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2. Stratix Architecture

Functional 
Description

Stratix® devices contain a two-dimensional row- and column-based 
architecture to implement custom logic. A series of column and row 
interconnects of varying length and speed provide signal interconnects 
between logic array blocks (LABs), memory block structures, and DSP 
blocks.

The logic array consists of LABs, with 10 logic elements (LEs) in each 
LAB. An LE is a small unit of logic providing efficient implementation of 
user logic functions. LABs are grouped into rows and columns across the 
device.

M512 RAM blocks are simple dual-port memory blocks with 512 bits plus 
parity (576 bits). These blocks provide dedicated simple dual-port or 
single-port memory up to 18-bits wide at up to 318 MHz. M512 blocks are 
grouped into columns across the device in between certain LABs.

M4K RAM blocks are true dual-port memory blocks with 4K bits plus 
parity (4,608 bits). These blocks provide dedicated true dual-port, simple 
dual-port, or single-port memory up to 36-bits wide at up to 291 MHz. 
These blocks are grouped into columns across the device in between 
certain LABs. 

M-RAM blocks are true dual-port memory blocks with 512K bits plus 
parity (589,824 bits). These blocks provide dedicated true dual-port, 
simple dual-port, or single-port memory up to 144-bits wide at up to 
269 MHz. Several M-RAM blocks are located individually or in pairs 
within the device’s logic array.

Digital signal processing (DSP) blocks can implement up to either eight 
full-precision 9 × 9-bit multipliers, four full-precision 18 × 18-bit 
multipliers, or one full-precision 36 × 36-bit multiplier with add or 
subtract features. These blocks also contain 18-bit input shift registers for 
digital signal processing applications, including FIR and infinite impulse 
response (IIR) filters. DSP blocks are grouped into two columns in each 
device.

Each Stratix device I/O pin is fed by an I/O element (IOE) located at the 
end of LAB rows and columns around the periphery of the device. I/O 
pins support numerous single-ended and differential I/O standards. 
Each IOE contains a bidirectional I/O buffer and six registers for 
registering input, output, and output-enable signals. When used with 
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The number of M512 RAM, M4K RAM, and DSP blocks varies by device 
along with row and column numbers and M-RAM blocks. Table 2–1 lists 
the resources available in Stratix devices.

Logic Array 
Blocks

Each LAB consists of 10 LEs, LE carry chains, LAB control signals, local 
interconnect, LUT chain, and register chain connection lines. The local 
interconnect transfers signals between LEs in the same LAB. LUT chain 
connections transfer the output of one LE’s LUT to the adjacent LE for fast 
sequential LUT connections within the same LAB. Register chain 
connections transfer the output of one LE’s register to the adjacent LE’s 
register within an LAB. The Quartus® II Compiler places associated logic 
within an LAB or adjacent LABs, allowing the use of local, LUT chain, 
and register chain connections for performance and area efficiency. 
Figure 2–2 shows the Stratix LAB.

Table 2–1. Stratix Device Resources

Device M512 RAM 
Columns/Blocks

M4K RAM 
Columns/Blocks

M-RAM 
Blocks

DSP Block 
Columns/Blocks

LAB 
Columns LAB Rows

EP1S10 4 / 94 2 / 60 1 2 / 6 40 30

EP1S20 6 / 194 2 / 82 2 2 / 10 52 41

EP1S25 6 / 224 3 / 138 2 2 / 10 62 46

EP1S30 7 / 295 3 / 171 4 2 / 12 67 57

EP1S40 8 / 384 3 / 183 4 2 / 14 77 61

EP1S60 10 / 574 4 / 292 6 2 / 18 90 73

EP1S80 11 / 767 4 / 364 9 2 / 22 101 91
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functions. Another special packing mode allows the register output to 
feed back into the LUT of the same LE so that the register is packed with 
its own fan-out LUT. This provides another mechanism for improved 
fitting. The LE can also drive out registered and unregistered versions of 
the LUT output.

