Intel - EP1S30F1020I6 Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	3247
Number of Logic Elements/Cells	32470
Total RAM Bits	3317184
Number of I/O	726
Number of Gates	-
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	1020-BBGA
Supplier Device Package	1020-FBGA (33x33)
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep1s30f1020i6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Clear & Preset Logic Control

LAB-wide signals control the logic for the register's clear and preset signals. The LE directly supports an asynchronous clear and preset function. The register preset is achieved through the asynchronous load of a logic high. The direct asynchronous preset does not require a NOTgate push-back technique. Stratix devices support simultaneous preset/ row connections in a four-LAB region. Every LAB has its own set of R4 interconnects to drive either left or right. Figure 2–9 shows R4 interconnect connections from an LAB. R4 interconnects can drive and be driven by DSP blocks and RAM blocks and horizontal IOEs. For LAB interfacing, a primary LAB or LAB neighbor can drive a given R4 interconnect. For R4 interconnects that drive to the right, the primary LAB and right neighbor can drive on to the interconnect. For R4 interconnects can drive other R4 interconnects that drive to the left, the primary LAB and its left neighbor can drive on to the interconnects can drive other R4 interconnects to extend the range of LABs they can drive. R4 interconnects can also drive C4 and C16 interconnects for connections from one row to another. Additionally, R4 interconnects can drive R24 interconnects.

Notes to Figure 2–9:

(1) C4 interconnects can drive R4 interconnects.

(2) This pattern is repeated for every LAB in the LAB row.

The R8 interconnects span eight LABs, M512 or M4K RAM blocks, or DSP blocks to the right or left from a source LAB. These resources are used for fast row connections in an eight-LAB region. Every LAB has its own set of R8 interconnects to drive either left or right. R8 interconnect connections between LABs in a row are similar to the R4 connections shown in Figure 2–9, with the exception that they connect to eight LABs to the right or left, not four. Like R4 interconnects, R8 interconnects can drive and be driven by all types of architecture blocks. R8 interconnects

Figure 2–17. M4K RAM Block Control Signals

Figure 2–18. M4K RAM Block LAB Row Interface

Figure 2–34. Adder/Output Blocks Note (1)

Notes to Figure 2–34:

- (1) Adder/output block shown in Figure 2–34 is in 18×18 -bit mode. In 9×9 -bit mode, there are four adder/subtractor blocks and two summation blocks.
- (2) These signals are either not registered, registered once, or registered twice to match the data path pipeline.

IOE clocks have horizontal and vertical block regions that are clocked by eight I/O clock signals chosen from the 22 quadrant or half-quadrant clock resources. Figures 2–47 and 2–48 show the quadrant and halfquadrant relationship to the I/O clock regions, respectively. The vertical regions (column pins) have less clock delay than the horizontal regions (row pins).

Figure 2–54. Dynamically Programmable Counters & Delays in Stratix Device Enhanced PLLs

PLL reconfiguration data is shifted into serial registers from the logic array or external devices. The PLL input shift data uses a reference input shift clock. Once the last bit of the serial chain is clocked in, the register chain is synchronously loaded into the PLL configuration bits. The shift circuitry also provides an asynchronous clear for the serial registers.

For more information on PLL reconfiguration, see AN 282: Implementing PLL Reconfiguration in Stratix & Stratix GX Devices.

Programmable Bandwidth

You have advanced control of the PLL bandwidth using the programmable control of the PLL loop characteristics, including loop filter and charge pump. The PLL's bandwidth is a measure of its ability to track the input clock and jitter. A high-bandwidth PLL can quickly lock onto a reference clock and react to any changes in the clock. It also will allow a wide band of input jitter spectrum to pass to the output. A lowbandwidth PLL will take longer to lock, but it will attenuate all highfrequency jitter components. The Quartus II software can adjust PLL characteristics to achieve the desired bandwidth. The programmable Each IOE contains its own control signal selection for the following control signals: oe, ce_in, ce_out, aclr/preset, sclr/preset, clk_in, and clk_out. Figure 2–63 illustrates the control signal selection.

