Altera - EP1S30B956C6 Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	3247
Number of Logic Elements/Cells	32470
Total RAM Bits	3317184
Number of I/O	683
Number of Gates	-
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	956-BBGA, FCBGA
Supplier Device Package	956-BGA (40x40)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=ep1s30b956c6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Chapter	Date/Version	Changes Made
4	October 2003, v2.1	 Added -8 speed grade information. Updated performance information in Table 4–36. Updated timing information in Tables 4–55 through 4–96. Updated delay information in Tables 4–103 through 4–108. Updated programmable delay information in Tables 4–100 and 4–103.
	July 2003, v2.0	 Updated clock rates in Tables 4–114 through 4–123. Updated speed grade information in the introduction on page 4-1. Corrected figures 4-1 & 4-2 and Table 4-9 to reflect how VID and VOD are specified. Added note 6 to Table 4-32. Updated Stratix Performance Table 4-35. Updated EP1S60 and EP1S80 timing parameters in Tables 4-82 to 4-93. The Stratix timing models are final for all devices. Updated Stratix IOE programmable delay chains in Tables 4-100 to 4-101. Added single-ended I/O standard output pin delay adders for loading in Table 4-102. Added spec for FPLL[107]CLK pins in Tables 4-104 and 4-107. Updated EPLL specification and fast PLL specification in Tables 4-120.
5	September 2004, v2.1	 Updated reference to device pin-outs on page 5–1 to indicate that device pin-outs are no longer included in this manual and are now available on the Altera web site.
	April 2003, v1.0	No new changes in Stratix Device Handbook v2.0.

2. Stratix Architecture

\$51002-3.2

Functional Description

Stratix[®] devices contain a two-dimensional row- and column-based architecture to implement custom logic. A series of column and row interconnects of varying length and speed provide signal interconnects between logic array blocks (LABs), memory block structures, and DSP blocks.

The logic array consists of LABs, with 10 logic elements (LEs) in each LAB. An LE is a small unit of logic providing efficient implementation of user logic functions. LABs are grouped into rows and columns across the device.

M512 RAM blocks are simple dual-port memory blocks with 512 bits plus parity (576 bits). These blocks provide dedicated simple dual-port or single-port memory up to 18-bits wide at up to 318 MHz. M512 blocks are grouped into columns across the device in between certain LABs.

M4K RAM blocks are true dual-port memory blocks with 4K bits plus parity (4,608 bits). These blocks provide dedicated true dual-port, simple dual-port, or single-port memory up to 36-bits wide at up to 291 MHz. These blocks are grouped into columns across the device in between certain LABs.

M-RAM blocks are true dual-port memory blocks with 512K bits plus parity (589,824 bits). These blocks provide dedicated true dual-port, simple dual-port, or single-port memory up to 144-bits wide at up to 269 MHz. Several M-RAM blocks are located individually or in pairs within the device's logic array.

Digital signal processing (DSP) blocks can implement up to either eight full-precision 9×9 -bit multipliers, four full-precision 18×18 -bit multipliers, or one full-precision 36×36 -bit multiplier with add or subtract features. These blocks also contain 18-bit input shift registers for digital signal processing applications, including FIR and infinite impulse response (IIR) filters. DSP blocks are grouped into two columns in each device.

Each Stratix device I/O pin is fed by an I/O element (IOE) located at the end of LAB rows and columns around the periphery of the device. I/O pins support numerous single-ended and differential I/O standards. Each IOE contains a bidirectional I/O buffer and six registers for registering input, output, and output-enable signals. When used with

Clear & Preset Logic Control

LAB-wide signals control the logic for the register's clear and preset signals. The LE directly supports an asynchronous clear and preset function. The register preset is achieved through the asynchronous load of a logic high. The direct asynchronous preset does not require a NOTgate push-back technique. Stratix devices support simultaneous preset/

M512 RAM Block

The M512 RAM block is a simple dual-port memory block and is useful for implementing small FIFO buffers, DSP, and clock domain transfer applications. Each block contains 576 RAM bits (including parity bits). M512 RAM blocks can be configured in the following modes:

- Simple dual-port RAM
- Single-port RAM
- FIFO
- ROM
- Shift register

When configured as RAM or ROM, you can use an initialization file to pre-load the memory contents.