LUT Chain & Register Chain

In addition to the three general routing outputs, the LEs within an LAB 
have LUT chain and register chain outputs. LUT chain connections allow 
LUTs within the same LAB to cascade together for wide input functions. 
Register chain outputs allow registers within the same LAB to cascade 
together. The register chain output allows an LAB to use LUTs for a single 
combinatorial function and the registers to be used for an unrelated shift 
register implementation. These resources speed up connections between 
LABs while saving local interconnect resources. See “MultiTrack 
Interconnect” on page 2–14 for more information on LUT chain and 
register chain connections.

addnsub Signal

The LE’s dynamic adder/subtractor feature saves logic resources by 
using one set of LEs to implement both an adder and a subtractor. This 
feature is controlled by the LAB-wide control signal addnsub. The 
addnsub signal sets the LAB to perform either A + B or A – B. The LUT 
computes addition, and subtraction is computed by adding the two’s 
complement of the intended subtractor. The LAB-wide signal converts to 
two’s complement by inverting the B bits within the LAB and setting 
carry-in = 1 to add one to the least significant bit (LSB). The LSB of an 
adder/subtractor must be placed in the first LE of the LAB, where the 
LAB-wide addnsub signal automatically sets the carry-in to 1. The 
Quartus II Compiler automatically places and uses the adder/subtractor 
feature when using adder/subtractor parameterized functions.

LE Operating Modes

The Stratix LE can operate in one of the following modes:

■ Normal mode
■ Dynamic arithmetic mode

Each mode uses LE resources differently. In each mode, eight available 
inputs to the LE—the four data inputs from the LAB local interconnect; 
carry-in0 and carry-in1 from the previous LE; the LAB carry-in 
from the previous carry-chain LAB; and the register chain connection—
are directed to different destinations to implement the desired logic 
function. LAB-wide signals provide clock, asynchronous clear, 
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Input/Output Clock Mode

Input/output clock mode can be implemented for both the true and 
simple dual-port memory modes. On each of the two ports, A or B, one 
clock controls all registers for inputs into the memory block: data input, 
wren, and address. The other clock controls the block’s data output 
registers. Each memory block port, A or B, also supports independent 
clock enables and asynchronous clear signals for input and output 
registers. Figures 2–25 and 2–26 show the memory block in input/output 
clock mode.
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Figure 2–25. Input/Output Clock Mode in True Dual-Port Mode Notes (1), (2)

Notes to Figure 2–25:
(1) All registers shown have asynchronous clear ports.
(2) Violating the setup or hold time on the address registers could corrupt the memory 

contents. This applies to both read and write operations.
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Figure 2–27. Read/Write Clock Mode in Simple Dual-Port Mode Notes (1), (2)

Notes to Figure 2–27:
(1) All registers shown except the rden register have asynchronous clear ports.
(2) Violating the setup or hold time on the address registers could corrupt the memory contents. This applies to both 

read and write operations.
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Figure 2–30. DSP Block Diagram for 18 × 18-Bit Configuration
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clock signals are routed from LAB row clocks and are generated from 
specific LAB rows at the DSP block interface. The LAB row source for 
control signals, data inputs, and outputs is shown in Table 2–17.

PLLs & Clock 
Networks

Stratix devices provide a hierarchical clock structure and multiple PLLs 
with advanced features. The large number of clocking resources in 
combination with the clock synthesis precision provided by enhanced 
and fast PLLs provides a complete clock management solution.

Global & Hierarchical Clocking

Stratix devices provide 16 dedicated global clock networks, 16 regional 
clock networks (four per device quadrant), and 8 dedicated fast regional 
clock networks (for EP1S10, EP1S20, and EP1S25 devices), and 
16 dedicated fast regional clock networks (for EP1S30 EP1S40, and 
EP1S60, and EP1S80 devices). These clocks are organized into a 
hierarchical clock structure that allows for up to 22 clocks per device 
region with low skew and delay. This hierarchical clocking scheme 
provides up to 48 unique clock domains within Stratix devices.

Table 2–17. DSP Block Signal Sources & Destinations

LAB Row at 
Interface

Control Signals 
Generated Data Inputs Data Outputs

1 signa A1[17..0] OA[17..0]

2 aclr0
accum_sload0

B1[17..0] OB[17..0]

3 addnsub1
clock0
ena0

A2[17..0] OC[17..0]

4 aclr1
clock1
ena1

B2[17..0] OD[17..0]

5 aclr2
clock2
ena2

A3[17..0] OE[17..0]

6 sign_b
clock3
ena3

B3[17..0] OF[17..0]

7 clear3
accum_sload1

A4[17..0] OG[17..0]

8 addnsub3 B4[17..0] OH[17..0]
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provide general purpose clocking with multiplication and phase shifting 
as well as high-speed outputs for high-speed differential I/O support. 
Enhanced and fast PLLs work together with the Stratix high-speed I/O 
and advanced clock architecture to provide significant improvements in 
system performance and bandwidth.

