Altera - EP1S30B956C7 Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	
Total RAM Bits	-
Number of I/O	683
Number of Gates	-
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	956-BBGA
Supplier Device Package	956-BGA (40x40)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=ep1s30b956c7

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Clear & Preset Logic Control

LAB-wide signals control the logic for the register's clear and preset signals. The LE directly supports an asynchronous clear and preset function. The register preset is achieved through the asynchronous load of a logic high. The direct asynchronous preset does not require a NOTgate push-back technique. Stratix devices support simultaneous preset/ TriMatrix memory architecture can implement pipelined RAM by registering both the input and output signals to the RAM block. All TriMatrix memory block inputs are registered providing synchronous write cycles. In synchronous operation, the memory block generates its own self-timed strobe write enable (WREN) signal derived from the global or regional clock. In contrast, a circuit using asynchronous RAM must generate the RAM WREN signal while ensuring its data and address signals meet setup and hold time specifications relative to the WREN signal. The output registers can be bypassed. Flow-through reading is possible in the simple dual-port mode of M512 and M4K RAM blocks by clocking the read enable and read address registers on the negative clock edge and bypassing the output registers.

Two single-port memory blocks can be implemented in a single M4K block as long as each of the two independent block sizes is equal to or less than half of the M4K block size.

The Quartus II software automatically implements larger memory by combining multiple TriMatrix memory blocks. For example, two 256 × 16-bit RAM blocks can be combined to form a 256 × 32-bit RAM block. Memory performance does not degrade for memory blocks using the maximum number of words available in one memory block. Logical memory blocks using less than the maximum number of words use physical blocks in parallel, eliminating any external control logic that would increase delays. To create a larger high-speed memory block, the Quartus II software automatically combines memory blocks with LE control logic.

Clear Signals

When applied to input registers, the asynchronous clear signal for the TriMatrix embedded memory immediately clears the input registers. However, the output of the memory block does not show the effects until the next clock edge. When applied to output registers, the asynchronous clear signal clears the output registers and the effects are seen immediately.

Parity Bit Support

The memory blocks support a parity bit for each byte. The parity bit, along with internal LE logic, can implement parity checking for error detection to ensure data integrity. You can also use parity-size data words to store user-specified control bits. In the M4K and M-RAM blocks, byte enables are also available for data input masking during write operations.

Shift Register Support

You can configure embedded memory blocks to implement shift registers for DSP applications such as pseudo-random number generators, multichannel filtering, auto-correlation, and cross-correlation functions. These and other DSP applications require local data storage, traditionally implemented with standard flip-flops, which can quickly consume many logic cells and routing resources for large shift registers. A more efficient alternative is to use embedded memory as a shift register block, which saves logic cell and routing resources and provides a more efficient implementation with the dedicated circuitry.

The size of a $w \times m \times n$ shift register is determined by the input data width (*w*), the length of the taps (*m*), and the number of taps (*n*). The size of a $w \times m \times n$ shift register must be less than or equal to the maximum number of memory bits in the respective block: 576 bits for the M512 RAM block and 4,608 bits for the M4K RAM block. The total number of shift register outputs (number of taps $n \times$ width w) must be less than the maximum data width of the RAM block (18 for M512 blocks, 36 for M4K blocks). To create larger shift registers, the memory blocks are cascaded together.

Data is written into each address location at the falling edge of the clock and read from the address at the rising edge of the clock. The shift register mode logic automatically controls the positive and negative edge clocking to shift the data in one clock cycle. Figure 2–14 shows the TriMatrix memory block in the shift register mode.

M512 RAM Block

The M512 RAM block is a simple dual-port memory block and is useful for implementing small FIFO buffers, DSP, and clock domain transfer applications. Each block contains 576 RAM bits (including parity bits). M512 RAM blocks can be configured in the following modes:

- Simple dual-port RAM
- Single-port RAM
- FIFO
- ROM
- Shift register

When configured as RAM or ROM, you can use an initialization file to pre-load the memory contents.

The memory address depths and output widths can be configured as $512 \times 1, 256 \times 2, 128 \times 4, 64 \times 8$ (64×9 bits with parity), and 32×16 (32×18 bits with parity). Mixed-width configurations are also possible, allowing different read and write widths. Table 2–4 summarizes the possible M512 RAM block configurations.