The memory address depths and output widths can be configured as $512 \times 1, 256 \times 2, 128 \times 4, 64 \times 8$ (64×9 bits with parity), and 32×16 (32×18 bits with parity). Mixed-width configurations are also possible, allowing different read and write widths. Table 2–4 summarizes the possible M512 RAM block configurations.

Table 2–4	Table 2–4. M512 RAM Block Configurations (Simple Dual-Port RAM)												
Rood Port	Write Port												
neau run	512 × 1	256 × 2	128 × 4	64 × 8	32 × 16	64 × 9	32 × 18						
512 × 1	\checkmark	\checkmark	~	\checkmark	~								
256 × 2	~	~	~	~	~								
128 × 4	\checkmark	~	~		~								
64 × 8	\checkmark	~		\checkmark									
32 × 16	~	~	~		~								
64 × 9						\checkmark							
32 × 18							~						

When the M512 RAM block is configured as a shift register block, a shift register of size up to 576 bits is possible.

The M512 RAM block can also be configured to support serializer and deserializer applications. By using the mixed-width support in combination with DDR I/O standards, the block can function as a SERDES to support low-speed serial I/O standards using global or regional clocks. See "I/O Structure" on page 2–104 for details on dedicated SERDES in Stratix devices.

Digital Signal Processing Block

The most commonly used DSP functions are finite impulse response (FIR) filters, complex FIR filters, infinite impulse response (IIR) filters, fast Fourier transform (FFT) functions, direct cosine transform (DCT) functions, and correlators. All of these blocks have the same fundamental building block: the multiplier. Additionally, some applications need specialized operations such as multiply-add and multiply-accumulate operations. Stratix devices provide DSP blocks to meet the arithmetic requirements of these functions.

Each Stratix device has two columns of DSP blocks to efficiently implement DSP functions faster than LE-based implementations. Larger Stratix devices have more DSP blocks per column (see Table 2–13). Each DSP block can be configured to support up to:

- Eight 9 × 9-bit multipliers
- Four 18 × 18-bit multipliers
- One 36 × 36-bit multiplier

As indicated, the Stratix DSP block can support one 36×36 -bit multiplier in a single DSP block. This is true for any matched sign multiplications (either unsigned by unsigned or signed by signed), but the capabilities for dynamic and mixed sign multiplications are handled differently. The following list provides the largest functions that can fit into a single DSP block.

- 36 × 36-bit unsigned by unsigned multiplication
- 36 × 36-bit signed by signed multiplication
- 35 × 36-bit unsigned by signed multiplication
- 36 × 35-bit signed by unsigned multiplication
- 36 × 35-bit signed by dynamic sign multiplication
- 35 × 36-bit dynamic sign by signed multiplication
- 35 × 36-bit unsigned by dynamic sign multiplication
- 36 × 35-bit dynamic sign by unsigned multiplication
- 35 × 35-bit dynamic sign multiplication when the sign controls for each operand are different
- 36 × 36-bit dynamic sign multiplication when the same sign control is used for both operands
- This list only shows functions that can fit into a single DSP block. Multiple DSP blocks can support larger multiplication functions.

Figure 2–29 shows one of the columns with surrounding LAB rows.

Notes to Figure 2–36:

- (1) These signals are not registered or registered once to match the pipeline.
- (2) These signals are not registered, registered once, or registered twice for latency to match the pipeline.

There are 16 dedicated clock pins (CLK [15..0]) to drive either the global or regional clock networks. Four clock pins drive each side of the device, as shown in Figure 2–42. Enhanced and fast PLL outputs can also drive the global and regional clock networks.

Global Clock Network

These clocks drive throughout the entire device, feeding all device quadrants. The global clock networks can be used as clock sources for all resources within the device—IOEs, LEs, DSP blocks, and all memory blocks. These resources can also be used for control signals, such as clock enables and synchronous or asynchronous clears fed from the external pin. The global clock networks can also be driven by internal logic for internally generated global clocks and asynchronous clears, clock enables, or other control signals with large fanout. Figure 2–42 shows the 16 dedicated CLK pins driving global clock networks. Table 2–19 shows the enhanced PLL and fast PLL features in Stratix devices.