The Quartus II software enables the PLLs and their features without 
requiring any external devices. Table 2–18 shows the PLLs available for 
each Stratix device.

Table 2–18. Stratix Device PLL Availability

Device
Fast PLLs Enhanced PLLs

1 2 3 4 7 8 9 10 5(1) 6(1) 11(2) 12(2)

EP1S10 v v v v v v

EP1S20 v v v v v v

EP1S25 v v v v v v

EP1S30 v v v v v (3) v (3) v (3) v (3) v v

EP1S40 v v v v v (3) v (3) v (3) v (3) v v v(3) v(3)

EP1S60 v v v v v v v v v v v v

EP1S80 v v v v v v v v v v v v

Notes to Table 2–18:
(1) PLLs 5 and 6 each have eight single-ended outputs or four differential outputs.
(2) PLLs 11 and 12 each have one single-ended output.
(3) EP1S30 and EP1S40 devices do not support these PLLs in the 780-pin FineLine BGA® package.
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Clock Multiplication & Division

Each Stratix device enhanced PLL provides clock synthesis for PLL 
output ports using m/(n × post-scale counter) scaling factors. The input 
clock is divided by a pre-scale divider, n, and is then multiplied by the m 
feedback factor. The control loop drives the VCO to match fIN × (m/n). 
Each output port has a unique post-scale counter that divides down the 
high-frequency VCO. For multiple PLL outputs with different 
frequencies, the VCO is set to the least common multiple of the output 
frequencies that meets its frequency specifications. Then, the post-scale 
dividers scale down the output frequency for each output port. For 
example, if output frequencies required from one PLL are 33 and 66 MHz, 
set the VCO to 330 MHz (the least common multiple in the VCO’s range). 
There is one pre-scale counter, n, and one multiply counter, m, per PLL, 
with a range of 1 to 512 on each. There are two post-scale counters (l) for 
regional clock output ports, four counters (g) for global clock output 
ports, and up to four counters (e) for external clock outputs, all ranging 
from 1 to 1024 with a 50% duty cycle setting. The post-scale counters 
range from 1 to 512 with any non-50% duty cycle setting. The Quartus II 
software automatically chooses the appropriate scaling factors according 
to the input frequency, multiplication, and division values entered.

Clock Switchover

To effectively develop high-reliability network systems, clocking schemes 
must support multiple clocks to provide redundancy. For this reason, 
Stratix device enhanced PLLs support a flexible clock switchover 
capability. Figure 2–53 shows a block diagram of the switchover 
circuit.The switchover circuit is configurable, so you can define how to 
implement it. Clock-sense circuitry automatically switches from the 
primary to secondary clock for PLL reference when the primary clock 
signal is not present.
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The pllenable pin is a dedicated pin that enables/disables PLLs. When 
the pllenable pin is low, the clock output ports are driven by GND and 
all the PLLs go out of lock. When the pllenable pin goes high again, the 
PLLs relock and resynchronize to the input clocks. You can choose which 
PLLs are controlled by the pllenable signal by connecting the 
pllenable input port of the altpll megafunction to the common 
pllenable input pin.

The areset signals are reset/resynchronization inputs for each PLL. The 
areset signal should be asserted every time the PLL loses lock to 
guarantee correct phase relationship between the PLL output clocks. 
Users should include the areset signal in designs if any of the following 
conditions are true:

■ PLL Reconfiguration or Clock switchover enables in the design.
■ Phase relationships between output clocks need to be maintained 

after a loss of lock condition

The device input pins or logic elements (LEs) can drive these input 
signals. When driven high, the PLL counters will reset, clearing the PLL 
output and placing the PLL out of lock. The VCO will set back to its 
nominal setting (~700 MHz). When driven low again, the PLL will 
resynchronize to its input as it relocks. If the target VCO frequency is 
below this nominal frequency, then the output frequency will start at a 
higher value than desired as the PLL locks. If the system cannot tolerate 
this, the clkena signal can disable the output clocks until the PLL locks.