Table 2–4. M512 RAM Block Configurations (Simple Dual-Port RAM)												
Road Port	Write Port											
neau run	512 × 1	256 × 2	128 × 4	64 × 8	32 × 16	64 × 9	32 × 18					
512 × 1	\checkmark	\checkmark	~	\checkmark	~							
256 × 2	~	~	~	~	~							
128 × 4	\checkmark	~	~		~							
64 × 8	\checkmark	~		\checkmark								
32 × 16	~	~	~		~							
64 × 9						\checkmark						
32 × 18							~					

When the M512 RAM block is configured as a shift register block, a shift register of size up to 576 bits is possible.

The M512 RAM block can also be configured to support serializer and deserializer applications. By using the mixed-width support in combination with DDR I/O standards, the block can function as a SERDES to support low-speed serial I/O standards using global or regional clocks. See "I/O Structure" on page 2–104 for details on dedicated SERDES in Stratix devices.

Figure 2–15. M512 RAM Block Control Signals

Figure 2–35. Simple Multiplier Mode

Note to Figure 2-35:

(1) These signals are not registered or registered once to match the data path pipeline.

DSP blocks can also implement one 36×36 -bit multiplier in multiplier mode. DSP blocks use four 18×18 -bit multipliers combined with dedicated adder and internal shift circuitry to achieve 36-bit multiplication. The input shift register feature is not available for the 36×36 -bit multiplier. In 36×36 -bit mode, the device can use the register that is normally a multiplier-result-output register as a pipeline stage for the 36×36 -bit multiplier. Figure 2–36 shows the 36×36 -bit multiply mode.

Figure 2–55. External Clock Outputs for PLLs 5 & 6

Notes to Figure 2-55:

- (1) The design can use each external clock output pin as a general-purpose output pin from the logic array. These pins are multiplexed with IOE outputs.
- (2) Two single-ended outputs are possible per output counter—either two outputs of the same frequency and phase or one shifted 180°.
- (3) EP1S10, EP1S20, and EP1S25 devices in 672-pin BGA and 484- and 672-pin FineLine BGA packages only have two pairs of external clocks (i.e., pll_out0p, pll_out0n, pll_out1p, and pll_out1n).
- (4) Differential SSTL and HSTL outputs are implemented using two single-ended output buffers, which are programmed to have opposite polarity.

Figure 2–71. LVDS Input Differential On-Chip Termination

I/O banks on the left and right side of the device support LVDS receiver (far-end) differential termination.

Table 2–33 shows the Stratix device differential termination support.

Table 2–33. Differential Termination Supported by I/O Banks								
Differential Termination Support	I/O Standard Support	Top & Bottom Banks (3, 4, 7 & 8)	Left & Right Banks (1, 2, 5 & 6)					
Differential termination (1), (2)	LVDS		\checkmark					

Notes to Table 2–33:

(1) Clock pin CLK0, CLK2, CLK1, CLK1, and pins FPLL [7..10] CLK do not support differential termination.

(2) Differential termination is only supported for LVDS because of a 3.3-V V_{CCIO}.

Table 2–34 shows the termination support for different pin types.

Table 2–34. Differential Termination Support Across Pin Types							
Pin Type	R _D						
Top and bottom I/O banks (3, 4, 7, and 8)							
DIFFIO_RX[]	~						
CLK[0,2,9,11],CLK[4-7],CLK[12-15]							
CLK[1,3,8,10]	~						
FCLK							
FPLL[710]CLK							

The differential on-chip resistance at the receiver input buffer is 118 $\Omega\pm 20$ %.

However, there is additional resistance present between the device ball and the input of the receiver buffer, as shown in Figure 2–72. This resistance is because of package trace resistance (which can be calculated as the resistance from the package ball to the pad) and the parasitic layout metal routing resistance (which is shown between the pad and the intersection of the on-chip termination and input buffer).

Table 2–35 defines the specification for internal termination resistance for commercial devices.