Table 2–19. Stratix PLL Features											
Feature	Enhanced PLL	Fast PLL									
Clock multiplication and division	$m/(n \times \text{ post-scale counter})$ (1)	m/(post-scale counter) (2)									
Phase shift	Down to 156.25-ps increments (3), (4)	Down to 125-ps increments (3), (4)									
Delay shift	250-ps increments for ±3 ns										
Clock switchover	\checkmark										
PLL reconfiguration	\checkmark										
Programmable bandwidth	\checkmark										
Spread spectrum clocking	\checkmark										
Programmable duty cycle	\checkmark	\checkmark									
Number of internal clock outputs	6	3 (5)									
Number of external clock outputs	Four differential/eight singled-ended or one single-ended (6)	(7)									
Number of feedback clock inputs	2 (8)										

Notes to Table 2–19:

- (1) For enhanced PLLs, *m*, *n*, range from 1 to 512 and post-scale counters *g*, *l*, *e* range from 1 to 1024 with 50% duty cycle. With a non-50% duty cycle the post-scale counters *g*, *l*, *e* range from 1 to 512.
- (2) For fast PLLs, *m* and post-scale counters range from 1 to 32.
- (3) The smallest phase shift is determined by the voltage controlled oscillator (VCO) period divided by 8.
- (4) For degree increments, Stratix devices can shift all output frequencies in increments of at least 45°. Smaller degree increments are possible depending on the frequency and divide parameters.
- (5) PLLs 7, 8, 9, and 10 have two output ports per PLL. PLLs 1, 2, 3, and 4 have three output ports per PLL.
- (6) Every Stratix device has two enhanced PLLs (PLLs 5 and 6) with either eight single-ended outputs or four differential outputs each. Two additional enhanced PLLs (PLLs 11 and 12) in EP1S80, EP1S60, and EP1S40 devices each have one single-ended output. Devices in the 780 pin FineLine BGA packages do not support PLLs 11 and 12.
- (7) Fast PLLs can drive to any I/O pin as an external clock. For high-speed differential I/O pins, the device uses a data channel to generate txclkout.
- (8) Every Stratix device has two enhanced PLLs with one single-ended or differential external feedback input per PLL.

Figure 2–53. Clock Switchover Circuitry

There are two possible ways to use the clock switchover feature.

- Use automatic switchover circuitry for switching between inputs of the same frequency. For example, in applications that require a redundant clock with the same frequency as the primary clock, the switchover state machine generates a signal that controls the multiplexer select input on the bottom of Figure 2–53. In this case, the secondary clock becomes the reference clock for the PLL.
- Use the clkswitch input for user- or system-controlled switch conditions. This is possible for same-frequency switchover or to switch between inputs of different frequencies. For example, if inclk0 is 66 MHz and inclk1 is 100 MHz, you must control the switchover because the automatic clock-sense circuitry cannot monitor primary and secondary clock frequencies with a frequency difference of more than ±20%. This feature is useful when clock sources can originate from multiple cards on the backplane, requiring a system-controlled switchover between frequencies of operation. You can use clkswitch together with the lock signal to trigger the switch from a clock that is running but becomes unstable and cannot be locked onto.

During switchover, the PLL VCO continues to run and will either slow down or speed up, generating frequency drift on the PLL outputs. The clock switchover transitions without any glitches. After the switch, there is a finite resynchronization period to lock onto new clock as the VCO ramps up. The exact amount of time it takes for the PLL to relock relates to the PLL configuration and may be adjusted by using the programmable bandwidth feature of the PLL. The specification for the maximum time to relock is 100 µs.

For more information on clock switchover, see AN 313, Implementing Clock Switchover in Stratix & Stratix GX Devices.

PLL Reconfiguration

The PLL reconfiguration feature enables system logic to change Stratix device enhanced PLL counters and delay elements without reloading a Programmer Object File (**.pof**). This provides considerable flexibility for frequency synthesis, allowing real-time PLL frequency and output clock delay variation. You can sweep the PLL output frequencies and clock delay in prototype environments. The PLL reconfiguration feature can also dynamically or intelligently control system clock speeds or t_{CO} delays in end systems.

Clock delay elements at each PLL output port implement variable delay. Figure 2–54 shows a diagram of the overall dynamic PLL control feature for the counters and the clock delay elements. The configuration time is less than 20 µs for the enhanced PLL using a input shift clock rate of 22 MHz. The charge pump, loop filter components, and phase shifting using VCO phase taps cannot be dynamically adjusted.

