Intel - EP1S30F1020C5N Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	3247
Number of Logic Elements/Cells	32470
Total RAM Bits	3317184
Number of I/O	726
Number of Gates	-
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	1020-BBGA
Supplier Device Package	1020-FBGA (33x33)
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep1s30f1020c5n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Section I. Stratix Device Family Data Sheet

This section provides the data sheet specifications for Stratix[®] devices. They contain feature definitions of the internal architecture, configuration and JTAG boundary-scan testing information, DC operating conditions, AC timing parameters, a reference to power consumption, and ordering information for Stratix devices.

This section contains the following chapters:

- Chapter 1, Introduction
- Chapter 2, Stratix Architecture
- Chapter 3, Configuration & Testing
- Chapter 4, DC & Switching Characteristics
- Chapter 5, Reference & Ordering Information

Revision History The table below shows the revision history for Chapters 1 through 5.

Chapter	Date/Version	Changes Made
1	July 2005, v3.2	Minor content changes.
	September 2004, v3.1	• Updated Table 1–6 on page 1–5.
	April 2004, v3.0	 Main section page numbers changed on first page. Changed PCI-X to PCI-X 1.0 in "Features" on page 1–2. Global change from SignalTap to SignalTap II. The DSP blocks in "Features" on page 1–2 provide dedicated implementation of multipliers that are now "faster than 300 MHz."
	January 2004, v2.2	 Updated -5 speed grade device information in Table 1-6.
	October 2003, v2.1	Add -8 speed grade device information.
	July 2003, v2.0	 Format changes throughout chapter.

1. Introduction

S51001-3.2

Introduction

The Stratix[®] family of FPGAs is based on a 1.5-V, 0.13-µm, all-layer copper SRAM process, with densities of up to 79,040 logic elements (LEs) and up to 7.5 Mbits of RAM. Stratix devices offer up to 22 digital signal processing (DSP) blocks with up to 176 (9-bit × 9-bit) embedded multipliers, optimized for DSP applications that enable efficient implementation of high-performance filters and multipliers. Stratix devices support various I/O standards and also offer a complete clock management solution with its hierarchical clock structure with up to 420-MHz performance and up to 12 phase-locked loops (PLLs).

The following shows the main sections in the Stratix Device Family Data Sheet:

Section	Page
Features	1–2
Functional Description	2–1
Logic Array Blocks	2–3
Logic Elements	2–6
MultiTrack Interconnect	2–14
TriMatrix Memory	2–21
Digital Signal Processing Block	2–52
PLLs & Clock Networks	2–73
I/O Structure	. 2–104
High-Speed Differential I/O Support	. 2–130
Power Sequencing & Hot Socketing	. 2–140
IEEE Std. 1149.1 (JTAG) Boundary-Scan Support	3–1
SignalTap II Embedded Logic Analyzer	3–5
Configuration	3–5
Temperature Sensing Diode	3–13
Operating Conditions	4–1
Power Consumption	4–17
Timing Model.	4–19
Software	5–1
Device Pin-Outs	5–1
Ordering Information	5–1

asynchronous load, and clear signals. An asynchronous clear signal takes precedence if both signals are asserted simultaneously. Each LAB supports up to two clears and one preset signal.

In addition to the clear and preset ports, Stratix devices provide a chipwide reset pin (DEV_CLRn) that resets all registers in the device. An option set before compilation in the Quartus II software controls this pin. This chip-wide reset overrides all other control signals.

MultiTrack Interconnect

In the Stratix architecture, connections between LEs, TriMatrix memory, DSP blocks, and device I/O pins are provided by the MultiTrack interconnect structure with DirectDrive™ technology. The MultiTrack interconnect consists of continuous, performance-optimized routing lines of different lengths and speeds used for inter- and intra-design block connectivity. The Quartus II Compiler automatically places critical design paths on faster interconnects to improve design performance.

DirectDrive technology is a deterministic routing technology that ensures identical routing resource usage for any function regardless of placement within the device. The MultiTrack interconnect and DirectDrive technology simplify the integration stage of block-based designing by eliminating the re-optimization cycles that typically follow design changes and additions.