Figure 2–63. Control Signal Selection per IOE

In normal bidirectional operation, the input register can be used for input data requiring fast setup times. The input register can have its own clock input and clock enable separate from the OE and output registers. The output register can be used for data requiring fast clock-to-output performance. The OE register can be used for fast clock-to-output enable timing. The OE and output register share the same clock source and the same clock enable source from local interconnect in the associated LAB, dedicated I/O clocks, and the column and row interconnects. Figure 2–64 shows the IOE in bidirectional configuration.

Figure 2–64. Stratix IOE in Bidirectional I/O Configuration Note (1)

(1) All input signals to the IOE can be inverted at the IOE.

The Stratix device IOE includes programmable delays that can be activated to ensure zero hold times, input IOE register-to-logic array register transfers, or logic array-to-output IOE register transfers.

A path in which a pin directly drives a register may require the delay to ensure zero hold time, whereas a path in which a pin drives a register through combinatorial logic may not require the delay. Programmable delays exist for decreasing input-pin-to-logic-array and IOE input register delays. The Quartus II Compiler can program these delays to automatically minimize setup time while providing a zero hold time. Programmable delays can increase the register-to-pin delays for output

Figure 2–67. Stratix IOE in DDR Output I/O Configuration Notes (1), (2)

Notes to Figure 2–67:

- (1) All input signals to the IOE can be inverted at the IOE.
- (2) The tristate is by default active high. It can, however, be designed to be active low.

Table 2–32. I/O Support by Bank (Part 2 of 2)									
I/O Standard	Top & Bottom Banks (3, 4, 7 & 8)	Left & Right Banks (1, 2, 5 & 6)	Enhanced PLL External Clock Output Banks (9, 10, 11 & 12)						
SSTL-3 Class II	\checkmark	\checkmark	\checkmark						
AGP (1× and 2×)	~		\checkmark						
СТТ	\checkmark	\checkmark	\checkmark						

Each I/O bank has its own VCCIO pins. A single device can support 1.5-, 1.8-, 2.5-, and 3.3-V interfaces; each bank can support a different standard independently. Each bank also has dedicated VREF pins to support any one of the voltage-referenced standards (such as SSTL-3) independently.

Each I/O bank can support multiple standards with the same V_{CCIO} for input and output pins. Each bank can support one voltage-referenced I/O standard. For example, when V_{CCIO} is 3.3 V, a bank can support LVTTL, LVCMOS, 3.3-V PCI, and SSTL-3 for inputs and outputs.

Differential On-Chip Termination

Stratix devices provide differential on-chip termination (LVDS I/O standard) to reduce reflections and maintain signal integrity. Differential on-chip termination simplifies board design by minimizing the number of external termination resistors required. Termination can be placed inside the package, eliminating small stubs that can still lead to reflections. The internal termination is designed using transistors in the linear region of operation.

Stratix devices support internal differential termination with a nominal resistance value of 137.5 Ω for LVDS input receiver buffers. LVPECL signals require an external termination resistor. Figure 2–71 shows the device with differential termination.

Table 4–9. Overshoot Input Voltage wi	ith Respect to Duty Cycle (Part 2 of 2)
Vin (V)	Maximum Duty Cycle (%)
4.3	30
4.4	17
4.5	10

Figures 4–1 and 4–2 show receiver input and transmitter output waveforms, respectively, for all differential I/O standards (LVDS, 3.3-V PCML, LVPECL, and HyperTransport technology).