Table 2–35. Differential On-Chip Termination Image: Chip State Stat										
Symbol	Description	Conditions	R	ce	Unit					
Symbol	Description	Contractions	Min	Тур	Max	Unit				
R _D (2)	Internal differential termination for LVDS	Commercial (1), (3)	110	135	165	W				
		Industrial (2), (3)	100	135	170	W				

Notes to Table 2–35:

- (1) Data measured over minimum conditions ($T_j = 0 \text{ C}$, $V_{CCIO} +5\%$) and maximum conditions ($T_j = 85 \text{ C}$, $V_{CCIO} = -5\%$).
- (2) Data measured over minimum conditions (T_j = -40 C, V_{CCIO} +5%) and maximum conditions (T_j = 100 C, $V_{CCIO} = -5\%$).
- (3) LVDS data rate is supported for 840 Mbps using internal differential termination.

MultiVolt I/O Interface

The Stratix architecture supports the MultiVolt I/O interface feature, which allows Stratix devices in all packages to interface with systems of different supply voltages.

The Stratix VCCINT pins must always be connected to a 1.5-V power supply. With a 1.5-V V_{CCINT} level, input pins are 1.5-V, 1.8-V, 2.5-V, and 3.3-V tolerant. The VCCIO pins can be connected to either a 1.5-V, 1.8-V, 2.5-V, or 3.3-V power supply, depending on the output requirements.

The only way you can use the rx_data_align is if one of the following is true:

- The receiver PLL is only clocking receive channels (no resources for the transmitter)
- If all channels can fit in one I/O bank

Table 2–38. EP1S30 Differential Channels Note (1)												
Destaurs	Transmitter	Total	Maximum	C	enter F	ast PLI	_S	Corner Fast PLLs (2), (3)				
Раскаде	/Receiver	Channels	Speea (Mbps)	PLL1	PLL2	PLL3	PLL4	PLL7	PLL8	PLL9	PLL10	
780-pin	Transmitter	70	840	18	17	17	18	(6)	(6)	(6)	(6)	
FineLine	(4)		840 (5)	35	35	35	35	(6)	(6)	(6)	(6)	
-	Receiver	66	840	17	16	16	17	(6)	(6)	(6)	(6)	
			840 <i>(5)</i>	33	33	33	33	(6)	(6)	(6)	(6)	
956-pin BGA	Transmitter (4)	80	840	19	20	20	19	20	20	20	20	
			840 (5)	39	39	39	39	20	20	20	20	
	Receiver	80	840	20	20	20	20	19	20	20	19	
			840 (5)	40	40	40	40	19	20	20	19	
1,020-pin FineLine	Transmitter (4)	80 (2) (7)	840	19 (1)	20	20	19 (1)	20	20	20	20	
BGA			840 <i>(5),(8)</i>	39 (1)	39 (1)	39 (1)	39 (1)	20	20	20	20	
	Receiver	80 (2) (7)	840	20	20	20	20	19 (1)	20	20	19 (1)	
			840 <i>(5),(8)</i>	40	40	40	40	19 (1)	20	20	19 (1)	

Г

Table 2–39. EP1S40 Differential Channels (Part 1 of 2) Note (1)											
Package	Transmitter/ Receiver	Total Channels	Maximum Speed (Mbps)	Center Fast PLLs				Corner Fast PLLs (2), (3)			
				PLL1	PLL2	PLL3	PLL4	PLL7	PLL8	PLL9	PLL10
780-pin FineLine BGA	Transmitter (4)	68	840	18	16	16	18	(6)	(6)	(6)	(6)
			840 (5)	34	34	34	34	(6)	(6)	(6)	(6)
	Receiver	66	840	17	16	16	17	(6)	(6)	(6)	(6)
			840 (5)	33	33	33	33	(6)	(6)	(6)	(6)

Table 4–10.	Table 4–10. 3.3-V LVDS I/O Specifications (Part 2 of 2)											
Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Unit						
V _{ICM}	Input common mode voltage (6)	LVDS 0.3 V ≤V _{ID} ≤1.0 V <i>W</i> = 1 through 10	100		1,100	mV						
		LVDS 0.3 V \leq V _{ID} \leq 1.0 V W = 1 through 10	1,600		1,800	mV						
		LVDS 0.2 V ≤V _{ID} ≤1.0 V <i>W</i> = 1	1,100		1,600	mV						
		LVDS $0.1 V \leq V_{ID} \leq 1.0 V$ W = 2 through 10	1,100		1,600	mV						
V _{OD} (1)	Output differential voltage (single-ended)	R _L = 100 Ω	250	375	550	mV						
ΔV_{OD}	Change in V _{OD} between high and low	R _L = 100 Ω			50	mV						
V _{OCM}	Output common mode voltage	R _L = 100 Ω	1,125	1,200	1,375	mV						
ΔV_{OCM}	Change in V _{OCM} between high and low	R _L = 100 Ω			50	mV						
RL	Receiver differential input discrete resistor (external to Stratix devices)		90	100	110	Ω						