Clock Feedback

The following four feedback modes in Stratix device enhanced PLLs allow multiplication and/or phase and delay shifting:

- Zero delay buffer: The external clock output pin is phase-aligned with the clock input pin for zero delay. Altera recommends using the same I/O standard on the input clock and the output clocks for optimum performance.
- External feedback: The external feedback input pin, FBIN, is phasealigned with the clock input, CLK, pin. Aligning these clocks allows you to remove clock delay and skew between devices. This mode is only possible for PLLs 5 and 6. PLLs 5 and 6 each support feedback for one of the dedicated external outputs, either one single-ended or one differential pair. In this mode, one *e* counter feeds back to the PLL FBIN input, becoming part of the feedback loop. Altera recommends using the same I/O standard on the input clock, the FBIN pin, and the output clocks for optimum performance.
- Normal mode: If an internal clock is used in this mode, it is phasealigned to the input clock pin. The external clock output pin will have a phase delay relative to the clock input pin if connected in this mode. You define which internal clock output from the PLL should be phase-aligned to the internal clock pin.
- No compensation: In this mode, the PLL will not compensate for any clock networks or external clock outputs.

Phase & Delay Shifting

Stratix device enhanced PLLs provide advanced programmable phase and clock delay shifting. These parameters are set in the Quartus II software.

Phase Delay

The Quartus II software automatically sets the phase taps and counter settings according to the phase shift entry. You enter a desired phase shift and the Quartus II software automatically sets the closest setting achievable. This type of phase shift is not reconfigurable during system operation. For phase shifting, enter a phase shift (in degrees or time units) for each PLL clock output port or for all outputs together in one shift. You can select phase-shifting values in time units with a resolution of 156.25 to 416.66 ps. This resolution is a function of frequency input and the multiplication and division factors (that is, it is a function of the VCO period), with the finest step being equal to an eighth (×0.125) of the VCO period. Each clock output counter can choose a different phase of the

Table 2–32. I/O Support by Bank (Part 1 of 2)										
I/O Standard	Top & Bottom Banks (3, 4, 7 & 8)	Left & Right Banks (1, 2, 5 & 6)	Enhanced PLL External Clock Output Banks (9, 10, 11 & 12)							
LVTTL	\checkmark	\checkmark	 Image: A set of the set of the							
LVCMOS	\checkmark	\checkmark	~							
2.5 V	\checkmark	\checkmark	~							
1.8 V	\checkmark	\checkmark	~							
1.5 V	\checkmark	\checkmark	~							
3.3-V PCI	\checkmark		~							
3.3-V PCI-X 1.0	\checkmark		~							
LVPECL		\checkmark	~							
3.3-V PCML		\checkmark	~							
LVDS		\checkmark	~							
HyperTransport technology		\checkmark	~							
Differential HSTL (clock inputs)	\checkmark	\checkmark								
Differential HSTL (clock outputs)			~							
Differential SSTL (clock outputs)			~							
3.3-V GTL	~		✓							
3.3-V GTL+	\checkmark	\checkmark	~							
1.5-V HSTL Class I	\checkmark	\checkmark	~							
1.5-V HSTL Class II	\checkmark		~							
1.8-V HSTL Class I	\checkmark	\checkmark	~							
1.8-V HSTL Class II	\checkmark		~							
SSTL-18 Class I	\checkmark	\checkmark	✓							
SSTL-18 Class II	\checkmark		✓							
SSTL-2 Class I	\checkmark	\checkmark	✓							
SSTL-2 Class II	\checkmark	\checkmark	~							
SSTL-3 Class I	\checkmark	\checkmark	✓							

Table 2–32 shows I/O standard support for each I/O bank.

Table 2–40. EP1S60 Differential Channels (Part 2 of 2) Note (1)												
Destaura	Transmitter/	Total	Maximum	C	enter F	ast PLI	.s	Corn	er Fast	t PLLs ((2), (3)	
Package	Receiver	Channels	Speed (Mbps)	PLL1	PLL2	PLL3	PLL4	PLL7	PLL8	PLL9	PLL10	
1,020-pin Transn FineLine (4) BGA Receiv	Transmitter (4)	80 (12) (7)	840	12 (2)	10 (4)	10 (4)	12 (2)	20	20	20	20	
			840 <i>(5), (8)</i>	22 (6)	22 (6)	22 (6)	22 (6)	20	20	20	20	
	Receiver	80 (10) (7)	840	20	20	20	20	12 (8)	10 (10)	10 (10)	12 (8)	
			840 <i>(5), (8)</i>	40	40	40	40	12 (8)	10 (10)	10 (10)	12 (8)	
1,508-pin FineLine	Transmitter (4)	80 (36) (7)	840	12 (8)	10 (10)	10 (10)	12 (8)	20	20	20	20	
BGA -			840 <i>(5),(8)</i>	22 (18)	22 (18)	22 (18)	22 (18)	20	20	20	20	
	Receiver	80 (36) (7)	840	20	20	20	20	12 (8)	10 (10)	10 (10)	12 (8)	
			840 <i>(5),(8)</i>	40	40	40	40	12 (8)	10 (10)	10 (10)	12 (8)	