The MultiTrack interconnect consists of row and column interconnects that span fixed distances. A routing structure with fixed length resources for all devices allows predictable and repeatable performance when migrating through different device densities. Dedicated row interconnects route signals to and from LABs, DSP blocks, and TriMatrix memory within the same row. These row resources include:

- Direct link interconnects between LABs and adjacent blocks.
- **R**4 interconnects traversing four blocks to the right or left.
- R8 interconnects traversing eight blocks to the right or left.
- R24 row interconnects for high-speed access across the length of the device.

The direct link interconnect allows an LAB, DSP block, or TriMatrix memory block to drive into the local interconnect of its left and right neighbors and then back into itself. Only one side of a M-RAM block interfaces with direct link and row interconnects. This provides fast communication between adjacent LABs and/or blocks without using row interconnect resources.

The R4 interconnects span four LABs, three LABs and one M512 RAM block, two LABs and one M4K RAM block, or two LABs and one DSP block to the right or left of a source LAB. These resources are used for fast

Figure 2–10. LUT Chain & Register Chain Interconnects

The C4 interconnects span four LABs, M512, or M4K blocks up or down from a source LAB. Every LAB has its own set of C4 interconnects to drive either up or down. Figure 2–11 shows the C4 interconnect connections from an LAB in a column. The C4 interconnects can drive and be driven by all types of architecture blocks, including DSP blocks, TriMatrix memory blocks, and vertical IOEs. For LAB interconnection, a primary LAB or its LAB neighbor can drive a given C4 interconnect. C4 interconnects can drive each other to extend their range as well as drive row interconnects for column-to-column connections.

Figure 2–11. C4 Interconnect Connections Note (1)

Note to Figure 2–11:

(1) Each C4 interconnect can drive either up or down four rows.

provide general purpose clocking with multiplication and phase shifting as well as high-speed outputs for high-speed differential I/O support. Enhanced and fast PLLs work together with the Stratix high-speed I/O and advanced clock architecture to provide significant improvements in system performance and bandwidth.

The Quartus II software enables the PLLs and their features without requiring any external devices. Table 2–18 shows the PLLs available for each Stratix device.

Table 2–18. Stratix Device PLL Availability												
Dovice				Fas	t PLLs				Enhanced PLLs			
Device	1	2	3	4	7	8	9	10	5(1)	6 (1)	11 (2)	12 <i>(2)</i>
EP1S10	\checkmark	\checkmark	\checkmark	~					\checkmark	~		
EP1S20	\checkmark	\checkmark	\checkmark	~					\checkmark	\checkmark		
EP1S25	\checkmark	\checkmark	\checkmark	~					\checkmark	\checkmark		
EP1S30	\checkmark	\checkmark	\checkmark	\checkmark	🗸 (3)	🗸 (3)	🗸 (3)	🗸 (3)	\checkmark	\checkmark		
EP1S40	~	~	~	~	✓ (3)	✓ (3)	✓ (3)	✓ (3)	~	\checkmark	√ (3)	√ (3)
EP1S60	~	~	~	~	~	\checkmark	~	\checkmark	~	~	<	\checkmark
EP1S80	\checkmark	\checkmark	\checkmark	\checkmark	~	\checkmark	~	\checkmark	\checkmark	\checkmark	~	\checkmark

Notes to Table 2–18:

(1) PLLs 5 and 6 each have eight single-ended outputs or four differential outputs.

(2) PLLs 11 and 12 each have one single-ended output.

(3) EP1S30 and EP1S40 devices do not support these PLLs in the 780-pin FineLine BGA® package.

Figure 2–51. Global & Regional Clock Connections from Top Clock Pins & Enhanced PLL Outputs Note (1)

Notes to Figure 2–51:

- (1) PLLs 1 to 4 and 7 to 10 are fast PLLs. PLLs 5, 6, 11, and 12 are enhanced PLLs.
- (2) CLK4, CLK6, CLK12, and CLK14 feed the corresponding PLL's inclk0 port.
- (3) CLK5, CLK7, CLK13, and CLK15 feed the corresponding PLL's inclk1 port.
- (4) The EP1S40 device in the 780-pin FineLine BGA package does not support PLLs 11 and 12.

Control	Signal	s

The fast PLL has the same lock output, pllenable input, and areset input control signals as the enhanced PLL.

If the input clock stops and causes the PLL to lose lock, then the PLL must be reset for correct phase shift operation.

For more information on high-speed differential I/O support, see "High-Speed Differential I/O Support" on page 2–130.