Table 4–39. DSP	Block Internal Timing Microparameter Descriptions
Symbol	Parameter
t _{SU}	Input, pipeline, and output register setup time before clock
t _H	Input, pipeline, and output register hold time after clock
t _{co}	Input, pipeline, and output register clock-to-output delay
t _{INREG2PIPE9}	Input Register to DSP Block pipeline register in 9×9 -bit mode
t _{INREG2PIPE18}	Input Register to DSP Block pipeline register in 18×18 -bit mode
	DSP Block Pipeline Register to output register delay in Two- Multipliers Adder mode
t _{PIPE2OUTREG4ADD}	DSP Block Pipeline Register to output register delay in Four- Multipliers Adder mode
t _{PD9}	Combinatorial input to output delay for 9×9
t _{PD18}	Combinatorial input to output delay for 18×18
t _{PD36}	Combinatorial input to output delay for 36×36
t _{CLR}	Minimum clear pulse width
t _{olkhl}	Register minimum clock high or low time. This is a limit on the min time for the clock on the registers in these blocks. The actual performance is dependent upon the internal point-to-point delays in the blocks and may give slower performance as shown in Table 4–36 on page 4–20 and as reported by the timing analyzer in the Quartus II software.

Altera Corporation January 2006

Table 4–45. IOE Internal TSU Microparameter by Device Density (Part 2 of 2)											
Device	Symbol	-	-5		-6		-7		-8		
Device	əyiinuli	Min	Max	Min	Max	Min	Max	Min	Max		
EP1S40	t _{SU_R}	76		80		80		80		ps	
	t _{SU_C}	376		380		380		380		ps	
EP1S60	t _{SU_R}	276		280		280		280		ps	
	t _{SU_C}	276		280		280		280		ps	
EP1S80	t _{SU_R}	426		430		430		430		ps	
	t _{SU_C}	76		80		80		80		ps	

Table 4–46. IOE Internal Timing Microparameters											
Symbol	-5		-	-6		7	-8		Unit		
Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Umr		
t _H	68		71		82		96		ps		
t _{CO_R}		171		179		206		242	ps		
t _{CO_C}		171		179		206		242	ps		
t _{PIN2COMBOUT_R}		1,234		1,295		1,490		1,753	ps		
t _{PIN2COMBOUT_C}		1,087		1,141		1,312		1,544	ps		
t _{COMBIN2PIN_R}		3,894		4,089		4,089		4,089	ps		
t _{COMBIN2PIN_C}		4,299		4,494		4,494		4,494	ps		
t _{CLR}	276		289		333		392		ps		
t _{PRE}	260		273		313		369		ps		
t _{CLKHL}	1,000		1,111		1,190		1,400		ps		

Table 4–47. DSP Block Internal Timing Microparameters (Part 1 of 2)											
Symbol	-5		-	-6		-7		-8			
	Min	Max	Min	Max	Min	Max	Min	Max	Unit		
t _{SU}	0		0		0		0		ps		
t _H	67		75		86		101		ps		
t _{CO}		142		158		181		214	ps		
t _{INREG2PIPE9}		2,613		2,982		3,429		4,035	ps		
t _{INREG2PIPE18}		3,390		3,993		4,591		5,402	ps		

