the adjacent LE's register within an LAB. The Quartus[®] II Compiler places associated logic within an LAB or adjacent LABs, allowing the use of local, LUT chain, and register chain connections for performance and area efficiency. Figure 2–2 shows the Stratix LAB.

blocks facing to the left, and another 10 possible from the right adjacent LABs for M-RAM blocks facing to the right. For column interfacing, every M-RAM column unit connects to the right and left column lines, allowing each M-RAM column unit to communicate directly with three columns of LABs. Figures 2–21 through 2–23 show the interface between the M-RAM block and the logic array.

Input/Output Clock Mode

Input/output clock mode can be implemented for both the true and simple dual-port memory modes. On each of the two ports, A or B, one clock controls all registers for inputs into the memory block: data input, wren, and address. The other clock controls the block's data output registers. Each memory block port, A or B, also supports independent clock enables and asynchronous clear signals for input and output registers. Figures 2–25 and 2–26 show the memory block in input/output clock mode.

Figure 2–35. Simple Multiplier Mode

Note to Figure 2-35:

(1) These signals are not registered or registered once to match the data path pipeline.

DSP blocks can also implement one 36×36 -bit multiplier in multiplier mode. DSP blocks use four 18×18 -bit multipliers combined with dedicated adder and internal shift circuitry to achieve 36-bit multiplication. The input shift register feature is not available for the 36×36 -bit multiplier. In 36×36 -bit mode, the device can use the register that is normally a multiplier-result-output register as a pipeline stage for the 36×36 -bit multiplier. Figure 2–36 shows the 36×36 -bit multiply mode.

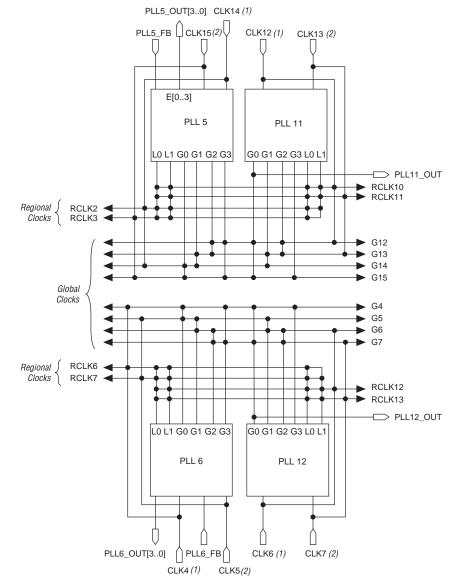


Figure 2–51. Global & Regional Clock Connections from Top Clock Pins & Enhanced PLL Outputs Note (1)

Notes to Figure 2–51:

- (1) PLLs 1 to 4 and 7 to 10 are fast PLLs. PLLs 5, 6, 11, and 12 are enhanced PLLs.
- (2) CLK4, CLK6, CLK12, and CLK14 feed the corresponding PLL's inclk0 port.
- (3) CLK5, CLK7, CLK13, and CLK15 feed the corresponding PLL's inclk1 port.
- (4) The EP1S40 device in the 780-pin FineLine BGA package does not support PLLs 11 and 12.

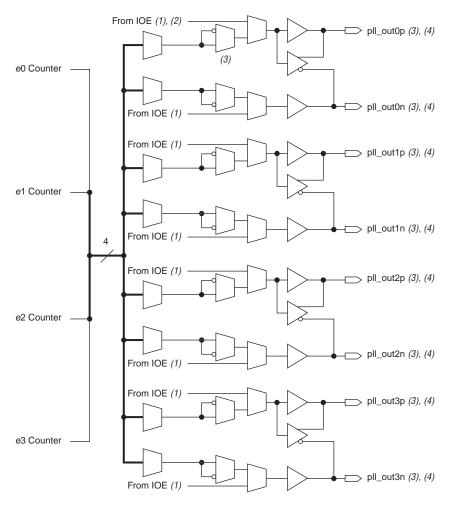


Figure 2–55. External Clock Outputs for PLLs 5 & 6

Notes to Figure 2–55:

- (1) The design can use each external clock output pin as a general-purpose output pin from the logic array. These pins are multiplexed with IOE outputs.
- (2) Two single-ended outputs are possible per output counter—either two outputs of the same frequency and phase or one shifted 180°.
- (3) EP1S10, EP1S20, and EP1S25 devices in 672-pin BGA and 484- and 672-pin FineLine BGA packages only have two pairs of external clocks (i.e., pll_out0p, pll_out0n, pll_out1p, and pll_out1n).
- (4) Differential SSTL and HSTL outputs are implemented using two single-ended output buffers, which are programmed to have opposite polarity.