Table 2–41. EP1S80 Differential Channels (Part 1 of 2) Note (1)												
	Transmitter/	Total Channels	Maximum	C	enter F	ast PLI	_S	Corr	ner Fast	t PLLs (2	2), (3)	
Package	Receiver		Speed (Mbps)	PLL1	PLL2	PLL3	PLL4	PLL7	PLL8	PLL9	PLL10	
956-pin BGA (4) Receive	Transmitter	80 (40)	840	10	10	10	10	20	20	20	20	
	(4)	(7)	840 (5),(8)	20	20	20	20	20	20	20	20	
	Receiver	80	840	20	20	20	20	10	10	10	10	
			840 (5),(8)	40	40	40	40	10	10	10	10	
1,020-pin FineLine	Transmitter (4)	92 (12) (7)	840	10 (2)	10 (4)	10 (4)	10 (2)	20	20	20	20	
BGA			840 <i>(5),(8)</i>	20 (6)	20 (6)	20 (6)	20 (6)	20	20	20	20	
	Receiver	90 (10) (7)	840	20	20	20	20	10 (2)	10 (3)	10 (3)	10 (2)	
			840 <i>(5),(8)</i>	40	40	40	40	10 (2)	10 (3)	10 (3)	10 (2)	

Note to Figure 3–2:

(1) When the Stratix device is configured with the factory configuration, it can handle update data from EPC16, EPC8, or EPC4 configuration device pages and point to the next page in the configuration device.

Table 4–10.	3.3-V LVDS I/O Specificatio	ons (Part 2 of 2)				
Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Unit
V _{ICM}	Input common mode voltage (6)	LVDS 0.3 V ≤V _{ID} ≤1.0 V <i>W</i> = 1 through 10	100		1,100	mV
		LVDS 0.3 V \leq V _{ID} \leq 1.0 V W = 1 through 10	1,600		1,800	mV
		LVDS 0.2 V ≤V _{ID} ≤1.0 V <i>W</i> = 1	1,100		1,600	mV
		LVDS 0.1 V \leq V _{ID} \leq 1.0 V W = 2 through 10	1,100		1,600	mV
V _{OD} (1)	Output differential voltage (single-ended)	R _L = 100 Ω	250	375	550	mV
ΔV_{OD}	Change in V _{OD} between high and low	R _L = 100 Ω			50	mV
V _{OCM}	Output common mode voltage	R _L = 100 Ω	1,125	1,200	1,375	mV
ΔV_{OCM}	Change in V _{OCM} between high and low	R _L = 100 Ω			50	mV
RL	Receiver differential input discrete resistor (external to Stratix devices)		90	100	110	Ω

Table 4–45. IOE Internal TSU Microparameter by Device Density (Part 2 of 2)												
Dovino	Qumbal	-	-5		-6		-7		-8			
Device	əyiinuli	Min	Max	Min	Max	Min	Max	Min	Max			
EP1S40	t _{SU_R}	76		80		80		80		ps		
	t _{SU_C}	376		380		380		380		ps		
EP1S60	t _{SU_R}	276		280		280		280		ps		
	t _{SU_C}	276		280		280		280		ps		
EP1S80	t _{SU_R}	426		430		430		430		ps		
	t _{SU_C}	76		80		80		80		ps		

Table 4–46. IOE Internal Timing Microparameters												
Symbol	-5		-	-6		-7		-8				
Symbol	Min	Max	Min	Max	Min	Max	Min	Max	UIII			
t _H	68		71		82		96		ps			
t _{CO_R}		171		179		206		242	ps			
t _{CO_C}		171		179		206		242	ps			
t _{PIN2COMBOUT_R}		1,234		1,295		1,490		1,753	ps			
t _{PIN2COMBOUT_C}		1,087		1,141		1,312		1,544	ps			
t _{COMBIN2PIN_R}		3,894		4,089		4,089		4,089	ps			
t _{COMBIN2PIN_C}		4,299		4,494		4,494		4,494	ps			
t _{CLR}	276		289		333		392		ps			
t _{PRE}	260		273		313		369		ps			
t _{CLKHL}	1,000		1,111		1,190		1,400		ps			