I/O Structure

IOEs provide many features, including:

- Dedicated differential and single-ended I/O buffers
- 3.3-V, 64-bit, 66-MHz PCI compliance
- 3.3-V, 64-bit, 133-MHz PCI-X 1.0 compliance
- Joint Test Action Group (JTAG) boundary-scan test (BST) support
- Differential on-chip termination for LVDS I/O standard
- Programmable pull-up during configuration
- Output drive strength control
- Slew-rate control
- Tri-state buffers
- Bus-hold circuitry
- Programmable pull-up resistors
- Programmable input and output delays
- Open-drain outputs
- DQ and DQS I/O pins
- Double-data rate (DDR) Registers

The IOE in Stratix devices contains a bidirectional I/O buffer, six registers, and a latch for a complete embedded bidirectional single data rate or DDR transfer. Figure 2–59 shows the Stratix IOE structure. The IOE contains two input registers (plus a latch), two output registers, and two output enable registers. The design can use both input registers and the latch to capture DDR input and both output registers to drive DDR outputs. Additionally, the design can use the output enable (OE) register for fast clock-to-output enable timing. The negative edge-clocked OE register is used for DDR SDRAM interfacing. The Quartus II software automatically duplicates a single OE register that controls multiple output or bidirectional pins.

Stratix devices have an I/O interconnect similar to the R4 and C4 interconnect to drive high-fanout signals to and from the I/O blocks. There are 16 signals that drive into the I/O blocks composed of four output enables io_boe [3..0], four clock enables io_bce [3..0], four clocks io_bclk [3..0], and four clear signals io_bclr [3..0]. The pin's datain signals can drive the IO interconnect, which in turn drives the logic array or other I/O blocks. In addition, the control and data signals can be driven from the logic array, providing a slower but more flexible routing resource. The row or column IOE clocks, io_clk [7..0], provide a dedicated routing resource for low-skew, high-speed clocks. I/O clocks are generated from regional, global, or fast regional clocks (see "PLLs & Clock Networks" on page 2–73). Figure 2–62 illustrates the signal paths through the I/O block.

Figure 2–64. Stratix IOE in Bidirectional I/O Configuration Note (1)

(1) All input signals to the IOE can be inverted at the IOE.

The Stratix device IOE includes programmable delays that can be activated to ensure zero hold times, input IOE register-to-logic array register transfers, or logic array-to-output IOE register transfers.

A path in which a pin directly drives a register may require the delay to ensure zero hold time, whereas a path in which a pin drives a register through combinatorial logic may not require the delay. Programmable delays exist for decreasing input-pin-to-logic-array and IOE input register delays. The Quartus II Compiler can program these delays to automatically minimize setup time while providing a zero hold time. Programmable delays can increase the register-to-pin delays for output

Table 2–26. External RAM Support in EP1860 & EP1880 Devices							
	I/O Standard	Maximum Clock Rate (MHz)					
DDA Memory Type	i/U Stalluaru	-5 Speed Grade	-6 Speed Grade	-7 Speed Grade			
DDR SDRAM (1), (2)	SSTL-2	167	167	133			
DDR SDRAM - side banks (2), (3)	SSTL-2	150	133	133			
QDR SRAM (4)	1.5-V HSTL	133	133	133			
QDRII SRAM (4)	1.5-V HSTL	167	167	133			
ZBT SRAM (5)	LVTTL	200	200	167			

Table 2–26. External RAM Support in EP1S60 & EP1S80 Devices

Notes to Table 2–26:

 These maximum clock rates apply if the Stratix device uses DQS phase-shift circuitry to interface with DDR SDRAM. DQS phase-shift circuitry is only available in the top and bottom I/O banks (I/O banks 3, 4, 7, and 8).

(2) For more information on DDR SDRAM, see AN 342: Interfacing DDR SDRAM with Stratix & Stratix GX Devices.

(3) DDR SDRAM is supported on the Stratix device side I/O banks (I/O banks 1, 2, 5, and 6) without dedicated DQS phase-shift circuitry. The read DQS signal is ignored in this mode. Numbers are preliminary.

(4) For more information on QDR or QDRII SRAM, see AN 349: QDR SRAM Controller Reference Design for Stratix & Stratix GX Devices.

