Altera - EP1S30F1020C7 Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	3247
Number of Logic Elements/Cells	32470
Total RAM Bits	3317184
Number of I/O	726
Number of Gates	-
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	1020-BBGA, FCBGA
Supplier Device Package	1020-FBGA (33x33)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=ep1s30f1020c7

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 2–2. Stratix Device Routing Scheme																	
								De	stinat	ion							
Source	LUT Chain	Register Chain	Local Interconnect	Direct Link Interconnect	R4 Interconnect	R8 Interconnect	R24 Interconnect	C4 Interconnect	C8 Interconnect	C16 Interconnect	TE	M512 RAM Block	M4K RAM Block	M-RAM Block	DSP Blocks	Column IOE	Row IOE
LUT Chain											\checkmark						
Register Chain											\checkmark						
Local Interconnect											>	~	~	>	~	>	~
Direct Link Interconnect			~														
R4 Interconnect			\checkmark		\checkmark		\checkmark	\checkmark		\checkmark							
R8 Interconnect			\checkmark			\checkmark			\checkmark								
R24 Interconnect					~		~	~		~							
C4 Interconnect			\checkmark		\checkmark			\checkmark									
C8 Interconnect			\checkmark			\checkmark			\checkmark								
C16 Interconnect					~		~	~		~							
LE	>	\checkmark	>	~	~	>		~	<								
M512 RAM Block			~	>	>	~		>	~								
M4K RAM Block			\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark								
M-RAM Block								~	<								
DSP Blocks			\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark								
Column IOE				\checkmark				\checkmark	\checkmark	\checkmark							
Row IOE				~		\checkmark	~	~	\checkmark	\checkmark							

Table 2–2 shows the Stratix device's routing scheme.

M512 RAM blocks can have different clocks on its inputs and outputs. The wren, datain, and write address registers are all clocked together from one of the two clocks feeding the block. The read address, rden, and output registers can be clocked by either of the two clocks driving the block. This allows the RAM block to operate in read/write or input/output clock modes. Only the output register can be bypassed. The eight labclk signals or local interconnect can drive the inclock, outclock, wren, rden, inclr, and outclr signals. Because of the advanced interconnect between the LAB and M512 RAM blocks, LEs can also control the wren and rden signals and the RAM clock, clock enable, and asynchronous clear signals. Figure 2–15 shows the M512 RAM block control signal generation logic.

The RAM blocks within Stratix devices have local interconnects to allow LEs and interconnects to drive into RAM blocks. The M512 RAM block local interconnect is driven by the R4, R8, C4, C8, and direct link interconnects from adjacent LABs. The M512 RAM blocks can communicate with LABs on either the left or right side through these row interconnects or with LAB columns on the left or right side with the column interconnects. Up to 10 direct link input connections to the M512 RAM block are possible from the left adjacent LABs and another 10 possible from the right adjacent LAB. M512 RAM outputs can also connect to left and right LABs through 10 direct link interconnects. The M512 RAM block has equal opportunity for access and performance to and from LABs on either its left or right side. Figure 2–16 shows the M512 RAM block to logic array interface.

Figure 2–31. DSP Block Diagram for 9×9 -Bit Configuration

2–56

The variation due to process, voltage, and temperature is about $\pm 15\%$ on the delay settings. PLL reconfiguration can control the clock delay shift elements, but not the VCO phase shift multiplexers, during system operation.

Spread-Spectrum Clocking

Stratix device enhanced PLLs use spread-spectrum technology to reduce electromagnetic interference generation from a system by distributing the energy over a broader frequency range. The enhanced PLL typically provides 0.5% down spread modulation using a triangular profile. The modulation frequency is programmable. Enabling spread-spectrum for a PLL affects all of its outputs.

Lock Detect

The lock output indicates that there is a stable clock output signal in phase with the reference clock. Without any additional circuitry, the lock signal may toggle as the PLL begins tracking the reference clock. You may need to gate the lock signal for use as a system control. The lock signal from the locked port can drive the logic array or an output pin.