The pfdena signals control the phase frequency detector (PFD) output 
with a programmable gate. If you disable the PFD, the VCO operates at 
its last set value of control voltage and frequency with some long-term 
drift to a lower frequency. The system continues running when the PLL 
goes out of lock or the input clock is disabled. By maintaining the last 
locked frequency, the system has time to store its current settings before 
shutting down. You can either use your own control signal or a clkloss 
status signal to trigger pfdena.

The clkena signals control the enhanced PLL regional and global 
outputs. Each regional and global output port has its own clkena signal. 
The clkena signals synchronously disable or enable the clock at the PLL 
output port by gating the outputs of the g and l counters. The clkena 
signals are registered on the falling edge of the counter output clock to 
enable or disable the clock without glitches. Figure 2–57 shows the 
waveform example for a PLL clock port enable. The PLL can remain 
locked independent of the clkena signals since the loop-related counters 
are not affected. This feature is useful for applications that require a low 
power or sleep mode. Upon re-enabling, the PLL does not need a 
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Stratix devices have an I/O interconnect similar to the R4 and C4 
interconnect to drive high-fanout signals to and from the I/O blocks. 
There are 16 signals that drive into the I/O blocks composed of four 
output enables io_boe[3..0], four clock enables io_bce[3..0], four 
clocks io_bclk[3..0], and four clear signals io_bclr[3..0]. The 
pin’s datain signals can drive the IO interconnect, which in turn drives 
the logic array or other I/O blocks. In addition, the control and data 
signals can be driven from the logic array, providing a slower but more 
flexible routing resource. The row or column IOE clocks, io_clk[7..0], 
provide a dedicated routing resource for low-skew, high-speed clocks. 
I/O clocks are generated from regional, global, or fast regional clocks (see 
“PLLs & Clock Networks” on page 2–73). Figure 2–62 illustrates the 
signal paths through the I/O block.

Figure 2–62. Signal Path through the I/O Block
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Figure 2–65. Stratix IOE in DDR Input I/O Configuration Note (1)

Notes to Figure 2–65:
(1) All input signals to the IOE can be inverted at the IOE.
(2) This signal connection is only allowed on dedicated DQ function pins.
(3) This signal is for dedicated DQS function pins only.
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Tables 2–25 and 2–26 show the performance specification for DDR 
SDRAM, RLDRAM II, QDR SRAM, QDRII SRAM, and ZBT SRAM 
interfaces in EP1S10 through EP1S40 devices and in EP1S60 and EP1S80 
devices. The DDR SDRAM and QDR SRAM numbers in Table 2–25 have 
been verified with hardware characterization with third-party DDR 
SDRAM and QDR SRAM devices over temperature and voltage 
extremes.

Table 2–25. External RAM Support in EP1S10 through EP1S40 Devices

DDR Memory Type I/O 
Standard

Maximum Clock Rate (MHz)

-5 Speed 
Grade -6 Speed Grade -7 Speed Grade -8 Speed Grade

Flip-Chip Flip-Chip Wire-
Bond

Flip-
Chip

Wire-
Bond

Flip-
Chip

Wire-
Bond

DDR SDRAM (1), (2) SSTL-2 200 167 133 133 100 100 100

DDR SDRAM - side 
banks (2), (3), (4)

SSTL-2 150 133 110 133 100 100 100

RLDRAM II (4) 1.8-V HSTL 200 (5) (5) (5) (5) (5) (5)

QDR SRAM (6) 1.5-V HSTL 167 167 133 133 100 100 100

QDRII SRAM (6) 1.5-V HSTL 200 167 133 133 100 100 100

ZBT SRAM (7) LVTTL 200 200 200 167 167 133 133

Notes to Table 2–25:
(1) These maximum clock rates apply if the Stratix device uses DQS phase-shift circuitry to interface with DDR 