(5) For more information on ZBT SRAM, see AN 329: ZBT SRAM Controller Reference Design for Stratix & Stratix GX Devices.

In addition to six I/O registers and one input latch in the IOE for interfacing to these high-speed memory interfaces, Stratix devices also have dedicated circuitry for interfacing with DDR SDRAM. In every Stratix device, the I/O banks at the top (I/O banks 3 and 4) and bottom (I/O banks 7 and 8) of the device support DDR SDRAM up to 200 MHz. These pins support DQS signals with DQ bus modes of ×8, ×16, or ×32.

Table 2–27 shows the number of DQ and DQS buses that are supported per device.

Table 2–27. DQS & DQ Bus Mode Support (Part 1 of 2) Note (1)							
Device	Package	Number of ×8 Groups	Number of ×16 Groups	Number of ×32 Groups			
EP1S10	672-pin BGA 672-pin FineLine BGA	12 (2)	0	0			
	484-pin FineLine BGA 780-pin FineLine BGA	16 (3)	0	4			
EP1S20	484-pin FineLine BGA	18(4)	7 (5)	4			
	672-pin BGA 672-pin FineLine BGA	16(3)	7 (5)	4			
	780-pin FineLine BGA	20	7 (5)	4			

- 1.8-V HSTL Class I and II
- SSTL-3 Class I and II
- SSTL-2 Class I and II
- SSTL-18 Class I and II
- CTT

Table 2–31 describes the I/O standards supported by Stratix devices.

Table 2–31. Stratix Supported I/O Standards							
I/O Standard	Туре	Input Reference Voltage (V _{REF}) (V)	Output Supply Voltage (V _{CCIO}) (V)	Board Termination Voltage (V _{TT}) (V)			
LVTTL	Single-ended	N/A	3.3	N/A			
LVCMOS	Single-ended	N/A	3.3	N/A			
2.5 V	Single-ended	N/A	2.5	N/A			
1.8 V	Single-ended	N/A	1.8	N/A			
1.5 V	Single-ended	N/A	1.5	N/A			
3.3-V PCI	Single-ended	N/A	3.3	N/A			
3.3-V PCI-X 1.0	Single-ended	N/A	3.3	N/A			
LVDS	Differential	N/A	3.3	N/A			
LVPECL	Differential	N/A	3.3	N/A			
3.3-V PCML	Differential	N/A	3.3	N/A			
HyperTransport	Differential	N/A	2.5	N/A			
Differential HSTL (1)	Differential	0.75	1.5	0.75			
Differential SSTL (2)	Differential	1.25	2.5	1.25			
GTL	Voltage-referenced	0.8	N/A	1.20			
GTL+	Voltage-referenced	1.0	N/A	1.5			
1.5-V HSTL Class I and II	Voltage-referenced	0.75	1.5	0.75			
1.8-V HSTL Class I and II	Voltage-referenced	0.9	1.8	0.9			
SSTL-18 Class I and II	Voltage-referenced	0.90	1.8	0.90			
SSTL-2 Class I and II	Voltage-referenced	1.25	2.5	1.25			
SSTL-3 Class I and II	Voltage-referenced	1.5	3.3	1.5			
AGP (1 \times and 2 $^{\circ}$)	Voltage-referenced	1.32	3.3	N/A			
CTT	Voltage-referenced	1.5	3.3	1.5			

Notes to Table 2–31:

- (1) This I/O standard is only available on input and output clock pins.
- (2) This I/O standard is only available on output column clock pins.

Table 4–3. Stratix Device DC Operating Conditions Note (7) (Part 2 of 2)								
Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Unit		
R _{CONF}	R _{CONF} Value of I/O pin pull- up resistor before and during	$V_{CCIO} = 3.0 V (9)$	20		50	kΩ		
		V _{CCIO} = 2.375 V <i>(9)</i>	30		80	kΩ		
configuration	$V_{CCIO} = 1.71 V (9)$	60		150	kΩ			

Table 4–4. LVTTL Specifications								
Symbol	Parameter	Conditions	Minimum	Maximum	Unit			
V _{CCIO}	Output supply voltage		3.0	3.6	V			
V _{IH}	High-level input voltage		1.7	4.1	V			
V _{IL}	Low-level input voltage		-0.5	0.7	V			
V _{OH}	High-level output voltage	$I_{OH} = -4$ to -24 mA (10)	2.4		V			
V _{OL}	Low-level output voltage	I _{OL} = 4 to 24 mA <i>(10)</i>		0.45	V			