Whenever the PLL loses lock (for example, inclk jitter, clock switchover, PLL reconfiguration, power supply noise, and so on), the PLL must be reset with the areset signal to guarantee correct phase relationship between the PLL output clocks. If the phase relationship between the input clock versus output clock, and between different output clocks from the PLL is not important in the design, then the PLL need not be reset.

See the *Stratix FPGA Errata Sheet* for more information on implementing the gated lock signal in a design.

Programmable Duty Cycle

The programmable duty cycle allows enhanced PLLs to generate clock outputs with a variable duty cycle. This feature is supported on each enhanced PLL post-scale counter (*g*0..*g*3, *l*0..*l*3, *e*0..*e*3). The duty cycle setting is achieved by a low and high time count setting for the post-scale dividers. The Quartus II software uses the frequency input and the required multiply or divide rate to determine the duty cycle choices.

Advanced Clear & Enable Control

There are several control signals for clearing and enabling PLLs and their outputs. You can use these signals to control PLL resynchronization and gate PLL output clocks for low-power applications.

Figure 2–61. Column I/O Block Connection to the Interconnect

Notes to Figure 2–61:

- (1) The 16 control signals are composed of four output enables io_boe[3..0], four clock enables io_bce[3..0], four clocks io_bclk[3..0], and four clear signals io_bclr[3..0].
- (2) The 42 data and control signals consist of 12 data out lines; six lines each for DDR applications io_dataouta[5..0] and io_dataoutb[5..0], six output enables io_coe[5..0], six input clock enables io_cce_in[5..0], six output clock enables io_cce_out[5..0], six clocks io_cclk[5..0], and six clear signals io_cclr[5..0].

Figure 2–64. Stratix IOE in Bidirectional I/O Configuration Note (1)

(1) All input signals to the IOE can be inverted at the IOE.

The Stratix device IOE includes programmable delays that can be activated to ensure zero hold times, input IOE register-to-logic array register transfers, or logic array-to-output IOE register transfers.

A path in which a pin directly drives a register may require the delay to ensure zero hold time, whereas a path in which a pin drives a register through combinatorial logic may not require the delay. Programmable delays exist for decreasing input-pin-to-logic-array and IOE input register delays. The Quartus II Compiler can program these delays to automatically minimize setup time while providing a zero hold time. Programmable delays can increase the register-to-pin delays for output

Programmable Pull-Up Resistor

Each Stratix device I/O pin provides an optional programmable pull-up resistor during user mode. If this feature is enabled for an I/O pin, the pull-up resistor (typically 25 k Ω) weakly holds the output to the V_{CCIO} level of the output pin's bank. Table 2–30 shows which pin types support the weak pull-up resistor feature.

Table 2–30. Programmable Weak Pull-Up Resistor Support								
Pin Type	Programmable Weak Pull-Up Resistor							
I/O pins	\checkmark							
CLK[150]								
FCLK	\checkmark							
FPLL[710]CLK								
Configuration pins								
JTAG pins	✓ (1)							

Note to Table 2-30:

(1) TDO pins do not support programmable weak pull-up resistors.

Advanced I/O Standard Support

Stratix device IOEs support the following I/O standards:

- LVTTL
- LVCMOS
- 1.5 V
- 1.8 V
- 2.5 V
- 3.3-V PCI
- 3.3-V PCI-X 1.0
- 3.3-V AGP (1× and 2×)
- LVDS
- LVPECL
- **3.3-V PCML**
- HyperTransport
- Differential HSTL (on input/output clocks only)
- Differential SSTL (on output column clock pins only)
- GTL/GTL+
- 1.5-V HSTL Class I and II