External Clock Inputs

Each fast PLL supports single-ended or differential inputs for source synchronous transmitters or for general-purpose use. Source-synchronous receivers support differential clock inputs. The fast PLL inputs are fed by CLK [0..3], CLK [8..11], and FPLL [7..10] CLK pins, as shown in Figure 2–50 on page 2–85.

Table 2–22 shows the I/O standards supported by fast PLL input pins.

Table 2–22. Fast PLL Port I/O Standards (Part 1 of 2)				
L/O Chandard	Input			
I/O Standard	INCLK	PLLENABLE		
LVTTL	~	\checkmark		
LVCMOS	~	\checkmark		
2.5 V	~			
1.8 V	~			
1.5 V	~			
3.3-V PCI				
3.3-V PCI-X 1.0				
LVPECL	~			
3.3-V PCML	~			
LVDS	~			
HyperTransport technology	~			
Differential HSTL	~			
Differential SSTL				
3.3-V GTL				
3.3-V GTL+	~			
1.5-V HSTL Class I	~			
1.5-V HSTL Class II				
1.8-V HSTL Class I	~			
1.8-V HSTL Class II				
SSTL-18 Class I	~			
SSTL-18 Class II				
SSTL-2 Class I	~			

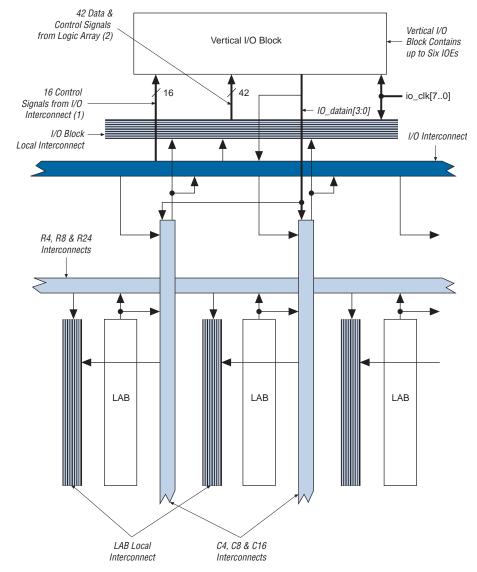


Figure 2–61. Column I/O Block Connection to the Interconnect

Notes to Figure 2–61:

- (1) The 16 control signals are composed of four output enables io_boe[3..0], four clock enables io_bce[3..0], four clocks io_bclk[3..0], and four clear signals io_bclr[3..0].
- (2) The 42 data and control signals consist of 12 data out lines; six lines each for DDR applications io_dataouta[5..0] and io_dataoutb[5..0], six output enables io_coe[5..0], six input clock enables io_cce_in[5..0], six output clock enables io_cce_out[5..0], six clocks io_cclk[5..0], and six clear signals io_cclr[5..0].

and/or output enable registers. A programmable delay exists to increase the t_{ZX} delay to the output pin, which is required for ZBT interfaces. Table 2–24 shows the programmable delays for Stratix devices.

Table 2–24. Stratix Programmable Delay Chain				
Programmable Delays	Quartus II Logic Option			
Input pin to logic array delay	Decrease input delay to internal cells			
Input pin to input register delay	Decrease input delay to input register			
Output pin delay Increase delay to output pin				
Output enable register t _{CO} delay Increase delay to output enable p				
Output t _{ZX} delay	Increase t_{ZX} delay to output pin			
Output clock enable delay	Increase output clock enable delay			
Input clock enable delay	Increase input clock enable delay			
Logic array to output register delay Decrease input delay to output register				
Output enable clock enable delay	Increase output enable clock enable delay			

The IOE registers in Stratix devices share the same source for clear or preset. You can program preset or clear for each individual IOE. You can also program the registers to power up high or low after configuration is complete. If programmed to power up low, an asynchronous clear can control the registers. If programmed to power up high, an asynchronous preset can control the registers. This feature prevents the inadvertent activation of another device's active-low input upon power-up. If one register in an IOE uses a preset or clear signal then all registers in the IOE must use that same signal if they require preset or clear. Additionally a synchronous reset signal is available for the IOE registers.