SDRAM. DQS phase-shift circuitry is only available in the top and bottom I/O banks (I/O banks 3, 4, 7, and 8). 
(2) For more information on DDR SDRAM, see AN 342: Interfacing DDR SDRAM with Stratix & Stratix GX Devices.
(3) DDR SDRAM is supported on the Stratix device side I/O banks (I/O banks 1, 2, 5, and 6) without dedicated DQS 

phase-shift circuitry. The read DQS signal is ignored in this mode.
(4) These performance specifications are preliminary.
(5) This device does not support RLDRAM II.
(6) For more information on QDR or QDRII SRAM, see AN 349: QDR SRAM Controller Reference Design for Stratix & 

Stratix GX Devices.
(7) For more information on ZBT SRAM, see AN 329: ZBT SRAM Controller Reference Design for Stratix & Stratix GX 

Devices.
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Each I/O bank has its own VCCIO pins. A single device can support 1.5-, 
1.8-, 2.5-, and 3.3-V interfaces; each bank can support a different standard 
independently. Each bank also has dedicated VREF pins to support any 
one of the voltage-referenced standards (such as SSTL-3) independently.

Each I/O bank can support multiple standards with the same VCCIO for 
input and output pins. Each bank can support one voltage-referenced 
I/O standard. For example, when VCCIO is 3.3 V, a bank can support 
LVTTL, LVCMOS, 3.3-V PCI, and SSTL-3 for inputs and outputs.

Differential On-Chip Termination

Stratix devices provide differential on-chip termination (LVDS I/O 
standard) to reduce reflections and maintain signal integrity. Differential 
on-chip termination simplifies board design by minimizing the number 
of external termination resistors required. Termination can be placed 
inside the package, eliminating small stubs that can still lead to 
reflections. The internal termination is designed using transistors in the 
linear region of operation. 

Stratix devices support internal differential termination with a nominal 
resistance value of 137.5 Ω for LVDS input receiver buffers. LVPECL 
signals require an external termination resistor. Figure 2–71 shows the 
device with differential termination.

SSTL-3 Class II v v v

AGP (1×  and 2× ) v v

CTT v v v

Table 2–32. I/O Support by Bank (Part 2 of 2)

I/O Standard Top & Bottom Banks 
(3, 4, 7 & 8)

Left & Right Banks 
(1, 2, 5 & 6)

Enhanced PLL External 
Clock Output Banks 

(9, 10, 11 & 12)
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High-Speed Differential I/O Support

When you span two I/O banks using cross-bank support, you can route 
only two load enable signals total between the PLLs. When you enable 
rx_data_align, you use both rxloadena and txloadena of a PLL. 
That leaves no loadena for the second PLL.

EP1S25 672-pin FineLine BGA
672-pin BGA

Transmitter (2) 56 624 (4) 14 14 14 14

624 (3) 28 28 28 28

Receiver 58 624 (4) 14 15 15 14

624 (3) 29 29 29 29

780-pin FineLine BGA Transmitter (2) 70 840 (4) 18 17 17 18

840 (3) 35 35 35 35

Receiver 66 840 (4) 17 16 16 17

840 (3) 33 33 33 33

1,020-pin FineLine 
BGA

Transmitter (2) 78 840 (4) 19 20 20 19

840 (3) 39 39 39 39

Receiver 78 840 (4) 19 20 20 19

840 (3) 39 39 39 39

Notes to Table 2–37:
(1) The first row for each transmitter or receiver reports the number of channels driven directly by the PLL. The second 

row below it shows the maximum channels a PLL can drive if cross bank channels are used from the adjacent center 
PLL. For example, in the 484-pin FineLine BGA EP1S10 device, PLL 1 can drive a maximum of five channels at 
840 Mbps or a maximum of 10 channels at 840 Mbps. The Quartus II software may also merge receiver and 
transmitter PLLs when a receiver is driving a transmitter. In this case, one fast PLL can drive both the maximum 
numbers of receiver and transmitter channels.

(2) The number of channels listed includes the transmitter clock output (tx_outclock) channel. If the design requires 
a DDR clock, it can use an extra data channel.