Table 2–40. EP1S60 Differential Channels (Part 2 of 2) Note (1)													
Destaura	Transmitter/	Total	Maximum	C	enter F	ast PLI	.s	Corner Fast PLLs (2), (3)					
Package	Receiver	Channels	Speed (Mbps)	PLL1	PLL2	PLL3	PLL4	PLL7	PLL8	PLL9	PLL10		
1,020-pin FineLine BGA	Transmitter (4)	80 (12) (7)	840	12 (2)	10 (4)	10 (4)	12 (2)	20	20	20	20		
			840 <i>(5), (8)</i>	22 (6)	22 (6)	22 (6)	22 (6)	20	20	20	20		
	Receiver	80 (10) (7)	840	20	20	20	20	12 (8)	10 (10)	10 (10)	12 (8)		
			840 <i>(5), (8)</i>	40	40	40	40	12 (8)	10 (10)	10 (10)	12 (8)		
1,508-pin FineLine	Transmitter (4)	80 (36) (7)	840	12 (8)	10 (10)	10 (10)	12 (8)	20	20	20	20		
BGA			840 <i>(5),(8)</i>	22 (18)	22 (18)	22 (18)	22 (18)	20	20	20	20		
	Receiver	80 (36) (7)	840	20	20	20	20	12 (8)	10 (10)	10 (10)	12 (8)		
			840 <i>(5),(8)</i>	40	40	40	40	12 (8)	10 (10)	10 (10)	12 (8)		

Table 2–41. EP1S80 Differential Channels (Part 1 of 2) Note (1)											
	Transmitter/	Total Channels	Maximum	C	enter F	ast PLI	_S	Corner Fast PLLs (2), (3)			
Package	Receiver		Speed (Mbps)	PLL1	PLL2	PLL3	PLL4	PLL7	PLL8	PLL9	PLL10
956-pin	Transmitter	80 (40)	840	10	10	10	10	20	20	20	20
BGA	(4)	(7)	840 (5),(8)	20	20	20	20	20	20	20	20
	Receiver	80	840	20	20	20	20	10	10	10	10
			840 (5),(8)	40	40	40	40	10	10	10	10
1,020-pin FineLine	Transmitter (4)	92 (12) (7)	840	10 (2)	10 (4)	10 (4)	10 (2)	20	20	20	20
BGA			840 <i>(5),(8)</i>	20 (6)	20 (6)	20 (6)	20 (6)	20	20	20	20
	Receiver	90 (10) (7)	840	20	20	20	20	10 (2)	10 (3)	10 (3)	10 (2)
			840 <i>(5),(8)</i>	40	40	40	40	10 (2)	10 (3)	10 (3)	10 (2)

Table 3–1. Stratix J	TAG Instructions	
JTAG Instruction	Instruction Code	Description
SAMPLE/PRELOAD	00 0000 0101	Allows a snapshot of signals at the device pins to be captured and examined during normal device operation, and permits an initial data pattern to be output at the device pins. Also used by the SignalTap II embedded logic analyzer.
EXTEST (1)	00 0000 0000	Allows the external circuitry and board-level interconnects to be tested by forcing a test pattern at the output pins and capturing test results at the input pins.
BYPASS	11 1111 1111	Places the 1-bit bypass register between the TDI and TDO pins, which allows the BST data to pass synchronously through selected devices to adjacent devices during normal device operation.
USERCODE	00 0000 0111	Selects the 32-bit USERCODE register and places it between the TDI and TDO pins, allowing the USERCODE to be serially shifted out of TDO.
IDCODE	00 0000 0110	Selects the IDCODE register and places it between TDI and TDO, allowing the IDCODE to be serially shifted out of TDO.
HIGHZ (1)	00 0000 1011	Places the 1-bit bypass register between the TDI and TDO pins, which allows the BST data to pass synchronously through selected devices to adjacent devices during normal device operation, while tri-stating all of the I/O pins.
CLAMP (1)	00 0000 1010	Places the 1-bit bypass register between the TDI and TDO pins, which allows the BST data to pass synchronously through selected devices to adjacent devices during normal device operation while holding I/O pins to a state defined by the data in the boundary-scan register.
ICR instructions		Used when configuring an Stratix device via the JTAG port with a MasterBlaster™, ByteBlasterMV [™] , or ByteBlaster™ II download cable, or when using a Jam File or Jam Byte-Code File via an embedded processor or JRunner.
PULSE_NCONFIG	00 0000 0001	Emulates pulsing the nCONFIG pin low to trigger reconfiguration even though the physical pin is unaffected.
CONFIG_IO	00 0000 1101	Allows configuration of I/O standards through the JTAG chain for JTAG testing. Can be executed before, after, or during configuration. Stops configuration if executed during configuration. Once issued, the CONFIG_IO instruction will hold nSTATUS low to reset the configuration device. nSTATUS is held low until the device is reconfigured.
SignalTap II instructions		Monitors internal device operation with the SignalTap II embedded logic analyzer.