Table 4–5. LVCMOS Specifications								
Symbol	Parameter	Conditions	Minimum	Maximum	Unit			
V _{CCIO}	Output supply voltage		3.0	3.6	V			
V _{IH}	High-level input voltage		1.7	4.1	V			
V _{IL}	Low-level input voltage		-0.5	0.7	V			
V _{OH}	High-level output voltage	$V_{CCIO} = 3.0,$ $I_{OH} = -0.1 \text{ mA}$	V _{CCIO} – 0.2		V			
V _{OL}	Low-level output voltage	$V_{CCIO} = 3.0,$ $I_{OL} = 0.1 \text{ mA}$		0.2	V			

Table 4–6. 2.5-V I/O Specifications								
Symbol	Parameter	Conditions	Minimum	Maximum	Unit			
V _{CCIO}	Output supply voltage		2.375	2.625	V			
V _{IH}	High-level input voltage		1.7	4.1	V			
V _{IL}	Low-level input voltage		-0.5	0.7	V			
V _{OH}	High-level output voltage	I _{OH} = -1 mA <i>(10)</i>	2.0		V			
V _{OL}	Low-level output voltage	I _{OL} = 1 mA <i>(10)</i>		0.4	V			

Table 4–43. Routing Delay Internal Timing Microparameter Descriptions (Part 2 of 2)

Symbol	Parameter
t _{C4}	Delay for a C4 line with average loading; covers a distance of four LAB rows.
t _{C8}	Delay for a C8 line with average loading; covers a distance of eight LAB rows.
t _{C16}	Delay for a C16 line with average loading; covers a distance of 16 LAB rows.
t _{LOCAL}	Local interconnect delay, for connections within a LAB, and for the final routing hop of connections to LABs, DSP blocks, RAM blocks and I/Os.

Table 4–44. LE Internal Timing Microparameters											
Devemeter	-	-5		-6		-7		-8			
Parameter	Min	Max	Min	Max	Min	Max	Min	Max	Unit		
t _{SU}	10		10		11		13		ps		
t _H	100		100		114		135		ps		
t _{CO}		156		176		202		238	ps		
t _{LUT}		366		459		527		621	ps		
t _{CLR}	100		100		114		135		ps		
t _{PRE}	100		100		114		135		ps		
t _{CLKHL}	1000		1111		1190		1400		ps		

Table 4–45. IOE Internal TSU Microparameter by Device Density (Part 1 of 2)											
Devies	Symbol	-	5	-	-6		-7		-8		
Device	Symbol	Min	Max	Min	Max	Min	Max	Min	Max		
EP1S10	t _{SU_R}	76		80		80		80		ps	
	t _{SU_C}	176		80		80		80		ps	
EP1S20	t _{SU_R}	76		80		80		80		ps	
	t _{SU_C}	76		80		80		80		ps	
EP1S25	t _{SU_R}	276		280		280		280		ps	
	t _{SU_C}	276		280		280		280		ps	
EP1S30	t _{SU_R}	76		80		80		80		ps	
	t _{SU_C}	176		180		180		180		ps	

Table 4–52 shows the external I/O timing parameters when using fast regional clock networks.

Table 4–52. Stratix Fast Regional Clock External I/O Timing Parameters Notes (1), (2)

Symbol	Parameter
t _{INSU}	Setup time for input or bidirectional pin using IOE input register with fast regional clock fed by FCLK pin
t _{INH}	Hold time for input or bidirectional pin using IOE input register with fast regional clock fed by FCLK pin
t _{outco}	Clock-to-output delay output or bidirectional pin using IOE output register with fast regional clock fed by FCLK pin
t _{XZ}	Synchronous IOE output enable register to output pin disable delay using fast regional clock fed by FCLK pin
t _{ZX}	Synchronous IOE output enable register to output pin enable delay using fast regional clock fed by FCLK pin

Notes to Table 4–52:

- (1) These timing parameters are sample-tested only.
- (2) These timing parameters are for column and row IOE pins. You should use the Quartus II software to verify the external timing for any pin.

Table 4–53 shows the external I/O timing parameters when using regional clock networks.

