Altera - EP1S30F1020C5 Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	3247
Number of Logic Elements/Cells	32470
Total RAM Bits	3317184
Number of I/O	726
Number of Gates	-
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	1020-BBGA, FCBGA
Supplier Device Package	1020-FBGA (33x33)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=ep1s30f1020c5

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Chapter	Date/Version	Changes Made
4	January 2005, 3.2	Updated rise and fall input values.
	September 2004, v3.1	 Updated Note 3 in Table 4–8 on page 4–4. Updated Table 4–10 on page 4–6. Updated Table 4–20 on page 4–12 through Table 4–23 on page 4–13. Added rows V_{IL(AC)} and V_{IH(AC)} to each table. Updated Table 4–26 on page 4–14 through Table 4–29 on page 4–15. Updated Table 4–31 on page 4–16. Updated Table 4–36 on page 4–20. Added signals t_{OUTCO}, T_{XZ}, and T_{ZX} to Figure 4–4 on page 4–33. Added rows t_{M512CLKENSU} and t_{M512CLKENH} to Table 4–40 on page 4–24. Updated Note 2 in Table 4–54 on page 4–35. Added rows t_{MAACLKENSU} and t_{MAMCLKENH} to Table 4–42 on page 4–25. Updated Table 4–46 on page 4–29. Updated Table 4–47 on page 4–29.

Table 1–5. Stratix FineLine BGA Package Sizes										
Dimension	484 Pin	672 Pin	780 Pin	1,020 Pin	1,508 Pin					
Pitch (mm)	1.00	1.00	1.00	1.00	1.00					
Area (mm ²)	529	729	841	1,089	1,600					
$\begin{array}{l} \text{Length} \times \text{ width} \\ (\text{mm} \times \text{ mm}) \end{array}$	23 × 23	27 × 27	29 × 29	33 × 33	40×40					

Stratix devices are available in up to four speed grades, -5, -6, -7, and -8, with -5 being the fastest. Table 1–6 shows Stratix device speed-grade offerings.

Table 1–6. Stratix Device Speed Grades									
Device	672-Pin BGA	956-Pin BGA	484-Pin FineLine BGA	672-Pin FineLine BGA	780-Pin FineLine BGA	1,020-Pin FineLine BGA	1,508-Pin FineLine BGA		
EP1S10	-6, -7		-5, -6, -7	-6, -7	-5, -6, -7				
EP1S20	-6, -7		-5, -6, -7	-6, -7	-5, -6, -7				
EP1S25	-6, -7			-6, -7, -8	-5, -6, -7	-5, -6, -7			
EP1S30		-5, -6, -7			-5, -6, -7, -8	-5, -6, -7			
EP1S40		-5, -6, -7			-5, -6, -7, -8	-5, -6, -7	-5, -6, -7		
EP1S60		-6, -7				-5, -6, -7	-6, -7		
EP1S80		-6, -7				-5, -6, -7	-5, -6, -7		

dedicated clocks, these registers provide exceptional performance and interface support with external memory devices such as DDR SDRAM, FCRAM, ZBT, and QDR SRAM devices.

High-speed serial interface channels support transfers at up to 840 Mbps using LVDS, LVPECL, 3.3-V PCML, or HyperTransport technology I/O standards.

Figure 2–1 shows an overview of the Stratix device.

Figure 2–2. Stratix LAB Structure

LAB Interconnects

The LAB local interconnect can drive LEs within the same LAB. The LAB local interconnect is driven by column and row interconnects and LE outputs within the same LAB. Neighboring LABs, M512 RAM blocks, M4K RAM blocks, or DSP blocks from the left and right can also drive an LAB's local interconnect through the direct link connection. The direct link connection feature minimizes the use of row and column interconnects, providing higher performance and flexibility. Each LE can drive 30 other LEs through fast local and direct link interconnects. Figure 2–3 shows the direct link connection.

Figure 2–3. Direct Link Connection

LAB Control Signals

Each LAB contains dedicated logic for driving control signals to its LEs. The control signals include two clocks, two clock enables, two asynchronous clears, synchronous clear, asynchronous preset/load, synchronous load, and add/subtract control signals. This gives a maximum of 10 control signals at a time. Although synchronous load and clear signals are generally used when implementing counters, they can also be used with other functions.