Note to Table 3–1:

(1) Bus hold and weak pull-up resistor features override the high-impedance state of HIGHZ, CLAMP, and EXTEST.

- Stratix, Stratix II, Cyclone[®], and Cyclone II devices must be within the first 17 devices in a JTAG chain. All of these devices have the same JTAG controller. If any of the Stratix, Stratix II, Cyclone, and Cyclone II devices are in the 18th or after they will fail configuration. This does not affect SignalTap II.
- For more information on JTAG, see the following documents:
 - AN 39: IEEE Std. 1149.1 (JTAG) Boundary-Scan Testing in Altera Devices
 - Jam Programming & Test Language Specification

SignalTap II Embedded Logic Analyzer

Stratix devices feature the SignalTap II embedded logic analyzer, which monitors design operation over a period of time through the IEEE Std. 1149.1 (JTAG) circuitry. You can analyze internal logic at speed without bringing internal signals to the I/O pins. This feature is particularly important for advanced packages, such as FineLine BGA[®] packages, because it can be difficult to add a connection to a pin during the debugging process after a board is designed and manufactured.

Configuration

The logic, circuitry, and interconnects in the Stratix architecture are configured with CMOS SRAM elements. Altera® devices are reconfigurable. Because every device is tested with a high-coverage production test program, you do not have to perform fault testing and can focus on simulation and design verification.

Stratix devices are configured at system power-up with data stored in an Altera serial configuration device or provided by a system controller. Altera offers in-system programmability (ISP)-capable configuration devices that configure Stratix devices via a serial data stream. Stratix devices can be configured in under 100 ms using 8-bit parallel data at 100 MHz. The Stratix device's optimized interface allows microprocessors to configure it serially or in parallel, and synchronously or asynchronously. The interface also enables microprocessors to treat Stratix devices as memory and configure them by writing to a virtual memory location, making reconfigured in-circuit by resetting the device and loading new data. Real-time changes can be made during system operation, enabling innovative reconfigurable computing applications.

Operating Modes

The Stratix architecture uses SRAM configuration elements that require configuration data to be loaded each time the circuit powers up. The process of physically loading the SRAM data into the device is called configuration. During initialization, which occurs immediately after

Table 4–13.	Table 4–13. HyperTransport Technology Specifications												
Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Unit							
V _{CCIO}	I/O supply voltage		2.375	2.5	2.625	V							
V _{ID} (peak- to-peak)	Input differential voltage swing (single-ended)		300		900	mV							
V _{ICM}	Input common mode voltage		300		900	mV							
V _{OD}	Output differential voltage (single-ended)	R _L = 100 Ω	380	485	820	mV							
ΔV_{OD}	Change in V _{OD} between high and low	R _L = 100 Ω			50	mV							
V _{OCM}	Output common mode voltage	R _L = 100 Ω	440	650	780	mV							
ΔV_{OCM}	Change in V _{OCM} between high and low	$R_L = 100 \Omega$			50	mV							
RL	Receiver differential input resistor		90	100	110	Ω							

Table 4–14. 3.3-V PCI Specifications												
Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Unit						
V _{CCIO}	Output supply voltage		3.0	3.3	3.6	V						
V _{IH}	High-level input voltage		$0.5 \times V_{CCIO}$		V _{CCIO} + 0.5	V						
V _{IL}	Low-level input voltage		-0.5		$0.3 \times V_{CCIO}$	V						
V _{OH}	High-level output voltage	I _{OUT} = -500 μA	$0.9 \times V_{CCIO}$			V						
V _{OL}	Low-level output voltage	I _{OUT} = 1,500 μA			$0.1 \times V_{CCIO}$	V						