Double-Data Rate I/O Pins

Stratix devices have six registers in the IOE, which support DDR interfacing by clocking data on both positive and negative clock edges. The IOEs in Stratix devices support DDR inputs, DDR outputs, and bidirectional DDR modes.

When using the IOE for DDR inputs, the two input registers clock double rate input data on alternating edges. An input latch is also used within the IOE for DDR input acquisition. The latch holds the data that is present during the clock high times. This allows both bits of data to be synchronous with the same clock edge (either rising or falling). Figure 2–65 shows an IOE configured for DDR input. Figure 2–66 shows the DDR input timing diagram.

- 1.8-V HSTL Class I and II
- SSTL-3 Class I and II
- SSTL-2 Class I and II
- SSTL-18 Class I and II
- CTT

Table 2–31 describes the I/O standards supported by Stratix devices.

I/O Standard	Туре	Input Reference Voltage (V _{REF}) (V)	Output Supply Voltage (V _{CCIO}) (V)	Board Termination Voltage (V _{TT}) (V)
LVTTL	Single-ended	N/A	3.3	N/A
LVCMOS	Single-ended	N/A	3.3	N/A
2.5 V	Single-ended	N/A	2.5	N/A
1.8 V	Single-ended	N/A	1.8	N/A
1.5 V	Single-ended	N/A	1.5	N/A
3.3-V PCI	Single-ended	N/A	3.3	N/A
3.3-V PCI-X 1.0	Single-ended	N/A	3.3	N/A
LVDS	Differential	N/A	3.3	N/A
LVPECL	Differential	N/A	3.3	N/A
3.3-V PCML	Differential	N/A	3.3	N/A
HyperTransport	Differential	N/A	2.5	N/A
Differential HSTL (1)	Differential	0.75	1.5	0.75
Differential SSTL (2)	Differential	1.25	2.5	1.25
GTL	Voltage-referenced	0.8	N/A	1.20
GTL+	Voltage-referenced	1.0	N/A	1.5
1.5-V HSTL Class I and II	Voltage-referenced	0.75	1.5	0.75
1.8-V HSTL Class I and II	Voltage-referenced	0.9	1.8	0.9
SSTL-18 Class I and II	Voltage-referenced	0.90	1.8	0.90
SSTL-2 Class I and II	Voltage-referenced	1.25	2.5	1.25
SSTL-3 Class I and II	Voltage-referenced	1.5	3.3	1.5
AGP (1 \times and 2 $^{\circ}$)	Voltage-referenced	1.32	3.3	N/A
СТТ	Voltage-referenced	1.5	3.3	1.5

Notes to Table 2–31:

- (1) This I/O standard is only available on input and output clock pins.
- (2) This I/O standard is only available on output column clock pins.

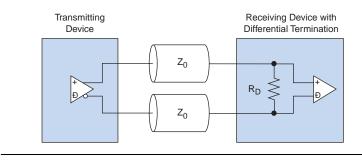


Figure 2–71. LVDS Input Differential On-Chip Termination

I/O banks on the left and right side of the device support LVDS receiver (far-end) differential termination.

Table 2–33 shows the Stratix device differential termination support.

Table 2–33. Differential Termination Supported by I/O Banks				
Differential Termination SupportI/O Standard SupportTop & Bottom Banks (3, 4, 7 & 8)Left & Right Banks (1, 2, 5 & 6)				
Differential termination (1), (2)	LVDS		\checkmark	

Notes to Table 2–33:

(1) Clock pin CLK0, CLK2, CLK9, CLK11, and pins FPLL [7..10] CLK do not support differential termination.

(2) Differential termination is only supported for LVDS because of a 3.3-V V_{CCIO}.

Table 2–34 shows the termination support for different pin types.

Table 2–34. Differential Termination Support Across Pin Types			
Pin Type	R _D		
Top and bottom I/O banks (3, 4, 7, and 8)			
DIFFIO_RX[]	\checkmark		
CLK[0,2,9,11],CLK[4-7],CLK[12-15]			
CLK[1,3,8,10]	\checkmark		
FCLK			
FPLL[710]CLK			

The differential on-chip resistance at the receiver input buffer is 118 $\Omega\pm 20$ %.

The Stratix device instruction register length is 10 bits and the USERCODE register length is 32 bits. Tables 3–2 and 3–3 show the boundary-scan register length and device IDCODE information for Stratix devices.