Each LAB can use two clocks and two clock enable signals. Each LAB's clock and clock enable signals are linked. For example, any LE in a particular LAB using the labclk1 signal will also use labclkena1. If the LAB uses both the rising and falling edges of a clock, it also uses both LAB-wide clock signals. De-asserting the clock enable signal will turn off the LAB-wide clock.

Each LAB can use two asynchronous clear signals and an asynchronous load/preset signal. The asynchronous load acts as a preset when the asynchronous load data input is tied high.

asynchronous preset load, synchronous clear, synchronous load, and clock enable control for the register. These LAB-wide signals are available in all LE modes. The addnsub control signal is allowed in arithmetic mode.

The Quartus II software, in conjunction with parameterized functions such as library of parameterized modules (LPM) functions, automatically chooses the appropriate mode for common functions such as counters, adders, subtractors, and arithmetic functions. If required, you can also create special-purpose functions that specify which LE operating mode to use for optimal performance.

Normal Mode

The normal mode is suitable for general logic applications and combinatorial functions. In normal mode, four data inputs from the LAB local interconnect are inputs to a four-input LUT (see Figure 2–6). The Quartus II Compiler automatically selects the carry-in or the data3 signal as one of the inputs to the LUT. Each LE can use LUT chain connections to drive its combinatorial output directly to the next LE in the LAB. Asynchronous load data for the register comes from the data3 input of the LE. LEs in normal mode support packed registers.

Note to Figure 2-6:

(1) This signal is only allowed in normal mode if the LE is at the end of an adder/subtractor chain.

Table 2–13. DSP Blocks in Stratix Devices Notes (1), (2)									
Device	DSP Blocks	Total 9 × 9 Multipliers	Total 18 × 18 Multipliers	Total 36 × 36 Multipliers					
EP1S10	6	48	24	6					
EP1S20	10	80	40	10					
EP1S25	10	80	40	10					
EP1S30	12	96	48	12					
EP1S40	14	112	56	14					
EP1S60	18	144	72	18					
EP1S80	22	176	88	22					

Table 2–13 shows the number of DSP blocks in each Stratix device.

Notes to Table 2–13:

- (1) Each device has either the number of 9×9 -, 18×18 -, or 36×36 -bit multipliers shown. The total number of multipliers for each device is not the sum of all the multipliers.
- (2) The number of supported multiply functions shown is based on signed/signed or unsigned/unsigned implementations.

DSP block multipliers can optionally feed an adder/subtractor or accumulator within the block depending on the configuration. This makes routing to LEs easier, saves LE routing resources, and increases performance, because all connections and blocks are within the DSP block. Additionally, the DSP block input registers can efficiently implement shift registers for FIR filter applications.

Figure 2–30 shows the top-level diagram of the DSP block configured for 18×18 -bit multiplier mode. Figure 2–31 shows the 9×9 -bit multiplier configuration of the DSP block.

Figure 2–65. Stratix IOE in DDR Input I/O Configuration Note (1)

Notes to Figure 2–65:

- (1) All input signals to the IOE can be inverted at the IOE.
- (2) This signal connection is only allowed on dedicated DQ function pins.
- (3) This signal is for dedicated DQS function pins only.

Table 4–2. Stratix Device Recommended Operating Conditions (Part 2 of 2)									
Symbol	Parameter	r Conditions Minimum Maximum U utput tion (4), (5) 3.00 (3.135) 3.60 (3.465) 1 utput tion (4) 2.375 2.625 1 utput tion (4) 1.71 1.89 1 utput tion (4) 1.4 1.6 1			Unit				
V _{CCIO}	Supply voltage for output buffers, 3.3-V operation	(4), (5)	3.00 (3.135)	3.60 (3.465)	V				
	Supply voltage for output buffers, 2.5-V operation	(4)	2.375	2.625	V				
	Supply voltage for output buffers, 1.8-V operation	(4)	1.71	1.89	V				
	Supply voltage for output buffers, 1.5-V operation	(4)	1.4	1.6	V				
VI	Input voltage	(3), (6)	-0.5	4.0	V				
Vo	Output voltage		0	V _{CCIO}	V				
TJ	Operating junction	For commercial use	0	85	°C				
	temperature	For industrial use	-40	100	°C				