Table 4–33.	Stratix Device Capacitance Note (5)				
Symbol	Parameter	Minimum	Typical	Maximum	Unit
C _{IOTB}	Input capacitance on I/O pins in I/O banks 3, 4, 7, and 8.		11.5		pF
C _{IOLR}	Input capacitance on I/O pins in I/O banks 1, 2, 5, and 6, including high-speed differential receiver and transmitter pins.		8.2		pF
C _{CLKTB}	Input capacitance on top/bottom clock input pins: CLK [4:7] and CLK [12:15].		11.5		pF
C _{CLKLR}	Input capacitance on left/right clock inputs: CLK1, CLK3, CLK8, CLK10.		7.8		pF
C _{CLKLR+}	Input capacitance on left/right clock inputs: CLK0, CLK2, CLK9, and CLK11.		4.4		pF

Notes to Tables 4–10 through 4–33:

- (1) When tx_outclock port of altlvds_tx megafunction is 717 MHz, $V_{OD(min)} = 235$ mV on the output clock pin.
- (2) Pin pull-up resistance values will lower if an external source drives the pin higher than V_{CCIO}.
- (3) Drive strength is programmable according to the values shown in the *Stratix Architecture* chapter of the *Stratix Device Handbook, Volume* 1.
- (4) V_{REF} specifies the center point of the switching range.
- (5) Capacitance is sample-tested only. Capacitance is measured using time-domain reflections (TDR). Measurement accuracy is within ±0.5 pF.
- (6) V_{IO} and V_{CM} have multiple ranges and values for J=1 through 10.

Power Consumption

Altera[®] offers two ways to calculate power for a design: the Altera web power calculator and the PowerGauge[™] feature in the Quartus[®] II software.

The interactive power calculator on the Altera web site is typically used prior to designing the FPGA in order to get a magnitude estimate of the device power. The Quartus II software PowerGauge feature allows you to apply test vectors against your design for more accurate power consumption modeling.

In both cases, these calculations should only be used as an estimation of power, not as a specification.

Stratix devices require a certain amount of power-up current to successfully power up because of the small process geometry on which they are fabricated.

Table 4–34 shows the maximum power-up current (I_{CCINT}) required to power a Stratix device. This specification is for commercial operating conditions. Measurements were performed with an isolated Stratix device on the board to characterize the power-up current of an isolated

Figure 4–3 shows the TriMatrix memory waveforms for the M512, M4K, and M-RAM timing parameters shown in Tables 4–40 through 4–42.

Internal timing parameters are specified on a speed grade basis independent of device density. Tables 4–44 through 4–50 show the internal timing microparameters for LEs, IOEs, TriMatrix memory structures, DSP blocks, and MultiTrack interconnects.

Table 4–4 Descripti	43. Routing Delay Internal Timing Microparameter ons (Part 1 of 2)
Symbol	Parameter
t _{R4}	Delay for an R4 line with average loading; covers a distance of four LAB columns.
t _{R8}	Delay for an R8 line with average loading; covers a distance of eight LAB columns.
t _{R24}	Delay for an R24 line with average loading; covers a distance of 24 LAB columns.

ſ

Table 4–45. IOE Internal TSU Microparameter by Device Density (Part 2 of 2)											
Device	Symbol	-	-5		-6		-7		-8		
Device	əyiinuli	Min	Max	Min	Max	Min	Max	Min	Max		
EP1S40	t _{SU_R}	76		80		80		80		ps	
	t _{SU_C}	376		380		380		380		ps	
EP1S60	t _{SU_R}	276		280		280		280		ps	
	t _{SU_C}	276		280		280		280		ps	
EP1S80	t _{SU_R}	426		430		430		430		ps	
	t _{SU_C}	76		80		80		80		ps	

Table 4–46. IOE Internal Timing Microparameters											
Symbol	-5		-	6	-	7	-	Unit			
Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unit		
t _H	68		71		82		96		ps		
t _{CO_R}		171		179		206		242	ps		
t _{CO_C}		171		179		206		242	ps		
t _{PIN2COMBOUT_R}		1,234		1,295		1,490		1,753	ps		
t _{PIN2COMBOUT_C}		1,087		1,141		1,312		1,544	ps		
t _{COMBIN2PIN_R}		3,894		4,089		4,089		4,089	ps		
t _{COMBIN2PIN_C}		4,299		4,494		4,494		4,494	ps		
t _{CLR}	276		289		333		392		ps		
t _{PRE}	260		273		313		369		ps		
t _{CLKHL}	1,000		1,111		1,190		1,400		ps		