Table 3–2. Stratix Boundary-Scan Register Length				
Device	Boundary-Scan Register Length			
EP1S10	1,317			
EP1S20	1,797			
EP1S25	2,157			
EP1S30	2,253			
EP1S40	2,529			
EP1S60	3,129			
EP1S80	3,777			

Table 3–3. 32-Bit Stratix Device IDCODE						
		IDCODE (32 Bits) (1)				
Device	Version (4 Bits)	Part Number (16 Bits)	Manufacturer Identity (11 Bits)	LSB (1 Bit) (2)		
EP1S10	0000	0010 0000 0000 0001	000 0110 1110	1		
EP1S20	0000	0010 0000 0000 0010	000 0110 1110	1		
EP1S25	0000	0010 0000 0000 0011	000 0110 1110	1		
EP1S30	0000	0010 0000 0000 0100	000 0110 1110	1		
EP1S40	0000	0010 0000 0000 0101	000 0110 1110	1		
EP1S60	0000	0010 0000 0000 0110	000 0110 1110	1		
EP1S80	0000	0010 0000 0000 0111	000 0110 1110	1		

Notes to Tables 3–2 and 3–3:

(1) The most significant bit (MSB) is on the left.

(2) The IDCODE's least significant bit (LSB) is always 1.

4. DC & Switching Characteristics

S51004-3.4

Operating Conditions

Stratix[®] devices are offered in both commercial and industrial grades. Industrial devices are offered in -6 and -7 speed grades and commercial devices are offered in -5 (fastest), -6, -7, and -8 speed grades. This section specifies the operation conditions for operating junction temperature, V_{CCINT} and V_{CCIO} voltage levels, and input voltage requirements. The voltage specifications in this section are specified at the pins of the device (and not the power supply). If the device operates outside these ranges, then all DC and AC specifications are not guaranteed. Furthermore, the reliability of the device may be affected. The timing parameters in this chapter apply to both commercial and industrial temperature ranges unless otherwise stated.

Tables 4–1 through 4–8 provide information on absolute maximum ratings.

Table 4–1. Stratix Device Absolute Maximum Ratings Notes (1), (2)						
Symbol	Parameter	Conditions	Minimum	Maximum	Unit	
V _{CCINT}	Supply voltage	With respect to ground	-0.5	2.4	V	
V _{CCIO}	-		-0.5	4.6	V	
VI	DC input voltage (3)		-0.5	4.6	V	
I _{OUT}	DC output current, per pin		-25	40	mA	
T _{STG}	Storage temperature	No bias	-65	150	°C	
TJ	Junction temperature	BGA packages under bias		135	°C	

Table 4–2. Stratix Device Recommended Operating Conditions (Part 1 of 2)						
Symbol Parameter Conditions Minimum Maximum Ur					Unit	
V _{CCINT}	Supply voltage for internal logic and input buffers	(4)	1.425	1.575	V	

device. Decoupling capacitors were not used in this measurement. To factor in the current for decoupling capacitors, sum up the current for each capacitor using the following equation:

I = C (dV/dt)

If the regulator or power supply minimum output current is more than the Stratix device requires, then the device may consume more current than the maximum current listed in Table 4–34. However, the device does not require any more current to successfully power up than what is listed in Table 4–34.

Table 4–34. Stratix Power-Up Current (I _{CCINT}) Requirements Note (1)					
Device	Power-Up Curre	Unit			
	Typical	Maximum	— Unit		
EP1S10	250	700	mA		
EP1S20	400	1,200	mA		
EP1S25	500	1,500	mA		
EP1S30	550	1,900	mA		
EP1S40	650	2,300	mA		
EP1S60	800	2,600	mA		
EP1S80	1,000	3,000	mA		

Note to Table 4–34:

(1) The maximum test conditions are for 0° C and typical test conditions are for 40° C.

The exact amount of current consumed varies according to the process, temperature, and power ramp rate. Stratix devices typically require less current during power up than shown in Table 4–34. The user-mode current during device operation is generally higher than the power-up current.

The duration of the I_{CCINT} power-up requirement depends on the V_{CCINT} voltage supply rise time. The power-up current consumption drops when the V_{CCINT} supply reaches approximately 0.75 V.

Tables 4–91 through 4–96 show the external timing parameters on column and row pins for EP1S80 devices.