Table 4–47. DSP Block Internal Timing Microparameters (Part 1 of 2)												
Symbol	-5		-	-6		-7		-8				
	Min	Max	Min	Max	Min	Max	Min	Max	Unit			
t _{SU}	0		0		0		0		ps			
t _H	67		75		86		101		ps			
t _{CO}		142		158		181		214	ps			
t _{INREG2PIPE9}		2,613		2,982		3,429		4,035	ps			
t _{INREG2PIPE18}		3,390		3,993		4,591		5,402	ps			

Table 4–114. Stratix Maximum Input Clock Rate for CLK[74] & CLK[1512] Pins in Flip-Chip Packages (Part 2 of 2)											
I/O Standard	-5 Speed Grade	-6 Speed Grade	-7 Speed Grade	-8 Speed Grade	Unit						
LVDS (1)	645	645	622	622	MHz						
HyperTransport technology (1)	500	500	450	450	MHz						

 Table 4–115. Stratix Maximum Input Clock Rate for CLK[0, 2, 9, 11] Pins &

 FPLL[10..7]CLK Pins in Flip-Chip Packages

I/O Standard	-5 Speed Grade	-6 Speed Grade	-7 Speed Grade	-8 Speed Grade	Unit
LVTTL	422	422	390	390	MHz
2.5 V	422	422	390	390	MHz
1.8 V	422	422	390	390	MHz
1.5 V	422	422	390	390	MHz
LVCMOS	422	422	390	390	MHz
GTL+	300	250	200	200	MHz
SSTL-3 Class I	400	350	300	300	MHz
SSTL-3 Class II	400	350	300	300	MHz
SSTL-2 Class I	400	350	300	300	MHz
SSTL-2 Class II	400	350	300	300	MHz
SSTL-18 Class I	400	350	300	300	MHz
SSTL-18 Class II	400	350	300	300	MHz
1.5-V HSTL Class I	400	350	300	300	MHz
1.8-V HSTL Class I	400	350	300	300	MHz
СТТ	300	250	200	200	MHz
Differential 1.5-V HSTL C1	400	350	300	300	MHz
LVPECL (1)	717	717	640	640	MHz
PCML (1)	400	375	350	350	MHz
LVDS (1)	717	717	640	640	MHz
HyperTransport technology (1)	717	717	640	640	MHz

Pins in Wire-Bond Packages (Part 2 of 2)									
I/O Standard	-6 Speed Grade	-7 Speed Grade	-8 Speed Grade	Unit					
GTL+	250	200	200	MHz					
SSTL-3 Class I	300	250	250	MHz					
SSTL-3 Class II	300	250	250	MHz					
SSTL-2 Class I	300	250	250	MHz					
SSTL-2 Class II	300	250	250	MHz					
SSTL-18 Class I	300	250	250	MHz					
SSTL-18 Class II	300	250	250	MHz					
1.5-V HSTL Class I	300	180	180	MHz					
1.5-V HSTL Class II	300	180	180	MHz					
1.8-V HSTL Class I	300	180	180	MHz					
1.8-V HSTL Class II	300	180	180	MHz					
3.3-V PCI	422	390	390	MHz					
3.3-V PCI-X 1.0	422	390	390	MHz					
Compact PCI	422	390	390	MHz					
AGP 1×	422	390	390	MHz					
AGP 2×	422	390	390	MHz					
СТТ	250	180	180	MHz					
Differential 1.5-V HSTL C1	300	180	180	MHz					
LVPECL (1)	422	400	400	MHz					
PCML (1)	215	200	200	MHz					
LVDS (1)	422	400	400	MHz					
HyperTransport technology (1)	422	400	400	MHz					

 Table 4–117. Stratix Maximum Input Clock Rate for CLK[7..4] & CLK[15..12]

 Pins in Wire-Bond Packages (Part 2 of 2)

 Table 4–118. Stratix Maximum Input Clock Rate for CLK[0, 2, 9, 11] Pins &

 FPLL[10..7]CLK Pins in Wire-Bond Packages (Part 1 of 2)