Table 4–3.	Table 4–3. Stratix Device DC Operating Conditions Note (7) (Part 1 of 2)									
Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Unit				
I _I	Input pin leakage current	$V_{I} = V_{CCIOmax}$ to 0 V (8)	-10		10	μA				
I _{OZ}	Tri-stated I/O pin leakage current	$V_{O} = V_{CCIOmax}$ to 0 V (8)	-10		10	μA				
I _{CC0} V _{CC} supply current (standby) (All memory blocks in power-down mode)	V _I = ground, no load, no toggling inputs				mA					
	memory blocks in power-down mode)	EP1S10. V_1 = ground, no load, no toggling inputs		37		mA				
		EP1S20. V_1 = ground, no load, no toggling inputs		65		mA				
		EP1S25. V_1 = ground, no load, no toggling inputs		90		mA				
		EP1S30. V _I = ground, no load, no toggling inputs		114		mA				
		EP1S40. V_1 = ground, no load, no toggling inputs		145		mA				
		EP1S60. V_1 = ground, no load, no toggling inputs		200		mA				
		EP1S80. V _I = ground, no load, no toggling inputs		277		mA				

Table 4–25. 3.3-V AGP 1×Specifications (Part 2 of 2)								
Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Unit		
V _{OH}	High-level output voltage	$I_{OUT} = -0.5 \text{ mA}$	$0.9\timesV_{CCIO}$		3.6	V		
V _{OL}	Low-level output voltage	$I_{OUT} = 1.5 \text{ mA}$			$0.1\timesV_{CCIO}$	V		

Table 4–26. 1.5-V HSTL Class I Specifications										
Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Unit				
V _{CCIO}	Output supply voltage		1.4	1.5	1.6	V				
V _{REF}	Input reference voltage		0.68	0.75	0.9	V				
V _{TT}	Termination voltage		0.7	0.75	0.8	V				
V _{IH} (DC)	DC high-level input voltage		V _{REF} + 0.1			V				
V _{IL} (DC)	DC low-level input voltage		-0.3		V _{REF} – 0.1	V				
V _{IH} (AC)	AC high-level input voltage		V _{REF} + 0.2			V				
V _{IL} (AC)	AC low-level input voltage				V _{REF} - 0.2	V				
V _{OH}	High-level output voltage	I _{OH} = -8 mA <i>(3)</i>	$V_{\rm CCIO}-0.4$			V				
V _{OL}	Low-level output voltage	I _{OL} = 8 mA <i>(3)</i>			0.4	V				

Table 4–27. 1.5-V HSTL Class II Specifications										
Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Unit				
V _{CCIO}	Output supply voltage		1.4	1.5	1.6	V				
V _{REF}	Input reference voltage		0.68	0.75	0.9	V				
V _{TT}	Termination voltage		0.7	0.75	0.8	V				
V _{IH} (DC)	DC high-level input voltage		V _{REF} + 0.1			V				
V _{IL} (DC)	DC low-level input voltage		-0.3		$V_{REF} - 0.1$	V				
V _{IH} (AC)	AC high-level input voltage		V _{REF} + 0.2			V				
V _{IL} (AC)	AC low-level input voltage				$V_{REF} - 0.2$	V				
V _{OH}	High-level output voltage	I _{OH} = -16 mA <i>(3)</i>	$V_{CCIO} - 0.4$			V				
V _{OL}	Low-level output voltage	I _{OL} = 16 mA <i>(3)</i>			0.4	V				