Table 4–91. EP1S80 External I/O Timing on Column Pins Using Fast Regional Clock Networks Note (1)							e (1)		
	-5 Speed Grade		-6 Speed Grade		-7 Speed Grade		-8 Speed Grade		11
Parameter	Min	Max	Min	Max	Min	Max	Min	Max	Unit
t _{INSU}	2.328		2.528		2.900		NA		ns
t _{INH}	0.000		0.000		0.000		NA		ns
t _{OUTCO}	2.422	4.830	2.422	5.169	2.422	5.633	NA	NA	ns
t _{xz}	2.362	4.704	2.362	5.037	2.362	5.509	NA	NA	ns
t _{ZX}	2.362	4.704	2.362	5.037	2.362	5.509	NA	NA	ns

Table 4–92. I	Table 4–92. EP1S80 External I/O Timing on Column Pins Using Regional Clock Networks Note (1)								
Parameter	-5 Speed Grade		-6 Speed Grade		-7 Speed Grade		-8 Speed Grade		
	Min	Max	Min	Max	Min	Max	Min	Max	Unit
t _{INSU}	1.760		1.912		2.194		NA		ns
t _{INH}	0.000		0.000		0.000		NA		ns
t _{outco}	2.761	5.398	2.761	5.785	2.761	6.339	NA	NA	ns
t _{xz}	2.701	5.272	2.701	5.653	2.701	6.215	NA	NA	ns
t _{ZX}	2.701	5.272	2.701	5.653	2.701	6.215	NA	NA	ns
t _{INSUPLL}	0.462		0.606		0.785		NA		ns
t _{INHPLL}	0.000		0.000		0.000		NA		ns
t _{OUTCOPLL}	1.661	2.849	1.661	2.859	1.661	2.881	NA	NA	ns
t _{XZPLL}	1.601	2.723	1.601	2.727	1.601	2.757	NA	NA	ns
t _{ZXPLL}	1.601	2.723	1.601	2.727	1.601	2.757	NA	NA	ns

PLL Specifications

Tables 4–127 through 4–129 describe the Stratix device enhanced PLL specifications.

Symbol	Parameter	Min	Тур	Max	Unit
f _{IN}	Input clock frequency	3 (1), (2)		684	MHz
f _{INPFD}	Input frequency to PFD	3		420	MHz
f _{INDUTY}	Input clock duty cycle	40		60	%
f _{EINDUTY}	External feedback clock input duty cycle	40		60	%
t _{INJITTER}	Input clock period jitter			±200 <i>(3)</i>	ps
t _{EINJITTER}	External feedback clock period jitter			±200 (3)	ps
t _{FCOMP}	External feedback clock compensation time (4)			6	ns
f _{OUT}	Output frequency for internal global or regional clock			500	MHz
f _{OUT_EXT}	Output frequency for external clock (3)	0.3		526	MHz
toutduty	Duty cycle for external clock output (when set to 50%)	45		55	%
t _{JITTER}	Period jitter for external clock output (6)			<pre>±100 ps for >200-MHz outclk ±20 mUI for <200-MHz outclk</pre>	ps or mUI
t _{CONFIG5,6}	Time required to reconfigure the scan chains for PLLs 5 and 6			289/f _{SCANCLK}	
t _{CONFIG11,12}	Time required to reconfigure the scan chains for PLLs 11 and 12			193/f _{SCANCLK}	
t _{SCANCLK}	scanclk frequency (5)			22	MHz
t _{DLOCK}	Time required to lock dynamically (after switchover or reconfiguring any non-post-scale counters/delays) (7)			100	μs
t _{LOCK}	Time required to lock from end of device configuration	10		400	μs
f _{VCO}	PLL internal VCO operating range	300		800 (8)	MHz
t _{LSKEW}	Clock skew between two external clock outputs driven by the same counter		±50		ps

process and operating conditions. Run the timing analyzer in the Quartus II software at the fast and slow operating conditions to see the phase shift range that is achieved below these frequencies.

Table 4–135. Stratix DLL Low Frequency Limit for Full Phase Shift					
Phase Shift	Minimum Frequency for Full Phase Shift	Unit			
72°	119	MHz			
90°	149	MHz			

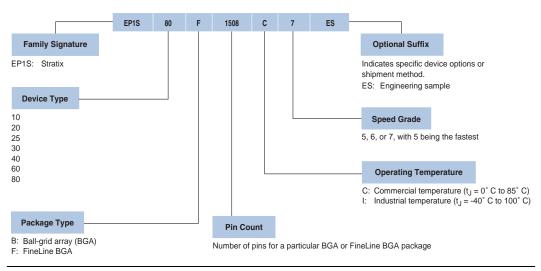


Figure 5–1. Stratix Device Packaging Ordering Information