Table 4–53.	Stratix Regional	Clock External I/O	Timing Parameters	(Part 1
of 2) Notes ((1), (2)			

Symbol	Parameter
t _{INSU}	Setup time for input or bidirectional pin using IOE input register with regional clock fed by CLK pin
t _{INH}	Hold time for input or bidirectional pin using IOE input register with regional clock fed by CLK pin
t _{outco}	Clock-to-output delay output or bidirectional pin using IOE output register with regional clock fed by CLK pin
t _{INSUPLL}	Setup time for input or bidirectional pin using IOE input register with regional clock fed by Enhanced PLL with default phase setting
t _{INHPLL}	Hold time for input or bidirectional pin using IOE input register with regional clock fed by Enhanced PLL with default phase setting
t _{OUTCOPLL}	Clock-to-output delay output or bidirectional pin using IOE output register with regional clock Enhanced PLL with default phase setting

Table 4–69. I	Table 4–69. EP1S25 External I/O Timing on Column Pins Using Global Clock Networks											
Doromotor	-5 Spee	d Grade	-6 Spee	d Grade	-7 Spee	d Grade	-8 Spee	Unit				
Farailieler	Min	Max	Min	Max	Min	Max	Min	Max	Unit			
t _{INSU}	1.371		1.471		1.657		1.916		ns			
t _{INH}	0.000		0.000		0.000		0.000		ns			
t _{OUTCO}	2.809	5.516	2.809	5.890	2.809	6.429	2.809	7.155	ns			
t _{xz}	2.749	5.390	2.749	5.758	2.749	6.305	2.749	7.040	ns			
t _{ZX}	2.749	5.390	2.749	5.758	2.749	6.305	2.749	7.040	ns			
t _{INSUPLL}	1.271		1.327		1.491		1.677		ns			
t _{INHPLL}	0.000		0.000		0.000		0.000		ns			
t _{OUTCOPLL}	1.124	2.396	1.124	2.492	1.124	2.522	1.124	2.602	ns			
t _{XZPLL}	1.064	2.270	1.064	2.360	1.064	2.398	1.064	2.487	ns			
t _{ZXPLL}	1.064	2.270	1.064	2.360	1.064	2.398	1.064	2.487	ns			

Table 4–70. EP1S25 External I/O Timing on Row Pins Using Fast Regional Clock Networks										
Devemeter	-5 Spee	d Grade	-6 Spee	d Grade	-7 Spee	d Grade	-8 Spee	Unit		
Farailieler	Min	Max	Min	Max	Min	Max	Min	Max	Unit	
t _{INSU}	2.429		2.631		2.990		3.503		ns	
t _{INH}	0.000		0.000		0.000		0.000		ns	
t _{OUTCO}	2.376	4.821	2.376	5.131	2.376	5.538	2.376	6.063	ns	
t _{xz}	2.403	4.875	2.403	5.187	2.403	5.606	2.403	6.145	ns	
t _{ZX}	2.403	4.875	2.403	5.187	2.403	5.606	2.403	6.145	ns	

Tables 4–91 through 4–96 show the external timing parameters on column and row pins for EP1S80 devices.

Table 4–91. EP1S80 External I/O Timing on Column Pins Using Fast Regional Clock Networks Note (1)										
Parameter	-5 Spee	d Grade	-6 Spee	d Grade	-7 Spee	d Grade	-8 Spee	Unit		
	Min	Max	Min	Max	Min	Max	Min	Max	UIII	
t _{INSU}	2.328		2.528		2.900		NA		ns	
t _{INH}	0.000		0.000		0.000		NA		ns	
t _{OUTCO}	2.422	4.830	2.422	5.169	2.422	5.633	NA	NA	ns	
t _{xz}	2.362	4.704	2.362	5.037	2.362	5.509	NA	NA	ns	
t _{ZX}	2.362	4.704	2.362	5.037	2.362	5.509	NA	NA	ns	