Table 4–50. M-RAM Block Internal Timing Microparameters (Part 2 of 2)										
Sumhal	-	-5		-6		-7		-8		
Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unit	
t _{MRAMBESU}	25		25		28		33		ps	
t _{MRAMBEH}	18		20		23		27		ps	
t _{MRAMDATAASU}	25		25		28		33		ps	
t _{MRAMDATAAH}	18		20		23		27		ps	
t _{MRAMADDRASU}	25		25		28		33		ps	
t _{MRAMADDRAH}	18		20		23		27		ps	
t _{MRAMDATABSU}	25		25		28		33		ps	
t _{MRAMDATABH}	18		20		23		27		ps	
t _{MRAMADDRBSU}	25		25		28		33		ps	
t _{MRAMADDRBH}	18		20		23		27		ps	
t _{MRAMDATACO1}		1,038		1,053		1,210		1,424	ps	
t _{MRAMDATACO2}		4,362		4,939		5,678		6,681	ps	
t _{MRAMCLKHL}	1,000		1,111		1,190		1,400		ps	
t _{MRAMCLR}	135		150		172		202		ps	

Table 4–51. Routing Delay Internal Timing Parameters										
Symbol	-5		-6		-7		-8		Unit	
Symbol	Min	Max	Min	Max	Min	Max	Min	Max		
t _{R4}		268		295		339		390	ps	
t _{R8}		371		349		401		461	ps	
t _{R24}		465		512		588		676	ps	
t _{C4}		440		484		557		641	ps	
t _{C8}		577		634		730		840	ps	
t _{C16}		445		489		563		647	ps	
t _{local}		313		345		396		455	ps	

Routing delays vary depending on the load on that specific routing line. The Quartus II software reports the routing delay information when running the timing analysis for a design. Tables 4–79 through 4–84 show the external timing parameters on column and row pins for EP1S40 devices.

Table 4–79. EP1S40 External I/O Timing on Column Pins Using Fast Regional Clock Networks									
Deremeter	-5 Speed Grade		-6 Speed Grade		-7 Speed Grade		-8 Speed Grade		Unit
Farailieler	Min	Max	Min	Max	Min	Max	Min	Max	Unit
t _{INSU}	2.696		2.907		3.290		2.899		ns
t _{INH}	0.000		0.000		0.000		0.000		ns
t _{OUTCO}	2.506	5.015	2.506	5.348	2.506	5.809	2.698	7.286	ns
t _{xz}	2.446	4.889	2.446	5.216	2.446	5.685	2.638	7.171	ns
t _{ZX}	2.446	4.889	2.446	5.216	2.446	5.685	2.638	7.171	ns

Table 4–80. EP1S40 External I/O Timing on Column Pins Using Regional Clock Networks									
Doromotor	-5 Speed Grade		-6 Speed Grade		-7 Spee	d Grade	-8 Spee	1114	
Farailieler	Min	Max	Min	Max	Min	Max	Min	Max	Unit
t _{INSU}	2.413		2.581		2.914		2.938		ns
t _{INH}	0.000		0.000		0.000		0.000		ns
t _{OUTCO}	2.668	5.254	2.668	5.628	2.668	6.132	2.869	7.307	ns
t _{xz}	2.608	5.128	2.608	5.496	2.608	6.008	2.809	7.192	ns
t _{ZX}	2.608	5.128	2.608	5.496	2.608	6.008	2.809	7.192	ns
t _{INSUPLL}	1.385		1.376		1.609		1.837		ns
t _{INHPLL}	0.000		0.000		0.000		0.000		ns
t _{OUTCOPLL}	1.117	2.382	1.117	2.552	1.117	2.504	1.117	2.542	ns
t _{XZPLL}	1.057	2.256	1,057	2.420	1.057	2.380	1.057	2.427	ns
t _{ZXPLL}	1.057	2.256	1,057	2.420	1.057	2.380	1.057	2.427	ns

Table 4–102 shows the reporting methodology used by the Quartus II software for minimum timing information for output pins.