Table 4–47. DSP Block Internal Timing Microparameters (Part 1 of 2)											
Symbol	-5		-6		-7		-8		Unit		
	Min	Max	Min	Max	Min	Max	Min	Max	Unit		
t _{SU}	0		0		0		0		ps		
t _H	67		75		86		101		ps		
t _{CO}		142		158		181		214	ps		
t _{INREG2PIPE9}		2,613		2,982		3,429		4,035	ps		
t _{INREG2PIPE18}		3,390		3,993		4,591		5,402	ps		

Table 4–71. EP1S25 External I/O Timing on Row Pins Using Regional Clock Networks											
Parameter	-5 Speed Grade		-6 Speed Grade		-7 Spee	d Grade	-8 Spee	11			
	Min	Max	Min	Max	Min	Max	Min	Max	Unit		
t _{INSU}	1.793		1.927		2.182		2.542		ns		
t _{INH}	0.000		0.000		0.000		0.000		ns		
t _{OUTCO}	2.759	5.457	2.759	5.835	2.759	6.346	2.759	7.024	ns		
t _{xz}	2.786	5.511	2.786	5.891	2.786	6.414	2.786	7.106	ns		
t _{ZX}	2.786	5.511	2.786	5.891	2.786	6.414	2.786	7.106	ns		
t _{INSUPLL}	1.169		1.221		1.373		1.600		ns		
t _{INHPLL}	0.000		0.000		0.000		0.000		ns		
t _{OUTCOPLL}	1.375	2.861	1.375	2.999	1.375	3.082	1.375	3.174	ns		
t _{XZPLL}	1.402	2.915	1.402	3.055	1.402	3.150	1.402	3.256	ns		
t _{ZXPLL}	1.402	2.915	1.402	3.055	1.402	3.150	1.402	3.256	ns		

Table 4–72. EP1S25 External I/O Timing on Row Pins Using Global Clock Networks										
Parameter	-5 Speed Grade		-6 Speed Grade		-7 Spee	d Grade	-8 Spee	1114		
	Min	Max	Min	Max	Min	Max	Min	Max	Unit	
t _{INSU}	1.665		1.779		2.012		2.372		ns	
t _{INH}	0.000		0.000		0.000		0.000		ns	
t _{outco}	2.834	5.585	2.834	5.983	2.834	6.516	2.834	7.194	ns	
t _{xz}	2.861	5.639	2.861	6.039	2.861	6.584	2.861	7.276	ns	
t _{ZX}	2.861	5.639	2.861	6.039	2.861	6.584	2.861	7.276	ns	
t _{INSUPLL}	1.538		1.606		1.816		2.121		ns	
t _{INHPLL}	0.000		0.000		0.000		0.000		ns	
t _{OUTCOPLL}	1.164	2.492	1.164	2.614	1.164	2.639	1.164	2.653	ns	
t _{XZPLL}	1.191	2.546	1.191	2.670	1.191	2.707	1.191	2.735	ns	
t _{ZXPLL}	1.191	2.546	1.191	2.670	1.191	2.707	1.191	2.735	ns	

Table 4–75. EP1S30 External I/O Timing on Column Pins Using Global Clock Networks (Part 2 of 2)										
Parameter	-5 Speed Grade		-6 Speed Grade		-7 Speed Grade		-8 Speed Grade		Unit	
	Min	Max	Min	Max	Min	Max	Min	Max	Unit	
t _{xz}	2.754	5.406	2.754	5.848	2.754	6.412	2.754	7.159	ns	
t _{ZX}	2.754	5.406	2.754	5.848	2.754	6.412	2.754	7.159	ns	
t _{INSUPLL}	1.265		1.236		1.403		1.756		ns	
t _{INHPLL}	0.000		0.000		0.000		0.000		ns	
t _{OUTCOPLL}	1.068	2.302	1.068	2.483	1.068	2.510	1.068	2.423	ns	
t _{XZPLL}	1.008	2.176	1.008	2.351	1.008	2.386	1.008	2.308	ns	
t _{ZXPLL}	1.008	2.176	1.008	2.351	1.008	2.386	1.008	2.308	ns	