Table 4–57. I	Table 4–57. EP1S10 External I/O Timing on Column Pins Using Global Clock Networks Note (1)								
Doromotor	-5 Spee	d Grade	-6 Speed Grade		-7 Speed Grade		-8 Speed Grade		Unit
Faraineter	Min	Max	Min	Max	Min	Max	Min	Max	UIII
t _{INSU}	1.647		1.692		1.940		NA		ns
t _{INH}	0.000		0.000		0.000		NA		ns
t _{OUTCO}	2.619	5.184	2.619	5.515	2.619	5.999	NA	NA	ns
t _{xz}	2.559	5.058	2.559	5.383	2.559	5.875	NA	NA	ns
t _{ZX}	2.559	5.058	2.559	5.383	2.559	5.875	NA	NA	ns
t _{INSUPLL}	1.239		1.229		1.374		NA		ns
t _{INHPLL}	0.000		0.000		0.000		NA		ns
t _{OUTCOPLL}	1.109	2.372	1.109	2.436	1.109	2.492	NA	NA	ns
t _{XZPLL}	1.049	2.246	1.049	2.304	1.049	2.368	NA	NA	ns
t _{ZXPLL}	1.049	2.246	1.049	2.304	1.049	2.368	NA	NA	ns

Table 4–58. EP1S10 External I/O Timing on Row Pin Using Fast Regional Clock Network Note (1)									
Doromotor	-5 Speed Grade		-6 Spee	-6 Speed Grade		-7 Speed Grade		-8 Speed Grade	
Farailieler	Min	Max	Min	Max	Min	Max	Min	Max	Unit
t _{INSU}	2.212		2.403		2.759		NA		ns
t _{INH}	0.000		0.000		0.000		NA		ns
t _{OUTCO}	2.391	4.838	2.391	5.159	2.391	5.569	NA	NA	ns
t _{xz}	2.418	4.892	2.418	5.215	2.418	5.637	NA	NA	ns
t _{ZX}	2.418	4.892	2.418	5.215	2.418	5.637	NA	NA	ns

Tables 4–73 through 4–78 show the external timing parameters on column and row pins for EP1S30 devices.

Table 4–73. EP1S30 External I/O Timing on Column Pins Using Fast Regional Clock Networks									
Devementer	-5 Speed Grade -6 Spe		-6 Spee	ed Grade -7 Spee		d Grade	-8 Speed Grade		Unit
Parameter	Min	Max	Min	Max	Min	Max	Min	Max	
t _{INSU}	2.502		2.680		3.062		3.591		ns
t _{INH}	0.000		0.000		0.000		0.000		ns
t _{OUTCO}	2.473	4.965	2.473	5.329	2.473	5.784	2.473	6.392	ns
t _{XZ}	2.413	4.839	2.413	5.197	2.413	5.660	2.413	6.277	ns
t _{ZX}	2.413	4.839	2.413	5.197	2.413	5.660	2.413	6.277	ns

Table 4–74. EP1S30 External I/O Timing on Column Pins Using Regional Clock Networks									
Doromotor	-5 Spee	d Grade	-6 Speed Grade		-7 Speed Grade		-8 Speed Grade		Unit
Farailieler	Min	Max	Min	Max	Min	Max	Min	Max	Unit
t _{INSU}	2.286		2.426		2.769		3.249		ns
t _{INH}	0.000		0.000		0.000		0.000		ns
t _{OUTCO}	2.641	5.225	2.641	5.629	2.641	6.130	2.641	6.796	ns
t _{xz}	2.581	5.099	2.581	5.497	2.581	6.006	2.581	6.681	ns
t _{ZX}	2.581	5.099	2.581	5.497	2.581	6.006	2.581	6.681	ns
t _{INSUPLL}	1.200		1.185		1.344		1.662		ns
t _{INHPLL}	0.000		0.000		0.000		0.000		ns
t _{OUTCOPLL}	1.108	2.367	1.108	2.534	1.108	2.569	1.108	2.517	ns
t _{XZPLL}	1.048	2.241	1.048	2.402	1.048	2.445	1.048	2.402	ns
t _{ZXPLL}	1.048	2.241	1.048	2.402	1.048	2.445	1.048	2.402	ns

Table 4–75. EP1S30 External I/O Timing on Column Pins Using Global Clock Networks (Part 1 of 2)									
Paramotor	-5 Spee	d Grade	-6 Spee	-6 Speed Grade		-7 Speed Grade		-8 Speed Grade	
Parameter	Min	Max	Min	Max	Min	Max	Min	Max	Unit
t _{INSU}	1.935		2.029		2.310		2.709		ns
t _{INH}	0.000		0.000		0.000		0.000		ns
t _{outco}	2.814	5.532	2.814	5.980	2.814	6.536	2.814	7.274	ns