Figure 4–1. Receiver Input Waveforms for Differential I/O Standards

Table 4–65. EP1S20 External I/O Timing on Row Pins Using Regional Clock Networks Note (1)												
Doromotor	-5 Spee	d Grade	-6 Spee	-6 Speed Grade		d Grade	-8 Spee	Unit				
Faraineter	Min	Max	Min	Max	Min	Max	Min	Max	UIII			
t _{INSU}	1.815		1.967		2.258		NA		ns			
t _{INH}	0.000		0.000		0.000		NA		ns			
t _{OUTCO}	2.633	5.235	2.663	5.595	2.663	6.070	NA	NA	ns			
t _{xz}	2.660	5.289	2.660	5.651	2.660	6.138	NA	NA	ns			
t _{ZX}	2.660	5.289	2.660	5.651	2.660	6.138	NA	NA	ns			
t _{INSUPLL}	1.060		1.112		1.277		NA		ns			
t _{INHPLL}	0.000		0.000		0.000		NA		ns			
t _{OUTCOPLL}	1.325	2.770	1.325	2.908	1.325	2.978	NA	NA	ns			
t _{XZPLL}	1.352	2.824	1.352	2.964	1.352	3.046	NA	NA	ns			
t _{ZXPLL}	1.352	2.824	1.352	2.964	1.352	3.046	NA	NA	ns			

Table 4–66. EP1S20 External I/O Timing on Row Pins Using Global Clock Networks Note (1)												
Doromotor	-5 Spee	d Grade	-6 Spee	-6 Speed Grade		d Grade	-8 Spee	Unit				
Parameter	Min	Max	Min	Max	Min	Max	Min	Max	Unit			
t _{INSU}	1.742		1.887		2.170		NA		ns			
t _{INH}	0.000		0.000		0.000		NA		ns			
t _{OUTCO}	2.674	5.308	2.674	5.675	2.674	6.158	NA	NA	ns			
t _{xz}	2.701	5.362	2.701	5.731	2.701	6.226	NA	NA	ns			
t _{ZX}	2.701	5.362	2.701	5.731	2.701	6.226	NA	NA	ns			
t _{INSUPLL}	1.353		1.418		1.613		NA		ns			
t _{INHPLL}	0.000		0.000		0.000		NA		ns			
t _{OUTCOPLL}	1.158	2.447	1.158	2.602	1.158	2.642	NA	NA	ns			
t _{XZPLL}	1.185	2.531	1.158	2.602	1.185	2.710	NA	NA	ns			
t _{ZXPLL}	1.185	2.531	1.158	2.602	1.185	2.710	NA	NA	ns			

Note to Tables 4–61 *to* 4–66:

(1) Only EP1S25, EP1S30, and EP1S40 have a speed grade of -8.

Table 4–69. EP1S25 External I/O Timing on Column Pins Using Global Clock Networks												
Doromotor	-5 Speed Grade		-6 Spee	-6 Speed Grade		d Grade	-8 Spee	Unit				
Farailieler	Min	Max	Min	Max	Min	Max	Min	Max	Unit			
t _{INSU}	1.371		1.471		1.657		1.916		ns			
t _{INH}	0.000		0.000		0.000		0.000		ns			
t _{OUTCO}	2.809	5.516	2.809	5.890	2.809	6.429	2.809	7.155	ns			
t _{xz}	2.749	5.390	2.749	5.758	2.749	6.305	2.749	7.040	ns			
t _{ZX}	2.749	5.390	2.749	5.758	2.749	6.305	2.749	7.040	ns			
t _{INSUPLL}	1.271		1.327		1.491		1.677		ns			
t _{INHPLL}	0.000		0.000		0.000		0.000		ns			
t _{OUTCOPLL}	1.124	2.396	1.124	2.492	1.124	2.522	1.124	2.602	ns			
t _{XZPLL}	1.064	2.270	1.064	2.360	1.064	2.398	1.064	2.487	ns			
t _{ZXPLL}	1.064	2.270	1.064	2.360	1.064	2.398	1.064	2.487	ns			

Table 4–70. EP1S25 External I/O Timing on Row Pins Using Fast Regional Clock Networks											
Doromotor	-5 Spee	d Grade	-6 Spee	d Grade	-7 Spee	d Grade	-8 Spee	Unit			
Farailieler	Min	Max	Min	Max	Min	Max	Min	Max	Unit		
t _{INSU}	2.429		2.631		2.990		3.503		ns		
t _{INH}	0.000		0.000		0.000		0.000		ns		
t _{OUTCO}	2.376	4.821	2.376	5.131	2.376	5.538	2.376	6.063	ns		
t _{xz}	2.403	4.875	2.403	5.187	2.403	5.606	2.403	6.145	ns		
t _{ZX}	2.403	4.875	2.403	5.187	2.403	5.606	2.403	6.145	ns		