Table 4–76. EP1S30 External I/O Timing on Row Pins Using Fast Regional Clock Networks										
Parameters	-5 Speed Grade		-6 Speed Grade		-7 Speed Grade		-8 Speed Grade		Unit	
	Min	Max	Min	Max	Min	Max	Min	Max	Unit	
t _{INSU}	2.616		2.808		3.223		3.797		ns	
t _{INH}	0.000		0.000		0.000		0.000		ns	
t _{outco}	2.542	5.114	2.542	5.502	2.542	5.965	2.542	6.581	ns	
t _{xz}	2.569	5.168	2.569	5.558	2.569	6.033	2.569	6.663	ns	
t _{ZX}	2.569	5.168	2.569	5.558	2.569	6.033	2.569	6.663	ns	

Definition of I/O Skew

I/O skew is defined as the absolute value of the worst-case difference in clock-to-out times (t_{CO}) between any two output registers fed by a common clock source.

I/O bank skew is made up of the following components:

- Clock network skews: This is the difference between the arrival times of the clock at the clock input port of the two IOE registers.
- Package skews: This is the package trace length differences between (I/O pad A to I/O pin A) and (I/O pad B to I/O pin B).

Figure 4–5 shows an example of two IOE registers located in the same bank, being fed by a common clock source. The clock can come from an input pin or from a PLL output.

Figure 4–5. I/O Skew within an I/O Bank

Table 4–107. Stratix I/O Standard Output Delay Adders for Slow Slew Rate on Column Pins (Part 2 of 2)												
Dowowo	4	-5 Speed Grade		-6 Spee	ed Grade	-7 Spee	d Grade	-8 Spee	d Grade	Unit		
Falanielei		Min	Max	Min	Max	Min	Max	Min	Max	Unit		
3.3-V LVTTL	4 mA		1,822		1,913		1,913		1,913	ps		
	8 mA		1,586		1,665		1,665		1,665	ps		
	12 mA		686		720		720		720	ps		
	16 mA		630		662		662		662	ps		
	24 mA		0		0		0		0	ps		
2.5-V LVTTL	2 mA		2,925		3,071		3,071		3,071	ps		
	8 mA		1,496		1,571		1,571		1,571	ps		
	12 mA		937		984		984		984	ps		
	16 mA		1,003		1,053		1,053		1,053	ps		
1.8-V LVTTL	2 mA		7,101		7,456		7,456		7,456	ps		
	8 mA		3,620		3,801		3,801		3,801	ps		
	12 mA		3,109		3,265		3,265		3,265	ps		
1.5-V LVTTL	2 mA		10,941		11,488		11,488		11,488	ps		
	4 mA		7,431		7,803		7,803		7,803	ps		
	8 mA		5,990		6,290		6,290		6,290	ps		
GTL			-959		-1,007		-1,007		-1,007	ps		
GTL+			-438		-460		-460		-460	ps		
3.3-V PCI			660		693		693		693	ps		
3.3-V PCI-X 1.0	C		660		693		693		693	ps		
Compact PCI			660		693		693		693	ps		
AGP 1×			660		693		693		693	ps		
AGP 2×			288		303		303		303	ps		
CTT			631		663		663		663	ps		
SSTL-3 Class I			301		316		316		316	ps		
SSTL-3 Class I	I		-359		-377		-377		-377	ps		
SSTL-2 Class I			523		549		549		549	ps		
SSTL-2 Class I	I		-49		-51		-51		-51	ps		
SSTL-18 Class I			2,315		2,431		2,431		2,431	ps		
SSTL-18 Class II			723		759		759		759	ps		
1.5-V HSTL Cla	ass I		1,687		1,771		1,771		1,771	ps		
1.5-V HSTL Cla	ass II		1,095		1,150		1,150		1,150	ps		
1.8-V HSTL Cla	ass I		599		629		678		744	ps		
1.8-V HSTL Cla	ass II		87		102		102		102	ps		