Table 4–87. l	Table 4–87. EP1S60 External I/O Timing on Column Pins Using Global Clock Networks Note (1)								
Deremeter	-5 Speed Grade		-6 Spee	-6 Speed Grade		-7 Speed Grade		-8 Speed Grade	
Parameter	Min	Max	Min	Max	Min	Max	Min	Max	Unit
t _{INSU}	2.000		2.152		2.441		NA		ns
t _{INH}	0.000		0.000		0.000		NA		ns
t _{OUTCO}	3.051	5.900	3.051	6.340	3.051	6.977	NA	NA	ns
t _{xz}	2.991	5.774	2.991	6.208	2.991	6.853	NA	NA	ns
t _{ZX}	2.991	5.774	2.991	6.208	2.991	6.853	NA	NA	ns
t _{INSUPLL}	1.315		1.362		1.543		NA		ns
t _{INHPLL}	0.000		0.000		0.000		NA		ns
t _{OUTCOPLL}	1.029	2.196	1.029	2.303	1.029	2.323	NA	NA	ns
t _{XZPLL}	0.969	2.070	0.969	2.171	0.969	2.199	NA	NA	ns
t _{ZXPLL}	0.969	2.070	0.969	2.171	0.969	2.199	NA	NA	ns

Table 4–88. EP1S60 External I/O Timing on Row Pins Using Fast Regional Clock Networks Note (1)									
Deremeter	-5 Speed Grade -6 S		-6 Spee	-6 Speed Grade		-7 Speed Grade		-8 Speed Grade	
Parameter	Min	Max	Min	Max	Min	Max	Min	Max	Unit
t _{INSU}	3.144		3.393		3.867		NA		ns
t _{INH}	0.000		0.000		0.000		NA		ns
t _{OUTCO}	2.643	5.275	2.643	5.654	2.643	6.140	NA	NA	ns
t _{XZ}	2.670	5.329	2.670	5.710	2.670	6.208	NA	NA	ns
t _{ZX}	2.670	5.329	2.670	5.710	2.670	6.208	NA	NA	ns

Table 4–108. Stratix I/O Standard Output Delay Adders for Slow Slew Rate on Row Pins										
1/0.01	1	-5 Spee	d Grade	-6 Spee	d Grade	-7 Spee	d Grade	-8 Spee	d Grade	11-14
I/U Stand	ara	Min	Max	Min	Max	Min	Max	Min	Max	Unit
LVCMOS	2 mA		1,571		1,650		1,650		1,650	ps
	4 mA		594		624		624		624	ps
	8 mA		208		218		218		218	ps
	12 mA		0		0		0		0	ps
3.3-V LVTTL	4 mA		1,571		1,650		1,650		1,650	ps
	8 mA		1,393		1,463		1,463		1,463	ps
	12 mA		596		626		626		626	ps
	16 mA		562		590		590		590	ps
2.5-V LVTTL	2 mA		2,562		2,690		2,690		2,690	ps
	8 mA		1,343		1,410		1,410		1,410	ps
	12 mA		864		907		907		907	ps
	16 mA		945		992		992		992	ps
1.8-V LVTTL	2 mA		6,306		6,621		6,621		6,621	ps
	8 mA		3,369		3,538		3,538		3,538	ps
	12 mA		2,932		3,079		3,079		3,079	ps
1.5-V LVTTL	2 mA		9,759		10,247		10,247		10,247	ps
	4 mA		6,830		7,172		7,172		7,172	ps
	8 mA		5,699		5,984		5,984		5,984	ps
GTL+			-333		-350		-350		-350	ps
CTT			591		621		621		621	ps
SSTL-3 Class I			267		280		280		280	ps
SSTL-3 Class I	I		-346		-363		-363		-363	ps
SSTL-2 Class I			481		505		505		505	ps
SSTL-2 Class I	I		-58		-61		-61		-61	ps
SSTL-18 Class	I		2,207		2,317		2,317		2,317	ps
1.5-V HSTL Cla	ass I		1,966		2,064		2,064'		2,064	ps
1.8-V HSTL Cla	ass I		1,208		1,268		1,460		1,720	ps

PLL Specifications

Tables 4–127 through 4–129 describe the Stratix device enhanced PLL specifications.