Table 4–95. EP1S80 External I/O Timing on Row Pins Using Regional Clock Networks Note (1)												
Parameter	-5 Spee	d Grade	-6 Speed Grade		-7 Spee	d Grade	-8 Spee	Unit				
	Min	Max	Min	Max	Min	Max	Min	Max				
t _{INSU}	2.295		2.454		2.767		NA		ns			
t _{INH}	0.000		0.000		0.000		NA		ns			
t _{OUTCO}	2.917	5.732	2.917	6.148	2.917	6.705	NA	NA	ns			
t _{XZ}	2.944	5.786	2.944	6.204	2.944	6.773	NA	NA	ns			
t _{ZX}	2.944	5.786	2.944	6.204	2.944	6.773	NA	NA	ns			
t _{INSUPLL}	1.011		1.161		1.372		NA		ns			
t _{INHPLL}	0.000		0.000		0.000		NA		ns			
t _{OUTCOPLL}	1.808	3.169	1.808	3.209	1.808	3.233	NA	NA	ns			
t _{XZPLL}	1.835	3.223	1.835	3.265	1.835	3.301	NA	NA	ns			
t _{ZXPLL}	1.835	3.223	1.835	3.265	1.835	3.301	NA	NA	ns			

Table 4–96. EP1S80 External I/O Timing on Rows Using Pin Global Clock Networks Note (1)												
Symbol	-5 Speed Grade		-6 Spee	-6 Speed Grade		d Grade	-8 Spee	Unit				
Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unit			
t _{INSU}	1.362		1.451		1.613		NA		ns			
t _{INH}	0.000		0.000		0.000		NA		ns			
t _{outco}	3.457	6.665	3.457	7.151	3.457	7.859	NA	NA	ns			
t _{xz}	3.484	6.719	3.484	7.207	3.484	7.927	NA	NA	ns			
t _{ZX}	3.484	6.719	3.484	7.207	3.484	7.927	NA	NA	ns			
t _{INSUPLL}	0.994		1.143		1.351		NA		ns			
t _{INHPLL}	0.000		0.000		0.000		NA		ns			
t _{OUTCOPLL}	1.821	3.186	1.821	3.227	1.821	3.254	NA	NA	ns			
t _{XZPLL}	1.848	3.240	1.848	3.283	1.848	3.322	NA	NA	ns			
t _{ZXPLL}	1.848	3.240	1.848	3.283	1.848	3.322	NA	NA	ns			

Note to Tables 4–91 *to* 4–96:

(1) Only EP1S25, EP1S30, and EP1S40 devices have the -8 speed grade.

Table 4–105. Stratix I/O Standard Output Delay Adders for Fast Slew Rate on Column Pins (Part 2 of 2)											
Paramotor	-5 Speed Grade		-6 Speed Grade		-7 Spee	d Grade	-8 Spee	Unit			
Farameter	Min	Max	Min	Max	Min	Max	Min	Max	Unit		
CTT		973		1,021		1,021		1,021	ps		
SSTL-3 Class I		719		755		755		755	ps		
SSTL-3 Class II		146		153		153		153	ps		
SSTL-2 Class I		678		712		712		712	ps		
SSTL-2 Class II		223		234		234		234	ps		
SSTL-18 Class I		1,032		1,083		1,083		1,083	ps		
SSTL-18 Class II		447		469		469		469	ps		
1.5-V HSTL Class I		660		693		693		693	ps		
1.5-V HSTL Class II		537		564		564		564	ps		
1.8-V HSTL Class I		304		319		319		319	ps		
1.8-V HSTL Class II		231		242		242		242	ps		