Table 4–102. Reporting Methodology For Minimum Timing For Single-Ended Output Pins	(Part	1 of 2)
Notes (1), (2), (3)		

		Measurement Point						
I/O Standard	R _{UP} Ω	R _{DN} Ω	R _s Ω	R _T Ω	V _{CCIO} (V)	VTT (V)	C _L (pF)	V _{MEAS}
3.3-V LVTTL	-	-	0	-	3.600	3.600	10	1.800
2.5-V LVTTL	-	-	0	-	2.630	2.630	10	1.200
1.8-V LVTTL	-	-	0	-	1.950	1.950	10	0.880
1.5-V LVTTL	-	-	0	-	1.600	1.600	10	0.750
3.3-V LVCMOS	-	-	0	-	3.600	3.600	10	1.800
2.5-V LVCMOS	-	-	0	-	2.630	2.630	10	1.200
1.8-V LVCMOS	-	-	0	-	1.950	1.950	10	0.880
1.5-V LVCMOS	-	-	0	-	1.600	1.600	10	0.750
3.3-V GTL	-	-	0	25	3.600	1.260	30	0.860
2.5-V GTL	-	-	0	25	2.630	1.260	30	0.860
3.3-V GTL+	-	-	0	25	3.600	1.650	30	1.120
2.5-V GTL+	-	-	0	25	2.630	1.650	30	1.120
3.3-V SSTL-3 Class II	-	-	25	25	3.600	1.750	30	1.750
3.3-V SSTL-3 Class I	-	-	25	50	3.600	1.750	30	1.750
2.5-V SSTL-2 Class II	-	-	25	25	2.630	1.390	30	1.390
2.5-V SSTL-2 Class I	-	-	25	50	2.630	1.390	30	1.390
1.8-V SSTL-18 Class II	-	-	25	25	1.950	1.040	30	1.040
1.8-V SSTL-18 Class I	-	-	25	50	1.950	1.040	30	1.040
1.5-V HSTL Class II	-	-	0	25	1.600	0.800	20	0.900
1.5-V HSTL Class I	-	-	0	50	1.600	0.800	20	0.900
1.8-V HSTL Class II	-	-	0	25	1.950	0.900	20	1.000
1.8-V HSTL Class I	-	-	0	50	1.950	0.900	20	1.000
3.3-V PCI (4)	-/25	25/-	0	-	3.600	1.950	10	1.026/2.214
3.3-V PCI-X 1.0 (4)	-/25	25/-	0	-	3.600	1.950	10	1.026/2.214
3.3-V Compact PCI (4)	-/25	25/-	0	-	3.600	3.600	10	1.026/2.214
3.3-V AGP 1× (4)	-/25	25/-	0	-	3.600	3.600	10	1.026/2.214

Table 4–121. Stratix Maximum Output Clock Rate (Using I/O Pins) for PLL[1, 2, 3, 4] Pins in Flip-Chip Packages						
I/O Standard	-5 Speed Grade	-6 Speed Grade	-7 Speed Grade	-8 Speed Grade	Unit	
LVTTL	400	350	300	300	MHz	
2.5 V	400	350	300	300	MHz	
1.8 V	400	350	300	300	MHz	
1.5 V	350	300	300	300	MHz	
LVCMOS	400	350	300	300	MHz	
GTL	200	167	125	125	MHz	
GTL+	200	167	125	125	MHz	
SSTL-3 Class I	167	150	133	133	MHz	
SSTL-3 Class II	167	150	133	133	MHz	
SSTL-2 Class I	150	133	133	133	MHz	
SSTL-2 Class II	150	133	133	133	MHz	
SSTL-18 Class I	150	133	133	133	MHz	
SSTL-18 Class II	150	133	133	133	MHz	
1.5-V HSTL Class I	250	225	200	200	MHz	
1.5-V HSTL Class II	225	225	200	200	MHz	
1.8-V HSTL Class I	250	225	200	200	MHz	
1.8-V HSTL Class II	225	225	200	200	MHz	
3.3-V PCI	250	225	200	200	MHz	
3.3-V PCI-X 1.0	225	225	200	200	MHz	
Compact PCI	400	350	300	300	MHz	
AGP 1×	400	350	300	300	MHz	
AGP 2×	400	350	300	300	MHz	
СТТ	300	250	200	200	MHz	
LVPECL (2)	717	717	500	500	MHz	
PCML (2)	420	420	420	420	MHz	
LVDS (2)	717	717	500	500	MHz	
HyperTransport technology (2)	420	420	420	420	MHz	