Symbol	Parameter	Min	Тур	Max	Unit
f _{IN}	Input clock frequency	3 (1), (2)		684	MHz
f _{INPFD}	Input frequency to PFD	3		420	MHz
f _{INDUTY}	Input clock duty cycle	40		60	%
f _{EINDUTY}	External feedback clock input duty cycle	40		60	%
t _{INJITTER}	Input clock period jitter			±200 (3)	ps
t _{EINJITTER}	External feedback clock period jitter			±200 <i>(3)</i>	ps
t _{FCOMP}	External feedback clock compensation time (4)			6	ns
f _{OUT}	Output frequency for internal global or regional clock	0.3		500	MHz
f _{OUT_EXT}	Output frequency for external clock (3)	0.3		526	MHz
t _{outduty}	Duty cycle for external clock output (when set to 50%)	45		55	%
t _{JITTER}	Period jitter for external clock output (6)			±100 ps for >200-MHz outclk ±20 mUI for <200-MHz outclk	ps or mUI
t _{CONFIG5,6}	Time required to reconfigure the scan chains for PLLs 5 and 6			289/f _{SCANCLK}	
t _{CONFIG11,12}	Time required to reconfigure the scan chains for PLLs 11 and 12			193/f _{SCANCLK}	
t _{SCANCLK}	scanclk frequency (5)			22	MHz
t _{DLOCK}	Time required to lock dynamically (after switchover or reconfiguring any non-post-scale counters/delays) (7)			100	μs
t _{LOCK}	Time required to lock from end of device configuration	10		400	μs
f _{VCO}	PLL internal VCO operating range	300		800 (8)	MHz
t _{LSKEW}	Clock skew between two external clock outputs driven by the same counter		±50		ps

Table 4–127. Enhanced PLL Specifications for -5 Speed Grades (Part 2 of 2)							
Symbol	Parameter	Min	Тур	Мах	Unit		
t _{skew}	Clock skew between two external clock outputs driven by the different counters with the same settings		±75		ps		
f _{SS}	Spread spectrum modulation frequency	30		150	kHz		
% spread	Percentage spread for spread spectrum frequency (10)	0.4	0.5	0.6	%		
t _{ARESET}	Minimum pulse width on areset signal	10			ns		
t _{areset_recon} fig	Minimum pulse width on the areset signal when using PLL reconfiguration. Reset the PLL after scandataout goes high.	500			ns		

Table 4–128. Enhanced PLL Specifications for -6 Speed Grades (Part 1 of 2)								
Symbol	Parameter	Min	Тур	Мах	Unit			
f _{IN}	Input clock frequency	3 (1), (2)		650	MHz			
f _{INPFD}	Input frequency to PFD	3		420	MHz			
f _{INDUTY}	Input clock duty cycle	40		60	%			
f _{EINDUTY}	External feedback clock input duty cycle	40		60	%			
t _{INJITTER}	Input clock period jitter			±200 (3)	ps			
t _{EINJITTER}	External feedback clock period jitter			±200 <i>(3)</i>	ps			
t _{FCOMP}	External feedback clock compensation time (4)			6	ns			
f _{out}	Output frequency for internal global or regional clock	0.3		450	MHz			
f _{OUT_EXT}	Output frequency for external clock (3)	0.3		500	MHz			
t _{outduty}	Duty cycle for external clock output (when set to 50%)	45		55	%			
t _{JITTER}	Period jitter for external clock output (6)			±100 ps for >200-MHz outclk ±20 mUI for <200-MHz outclk	ps or mUI			
t _{CONFIG5,6}	Time required to reconfigure the scan chains for PLLs 5 and 6			289/f _{SCANCLK}				
t _{CONFIG11,12}	Time required to reconfigure the scan chains for PLLs 11 and 12			193/f _{SCANCLK}				

process and operating conditions. Run the timing analyzer in the Quartus II software at the fast and slow operating conditions to see the phase shift range that is achieved below these frequencies.

Table 4–135. Stratix DLL Low Frequency Limit for Full Phase Shift						
Phase Shift	Minimum Frequency for Full Phase Shift	Unit				
72°	119	MHz				
90°	149	MHz				