Table 4–106.	Stratix I/O S	Standard	Output De	elay Adde	rs for Fas	t Slew Ra	te on Rov	v Pins	(Part 1 of	2)
Paramo	tor	-5 Spee	d Grade	-6 Spee	-6 Speed Grade		d Grade	-8 Spee	Unit	
Falalit		Min	Max	Min	Max	Min	Max	Min	Max	Unit
LVCMOS	2 mA		1,518		1,594		1,594		1,594	ps
	4 mA		746		783		783		783	ps
	8 mA		96		100		100		100	ps
	12 mA		0		0		0		0	ps
3.3-V LVTTL	4 mA		1,518		1,594		1,594		1,594	ps
	8 mA		1,038		1,090		1,090		1,090	ps
	12 mA		521		547		547		547	ps
	16 mA		414		434		434		434	ps
	24 mA		0		0		0		0	ps
2.5-V LVTTL	2 mA		2,032		2,133		2,133		2,133	ps
	8 mA		699		734		734		734	ps
	12 mA		374		392		392		392	ps
	16 mA		165		173		173		173	ps
1.8-V LVTTL	2 mA		3,714		3,899		3,899		3,899	ps
	8 mA		1,055		1,107		1,107		1,107	ps
	12 mA		830		871		871		871	ps

Tables 4–109 and 4–110 show the adder delays for the column and row IOE programmable delays. These delays are controlled with the Quartus II software logic options listed in the Parameter column.

Table 4–109. Stratix	IOE Progra	ammable	Delays d	on Colun	nn Pins /	lote (1)				
Demonster	0	-5 Spee	d Grade	-6 Spee	d Grade	-7 Speed Grade		-8 Spee	d Grade	11
Parameter	Setting	Min	Max	Min	Max	Min	Max	Min	Max	Unit
Decrease input delay	Off		3,970		4,367		5,022		5,908	ps
to internal cells	Small		3,390		3,729		4,288		5,045	ps
	Medium		2,810		3,091		3,554		4,181	ps
	Large		224		235		270		318	ps
	On		224		235		270		318	ps
Decrease input delay	Off		3,900		4,290		4,933		5,804	ps
to input register	On		0		0		0		0	ps
Decrease input delay	Off		1,240		1,364		1,568		1,845	ps
to output register	On		0		0		0		0	ps
Increase delay to	Off		0		0		0		0	ps
Increase delay to output pin	On		397		417		417		417	ps
Increase delay to output enable pin Increase output clock	Off		0		0		0		0	ps
	On		338		372		427		503	ps
Increase output clock	Off		0		0		0		0	ps
enable delay	Small		540		594		683		804	ps
	Large		1,016		1,118		1,285		1,512	ps
	On		1,016		1,118		1,285		1,512	ps
Increase input clock	Off		0		0		0		0	ps
enable delay	Small		540		594		683		804	ps
	Large		1,016		1,118		1,285		1,512	ps
	On		1,016		1,118		1,285		1,512	ps
Increase output	Off		0		0		0		0	ps
ncrease output enable clock enable delav	Small		540		594		683		804	ps
uciay	Large		1,016		1,118		1,285		1,512	ps
	On		1,016		1,118		1,285		1,512	ps
Increase t _{ZX} delay to	Off		0		0		0		0	ps
output pin	On		2,199		2,309		2,309		2,309	ps

Table 4–125. High-Speed I/O Specifications for Flip-Chip Packages (Part 4 of 4) Notes (1), (2)														
Symbol	Conditions	-5 Speed Grade		-6 Speed Grade			-7 Speed Grade			-8 Speed Grade			Unit	
		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
t _{DUTY}	LVDS ($J = 2$ through 10)	47.5	50	52.5	47.5	50	52.5	47.5	50	52.5	47.5	50	52.5	%
	LVDS (J=1) and LVPECL, PCML, HyperTransport technology	45	50	55	45	50	55	45	50	55	45	50	55	%
t _{LOCK}	All			100			100			100			100	μs

Notes to Table 4–125:

(1) When J = 4, 7, 8, and 10, the SERDES block is used.

(2) When J = 2 or J = 1, the SERDES is bypassed.