—
- - - - -
<u>ج</u>
6
_
T
ŕ٨
•••
8
—
¥.
œ
0
_
-
6
0
c
-
Ξ.
œ
0
<u>_</u>
2.
x
<u>m</u>
<u>_</u>
ື
2
-

Table 4–125. H	Table 4–125. High-Speed I/O Specifications for Flip-Chip Packages (Part 3 of 4) Notes (1), (2)													
0h.e.l		-5 Speed Grade		-6 8	-6 Speed Grade			-7 Speed Grade			-8 Speed Grade			
Symbol	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
SW	PCML (<i>J</i> = 4, 7, 8, 10)	750			750			800			800			ps
	PCML $(J = 2)$	900			900			1,200			1,200			ps
	PCML $(J = 1)$	1,500			1,500			1,700			1,700			ps
	LVDS and LVPECL $(J = 1)$	500			500			550			550			ps
	LVDS, LVPECL, HyperTransport technology (<i>J</i> = 2 through 10)	440			440			500			500			ps
Input jitter tolerance (peak-to-peak)	All			250			250			250			250	ps
Output jitter (peak-to-peak)	All			160			160			200			200	ps
Output t _{RISE}	LVDS	80	110	120	80	110	120	80	110	120	80	110	120	ps
	HyperTransport technology	110	170	200	110	170	200	120	170	200	120	170	200	ps
	LVPECL	90	130	150	90	130	150	100	135	150	100	135	150	ps
	PCML	80	110	135	80	110	135	80	110	135	80	110	135	ps
Output t _{FALL}	LVDS	80	110	120	80	110	120	80	110	120	80	110	120	ps
	HyperTransport technology	110	170	200	110	170	200	110	170	200	110	170	200	ps
	LVPECL	90	130	160	90	130	160	100	135	160	100	135	160	ps
	PCML	105	140	175	105	140	175	110	145	175	110	145	175	ps

Table 4–130. Enhanced PLL Specifications for -8 Speed Grade (Part 2 of 3)								
Symbol	Parameter	Min	Тур	Мах	Unit			
t _{EINJITTER}	External feedback clock period jitter			±200 <i>(3)</i>	ps			
t _{FCOMP}	External feedback clock compensation time (4)			6	ns			
f _{OUT}	Output frequency for internal global or regional clock	0.3		357	MHz			
f _{OUT_EXT}	Output frequency for external clock (3)	0.3		369	MHz			
toutduty	Duty cycle for external clock output (when set to 50%)	45		55	%			
t _{JITTER}	Period jitter for external clock output (6)			±100 ps for >200-MHz outclk ±20 mUI for <200-MHz outclk	ps or mUI			
t _{CONFIG5,6}	Time required to reconfigure the scan chains for PLLs 5 and 6			289/f _{SCANCLK}				
t _{CONFIG11,12}	Time required to reconfigure the scan chains for PLLs 11 and 12			193/f _{SCANCLK}				
t _{SCANCLK}	scanclk frequency (5)			22	MHz			
t _{DLOCK}	Time required to lock dynamically (after switchover or reconfiguring any non-post-scale counters/delays) (7) (11)	(9)		100	μs			
t _{LOCK}	Time required to lock from end of device configuration (11)	10		400	μs			
f _{VCO}	PLL internal VCO operating range	300		600 (8)	MHz			

Table 4–133. Fast PLL Specifications for -8 Speed Grades (Part 2 of 2)							
Symbol	Parameter	Min	Max	Unit			
t _{ARESET}	Minimum pulse width on areset signal	10		ns			

Notes to Tables 4–131 through 4–133:

(1) See "Maximum Input & Output Clock Rates" on page 4–76.