Table 4–130. Enhanced PLL Specifications for -8 Speed Grade (Part 2 of 3)											
Symbol	Parameter	Min	Тур	Мах	Unit						
t _{EINJITTER}	External feedback clock period jitter			±200 <i>(3)</i>	ps						
t _{FCOMP}	External feedback clock compensation time (4)			6	ns						
f _{OUT}	Output frequency for internal global or regional clock	0.3		357	MHz						
f _{OUT_EXT}	Output frequency for external clock (3)	0.3		369	MHz						
toutduty	Duty cycle for external clock output (when set to 50%)	45		55	%						
t _{JITTER}	Period jitter for external clock output (6)			±100 ps for >200-MHz outclk ±20 mUI for <200-MHz outclk	ps or mUI						
t _{CONFIG5,6}	Time required to reconfigure the scan chains for PLLs 5 and 6			289/f _{SCANCLK}							
t _{CONFIG11,12}	Time required to reconfigure the scan chains for PLLs 11 and 12			193/f _{SCANCLK}							
t _{SCANCLK}	scanclk frequency (5)			22	MHz						
t _{DLOCK}	Time required to lock dynamically (after switchover or reconfiguring any non-post-scale counters/delays) (7) (11)	(9)		100	μs						
t _{LOCK}	Time required to lock from end of device configuration (11)	10		400	μs						
f _{VCO}	PLL internal VCO operating range	300		600 (8)	MHz						

Index

A

Accumulator 2–63 Adder/Output Blocks 2–61 Adder/Subtractor 2 - 63Accumulator 2 - 63AGP 1x Specifications 4–13 AGP 2x Specifications 4–13 Architecture 2–1 36 x 36 Multiply Mode 2–66 addnsub Signal 2–8 Block Diagram 2-2 Bus Hold 2-121 Byte Alignment 2–140 Carry-Select Chain 2–11 Clear & Preset Logic Control 2–13 Combined Resources 2–78 Dedicated Circuitry 2–137 Device Resources 2–3 Device Routing Scheme 2–20 Digital Signal Processing Block 2–52 Direct Link Connection 2–5 Dynamic Arithmetic Mode 2–10 in LE 2-11 Four-Multipliers Adder Mode 2–68 Functional Description 2–1 LAB Interconnects 2–4 Logic Array Blocks 2–3 Structure 2-4 LE Operating Modes 2–8 Logic Elements 2–6 Modes of Operation 2–64 Multiplier Size & Configurations per DSP block 2-70 Multiply-Accumulator Mode 2–67 MultiTrack Interconnect 2–14 Normal Mode 2–9 in LE 2–9

Open-Drain Output 2–120 Power Sequencing & Hot Socketing 2–140 Programmable Drive Strength 2–119 Programmable Pull-Up Resistor 2–122 Simple Multiplier Mode 2–64 Single-Port Mode 2–51 Slew-Rate Control 2–120 Two-Multipliers Adder Mode 2–67 Adder Mode 2–67 Multiply 2–68

C

Class I Specifications 4–11, 4–12 Class II Specifications 4–11, 4–12, 4–13 Clocks Clock Feedback 2–96 Clock Multiplication & Division 2–88, 2–101 Clock Switchover 2 - 88Delay 2–97 EP1S10, EP1S20 & EP1S25 Device I/O Clock Groups 2 - 80EP1S25, EP1S20 & EP1S10 Device Fast Clock Pin Connections to Fast Regional Clocks 2–77 EP1S30 Device Fast Regional Clock Pin Connections to Fast Regional Clocks 2-78 EP1S30, EP1S40, EP1S60, EP1S80 Device I/O Clock Groups 2 - 81External Clock Inputs 2–102 Outputs 2–92, 2–103 Outputs for Enhanced PLLs 11 & 12 2–95 Outputs for PLLs 5 & 6 2–93 Fast Regional Clock External I/O Timing Parameters 4–34 Fast Regional Clock Network 2–76