Table 4–92. EP1S80 External I/O Timing on Column Pins Using Regional Clock Networks Note (1)											
Doromotor	-5 Spee	d Grade	-6 Spee	d Grade	-7 Spee	d Grade	-8 Spee	Unit			
Farailieler	Min	Max	Min	Max	Min	Max	Min	Max	Unit		
t _{INSU}	1.760		1.912		2.194		NA		ns		
t _{INH}	0.000		0.000		0.000		NA		ns		
t _{OUTCO}	2.761	5.398	2.761	5.785	2.761	6.339	NA	NA	ns		
t _{XZ}	2.701	5.272	2.701	5.653	2.701	6.215	NA	NA	ns		
t _{ZX}	2.701	5.272	2.701	5.653	2.701	6.215	NA	NA	ns		
t _{INSUPLL}	0.462		0.606		0.785		NA		ns		
t _{INHPLL}	0.000		0.000		0.000		NA		ns		
t _{OUTCOPLL}	1.661	2.849	1.661	2.859	1.661	2.881	NA	NA	ns		
t _{XZPLL}	1.601	2.723	1.601	2.727	1.601	2.757	NA	NA	ns		
t _{ZXPLL}	1.601	2.723	1.601	2.727	1.601	2.757	NA	NA	ns		

Figure 4–6 shows the case where four IOE registers are located in two different I/O banks.

Table 4–97 defines the timing parameters used to define the timing for horizontal I/O pins (side banks 1, 2, 5, 6) and vertical I/O pins (top and bottom banks 3, 4, 7, 8). The timing parameters define the skew within an I/O bank, across two neighboring I/O banks on the same side of the device, across all horizontal I/O banks, across all vertical I/O banks, and the skew for the overall device.

Table 4–97. Output Pin Timing Skew Definitions (Part 1 of 2)								
Symbol	Definition							
t _{SB_HIO}	Row I/O (HIO) within one I/O bank (1)							
t _{SB_VIO}	Column I/O (VIO) within one I/O bank (1)							
t _{ss_ню}	Row I/O (HIO) same side of the device, across two banks (2)							
t _{SS_VIO}	Column I/O (VIO) same side of the device, across two banks (2)							

Tables 4–105 through 4–108 show the output adder delays associated with column and row I/O pins for both fast and slow slew rates. If an I/O standard is selected other than 3.3-V LVTTL 4mA or LVCMOS 2 mA with a fast slew rate, add the selected delay to the external t_{OUTCO} , $t_{OUTCOPLL}$, t_{XZ} , t_{ZX} , t_{XZPLL} , and t_{ZXPLL} I/O parameters shown in Table 4–55 on page 4–36 through Table 4–96 on page 4–56.

Table 4–105. Stratix I/O Standard Output Delay Adders for Fast Slew Rate on Column Pins (Part 1 of 2)											
Doroma		-5 Spee	d Grade	-6 Spee	d Grade	-7 Spee	d Grade	-8 Spee	d Grade	Unit	
Parame	eler	Min	Max	Min	Max	Min	Max	Min	Max	Unit	
LVCMOS	2 mA		1,895		1,990		1,990		1,990	ps	
	4 mA		956		1,004		1,004		1,004	ps	
	8 mA		189		198		198		198	ps	
	12 mA		0		0		0		0	ps	
	24 mA		-157		-165		-165		-165	ps	
3.3-V LVTTL	4 mA		1,895		1,990		1,990		1,990	ps	
	8 mA		1,347		1,414		1,414		1,414	ps	
	12 mA		636		668		668		668	ps	
	16 mA		561		589		589		589	ps	
	24 mA		0		0		0		0	ps	
2.5-V LVTTL	2 mA		2,517		2,643		2,643		2,643	ps	
	8 mA		834		875		875		875	ps	
	12 mA		504		529		529		529	ps	
	16 mA		194		203		203		203	ps	
1.8-V LVTTL	2 mA		1,304		1,369		1,369		1,369	ps	
	8 mA		960		1,008		1,008		1,008	ps	
	12 mA		960		1,008		1,008		1,008	ps	
1.5-V LVTTL	2 mA		6,680		7,014		7,014		7,014	ps	
	4 mA		3,275		3,439		3,439		3,439	ps	
	8 mA		1,589		1,668		1,668		1,668	ps	
GTL			16		17		17		17	ps	
GTL+			9		9		9		9	ps	
3.3-V PCI			50		52		52		52	ps	
3.3-V PCI-X 1.0	C		50		52		52		52	ps	
Compact PCI			50		52		52		52	ps	
AGP 1×			50		52		52		52	ps	
AGP 2×			1,895		1,990		1,990		1,990	ps	

Figure 5–1. Stratix Device Packaging Ordering Information