Table 4–127. Enhanced PLL Specifications for -5 Speed Grades (Part 2 of 2)								
Symbol	Parameter	Min	Тур	Мах	Unit			
t _{skew}	Clock skew between two external clock outputs driven by the different counters with the same settings		±75		ps			
f _{SS}	Spread spectrum modulation frequency	30		150	kHz			
% spread	Percentage spread for spread spectrum frequency (10)	0.4	0.5	0.6	%			
t _{ARESET}	Minimum pulse width on areset signal	10			ns			
t _{areset_recon} fig	Minimum pulse width on the areset signal when using PLL reconfiguration. Reset the PLL after scandataout goes high.	500			ns			

Table 4–128. Enhanced PLL Specifications for -6 Speed Grades (Part 1 of 2)								
Symbol	Parameter	Min	Тур	Мах	Unit			
f _{IN}	Input clock frequency	3 (1), (2)		650	MHz			
f _{INPFD}	Input frequency to PFD	3		420	MHz			
f _{INDUTY}	Input clock duty cycle	40		60	%			
f _{EINDUTY}	External feedback clock input duty cycle	40		60	%			
t _{INJITTER}	Input clock period jitter			±200 (3)	ps			
t _{EINJITTER}	External feedback clock period jitter			±200 <i>(3)</i>	ps			
t _{FCOMP}	External feedback clock compensation time (4)			6	ns			
f _{OUT}	Output frequency for internal global or regional clock	0.3		450	MHz			
f _{OUT_EXT}	Output frequency for external clock (3)	0.3		500	MHz			
t _{outduty}	Duty cycle for external clock output (when set to 50%)	45		55	%			
t _{JITTER}	Period jitter for external clock output (6)			±100 ps for >200-MHz outclk ±20 mUI for <200-MHz outclk	ps or mUI			
t _{CONFIG5,6}	Time required to reconfigure the scan chains for PLLs 5 and 6			289/f _{SCANCLK}				
t _{CONFIG11,12}	Time required to reconfigure the scan chains for PLLs 11 and 12			193/f _{SCANCLK}				

Differential HSTL Specifications 4–15 DSP Block Diagram Configuration for 18 x 18-Bit 2-55 for 9 x 9-Bit 2–56 Block Interconnect Interface 2–71 Block Interface 2–70 Block Signal Sources & Destinations 2–73 Blocks Arranged in Columns 2–53 in Stratix Devices 2-54 Input Register Modes 2-60 Input Registers 2–58 Multiplier 2 - 60Block 2-57 Signed Representation 2–60 Sub-Block 2-57 Sub-Blocks Using Input Shift Register Connections 2–59 Pipeline/Post Multiply Register 2-61

Ε

EP1S10 Devices Column Pin Fast Regional Clock External I/O Timing Parameters 4–36 Global Clock External I/O Timing Parameters 4-37 Regional Clock External I/O Timing Parameters 4–36 Row Pin Fast Regional Clock External I/O Timing Parameters 4-37 Global Clock External I/O Timing Parameters 4-38 Regional Clock External I/O Timing Parameters 4–38 EP1S20 Devices Column Pin Fast Regional Clock External I/O Timing Parameters 4-39 Global Clock External I/O Timing Parameters 4-40 Regional Clock External I/O Timing

Parameters 4-39 Row Pin Fast Regional Clock External I/O Timing Parameters 4–40 Global Clock External I/O Timing Parameters 4-41 Regional Clock External I/O Timing Parameters 4-41 EP1S25 Devices Column Pin Fast Regional Clock External I/O Timing Parameters 4-42 Global Clock External I/O Timing Parameters 4-43 Regional Clock External I/O Timing Parameters 4-42 Row Pin Fast Regional Clock External I/O Timing Parameters 4-43 Global Clock External I/O Timing Parameters 4-44 Regional Clock External I/O Timing Parameters 4–44 **EP1S30** Devices Column Pin Fast Regional Clock External I/O Timing Parameters 4–45 Global Clock External I/O Timing Parameters 4-45 Regional Clock External I/O Timing Parameters 4-45 Row Pin Fast Regional Clock External I/O Timing Parameters 4-46 Global Clock External I/O Timing Parameters 4-47 Regional Clock External I/O Timing Parameters 4-47 **EP1S40** Devices Column Pin Fast Regional Clock External I/O Timing Parameters 4–48 Global Clock External I/O Timing Parameters 4–49 Regional Clock External I/O Timing Parameters 4-48 Row Pin