I/O Standard	-6 Speed Grade	-7 Speed Grade	-8 Speed Grade	Unit
LVTTL	422	390	390	MHz
2.5 V	422	390	390	MHz
1.8 V	422	390	390	MHz
1.5 V	422	390	390	MHz

Ξ
Ö
7
ŝ
ĕ
ğ
Ξ.
S.
~
÷
ĕ
<u>Q</u> .
Ē
x
<u> </u>
îti
ation

Table 4–126. High-Speed I/O Specifications for Wire-Bond Packages (Part 1 of 2)											
Symbol	Conditions	-6 Speed Grade			-7 Speed Grade			-8 Speed Grade			
		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
f _{HSCLK} (Clock frequency)	W = 4 to 30 (Serdes used)	10		156	10		115.5	10		115.5	MHz
	W = 2 (Serdes bypass)	50		231	50		231	50		231	MHz
HyperTransport	W = 2 (Serdes used)	150		312	150		231	150		231	MHz
technology)	W = 1 (Serdes bypass)	100		311	100		270	100		270	MHz
$f_{HSCLK} = f_{HSDR} / W$	W = 1 (Serdes used)	300		624	300		462	300		462	MHz
f _{HSDR} Device operation,	J = 10	300		624	300		462	300		462	Mbps
(LVDS,LVPECL,	J = 8	300		624	300		462	300		462	Mbps
technology)	J = 7	300		624	300		462	300		462	Mbps
0,7	J = 4	300		624	300		462	300		462	Mbps
	J = 2	100		462	100		462	100		462	Mbps
	J = 1 (LVDS and LVPECL only)	100		311	100		270	100		270	Mbps
f _{HSCLK} (Clock	W = 4 to 30 (Serdes used)	10		77.75							MHz
frequency)	W = 2 (Serdes bypass)	50		150	50		77.5	50		77.5	MHz
$f_{HSCLK} = f_{HSDB} / W$	W = 2 (Serdes used)	150		155.5							MHz
HOULY HOUL	W = 1 (Serdes bypass)	100		200	100		155	100		155	MHz
	W = 1 (Serdes used)	300		311							MHz
Device operation,	J = 10	300		311							Mbps
f _{HSDR} (PCML)	J = 8	300		311							Mbps
	J = 7	300		311							Mbps
	J = 4	300		311							Mbps
	J = 2	100		300	100		155	100		155	Mbps
	J = 1	100		200	100		155	100		155	Mbps
TCCS	All			400			400			400	ps

4–92 Stratix Device Handbook, Volume 1

Altera Corporation January 2006

Table 4–128. Enhanced PLL Specifications for -6 Speed Grades (Part 2 of 2)								
Symbol	Parameter	Min	Тур	Мах	Unit			
t _{SCANCLK}	scanclk frequency (5)			22	MHz			
t _{DLOCK}	Time required to lock dynamically (after switchover or reconfiguring any non-post-scale counters/delays) (7) (11)	(9)		100	μs			
t _{LOCK}	Time required to lock from end of device configuration (11)	10		400	μs			
f _{VCO}	PLL internal VCO operating range	300		800 (8)	MHz			
t _{LSKEW}	Clock skew between two external clock outputs driven by the same counter		±50		ps			
t _{SKEW}	Clock skew between two external clock outputs driven by the different counters with the same settings		±75		ps			
f _{SS}	Spread spectrum modulation frequency	30		150	kHz			
% spread	Percentage spread for spread spectrum frequency (10)	0.4	0.5	0.6	%			
t _{ARESET}	Minimum pulse width on areset signal	10			ns			

Table 4–129. Enhanced PLL Specifications for -7 Speed Grade (Part 1 of 2)								
Symbol	Parameter	Min	Тур	Max	Unit			
f _{IN}	Input clock frequency	3 (1), (2)		565	MHz			
f _{INPFD}	Input frequency to PFD	3		420	MHz			
f _{INDUTY}	Input clock duty cycle	40		60	%			
f _{EINDUTY}	External feedback clock input duty cycle	40		60	%			
t _{INJITTER}	Input clock period jitter			±200 (3)	ps			
t _{EINJITTER}	External feedback clock period jitter			±200 (3)	ps			
t _{FCOMP}	External feedback clock compensation time (4)			6	ns			
f _{OUT}	Output frequency for internal global or regional clock	0.3		420	MHz			
f _{OUT_EXT}	Output frequency for external clock (3)	0.3		434	MHz			