- (2) PLLs 7, 8, 9, and 10 in the EP1S80 device support up to 717-MHz input and output.
- (3) Use this equation ($f_{OUT} = f_{IN} * ml(n \times \text{post-scale counter})$) in conjunction with the specified f_{INPFD} and f_{VCO} ranges to determine the allowed PLL settings.
- (4) When using the SERDES, high-speed differential I/O mode supports a maximum output frequency of 210 MHz to the global or regional clocks (that is, the maximum data rate 840 Mbps divided by the smallest SERDES J factor of 4).
- (5) Refer to the section "High-Speed I/O Specification" on page 4-87 for more information.
- (6) This parameter is for high-speed differential I/O mode only.
- (7) These counters have a maximum of 32 if programmed for 50/50 duty cycle. Otherwise, they have a maximum of 16.
- (8) High-speed differential I/O mode supports W = 1 to 16 and J = 4, 7, 8, or 10.

DLL Specifications

Table 4–134 reports the jitter for the DLL in the DQS phase shift reference circuit.

Table 4–134. DLL Jitter for DQS Phase Shift Reference Circuit					
Frequency (MHz)	DLL Jitter (ps)				
197 to 200	± 100				
160 to 196	± 300				
100 to 159	± 500				

•••

For more information on DLL jitter, see the *DDR SRAM* section in the *Stratix Architecture* chapter of the *Stratix Device Handbook, Volume* 1.

Table 4–135 lists the Stratix DLL low frequency limit for full phase shift across all PVT conditions. The Stratix DLL can be used below these frequencies, but it will not achieve the full phase shift requested across all

process and operating conditions. Run the timing analyzer in the Quartus II software at the fast and slow operating conditions to see the phase shift range that is achieved below these frequencies.

Table 4–135. Stratix DLL Low Frequency Limit for Full Phase Shift						
Phase Shift	Minimum Frequency for Full Phase Shift	Unit				
72°	119	MHz				
90°	149	MHz				

Mode 2-36 Row & Column Interface Unit Signals 2–43 Parity Bit Support 2–24 Shift Register Memory Configuration 2–26 Support 2-25 Simple Dual-Port & Single-Port Memory Configurations 2–23 IOE Stratix in DDR Input I/O Configuration 2–112 Stratix IOE in DDR Output I/O Configuration 2-114 TriMatrix Memory 2–21 True Dual-Port Memory Configuration 2–22

0

Ordering Information 5–1 Device Pin-Outs 5–1 Packaging Ordering Information 5–2 Reference & Ordering Information 5–1 Output Registers 2–64 Output Selection Multiplexer 2–64

Ρ

Packaging BGA Package Sizes 1-4 Device Speed Grades 1–5 FineLine BGA Package Sizes 1–5 PCI-X 1.0 Specifications 4–10 Phase Shifting 2–103 PLL Advanced Clear & Enable Control 2–98 Dynamically Programmable Counters & Delays in Stratix Device Enhanced PLLs 2-91 Enhanced Fast PLLs 2-81 Fast PLL 2–100 Channel Layout EP1S10, EP1S20 or EP1S25 Devices 2–138 Channel Layout EP1S30 to EP1S80 Devices 2-139

Port I/O Standards 2–102 I/O Standards Supported for Enhanced PLL Pins 2–94 Lock Detect & Programmable Gated Locked 2–98 PLL Locations 2–84 Programmable Bandwidth 2–91 Programmable Delay Chain 2–111 Programmable Duty Cycle 2–98 Reconfiguration 2–90

Т

Testing Temperature Sensing Diode 3–13 Electrical Characteristics 3–14 External 3–14 Temperature vs. Temperature-Sensing Diode Voltage 3–15 Timing DSP **Block Internal Timing** Microparameter Descriptions 4–23 Microparameters 4-29 Dual-Port RAM Timing Microparameter Waveform 4-27 External Timing in Stratix Devices 4–33 High-Speed I/O Timing 4-87 High-Speed Timing Specifications & Terminology 4-87 Internal Parameters 4–22 IOE Internal Timing Microparameter Descriptions 4-22 LE Internal Timing Microparameters 4–28 Logic Elements Internal Timing Microparameter Descriptions 4-22 Model 4–19 PLL Timing 4-94 Preliminary & Final 4–19 Stratix Device Timing Model Status 4–19 Stratix JTAG Timing Parameters & Values 3–4 TriMatrix Memory TriMatrix Memory Features 2-21