(3) These channels span across two I/O banks per side of the device. When a center PLL clocks channels in the opposite 
bank on the same side of the device it is called cross-bank PLL support. Both center PLLs can clock cross-bank 
channels simultaneously if, for example, PLL_1 is clocking all receiver channels and PLL_2 is clocking all 
transmitter channels. You cannot have two adjacent PLLs simultaneously clocking cross-bank receiver channels or 
two adjacent PLLs simultaneously clocking transmitter channels. Cross-bank allows for all receiver channels on 
one side of the device to be clocked on one clock while all transmitter channels on the device are clocked on the 
other center PLL. Crossbank PLLs are supported at full-speed, 840 Mbps. For wire-bond devices, the full-speed is 
624 Mbps.

(4) These values show the channels available for each PLL without crossing another bank.

Table 2–37. EP1S10, EP1S20 & EP1S25 Device Differential Channels (Part 2 of 2) Note (1)

Device Package Transmitter/
Receiver

Total 
Channels

Maximum 
Speed 
(Mbps)

Center Fast PLLs

PLL 1 PLL 2 PLL 3 PLL 4



4–2 Altera Corporation
Stratix Device Handbook, Volume 1 January 2006

Operating Conditions

VCCIO Supply voltage for output 
buffers, 3.3-V operation

(4), (5) 3.00 (3.135) 3.60 (3.465) V

Supply voltage for output 
buffers, 2.5-V operation

(4) 2.375 2.625 V

Supply voltage for output 
buffers, 1.8-V operation

(4) 1.71 1.89 V

Supply voltage for output 
buffers, 1.5-V operation

(4) 1.4 1.6 V

VI Input voltage (3), (6) –0.5 4.0 V

VO Output voltage 0 VCCIO V

TJ Operating junction 
temperature

For commercial use 0 85 °C

For industrial use –40 100 °C

Table 4–3. Stratix Device DC Operating Conditions Note (7) (Part 1 of 2)

Symbol Parameter Conditions Minimum Typical Maximum Unit

II Input pin leakage 
current

VI = VCCIOmax to 0 V (8) –10 10 μA

IOZ Tri-stated I/O pin 
leakage current

VO = VCCIOmax to 0 V (8) –10 10 μA

ICC0 VCC supply current 
(standby) (All 
memory blocks in 
power-down mode)

VI = ground, no load, no 
toggling inputs

mA

EP1S10. VI  = ground, no 
load, no toggling inputs

37 mA

EP1S20. VI  = ground, no 
load, no toggling inputs

65 mA

EP1S25. VI  = ground, no 
load, no toggling inputs

90 mA

EP1S30. VI  = ground, no 
load, no toggling inputs

114 mA

EP1S40. VI  = ground, no 
load, no toggling inputs

145 mA

EP1S60. VI  = ground, no 
load, no toggling inputs

200 mA

EP1S80. VI  = ground, no 
load, no toggling inputs

277 mA

Table 4–2. Stratix Device Recommended Operating Conditions (Part 2 of 2)

Symbol Parameter Conditions Minimum  Maximum Unit
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Timing Model

Internal Timing Parameters

Internal timing parameters are specified on a speed grade basis 
independent of device density. Tables 4–37 through 4–42 describe the 
Stratix device internal timing microparameters for LEs, IOEs, TriMatrix™ 
memory structures, DSP blocks, and MultiTrack interconnects.

Table 4–37. LE Internal Timing Microparameter Descriptions

Symbol Parameter

tSU LE register setup time before clock

tH LE register hold time after clock

tCO LE register clock-to-output delay

tLUT LE combinatorial LUT delay for data-in to data-out

tCLR Minimum clear pulse width

tPRE Minimum preset pulse width

tCLKHL Register minimum clock high or low time. The maximum core 
clock frequency can be calculated by 1/(2 × tCLKHL).

Table 4–38. IOE Internal Timing Microparameter Descriptions

Symbol Parameter

tSU_R Row IOE input register setup time

tSU_C Column IOE input register setup time

tH IOE input and output register hold time after clock

tCO_R Row IOE input and output register clock-to-output delay

tC O _ C Column IOE input and output register clock-to-output delay

tPIN2COMBOUT_R Row input pin to IOE combinatorial output

tPIN2COMBOUT_C Column input pin to IOE combinatorial output

tCOMBIN2PIN_R Row IOE data input to combinatorial output pin

tCOMBIN2PIN_C Column IOE data input to combinatorial output pin

tCLR Minimum clear pulse width

tPRE Minimum preset pulse width

tCLKHL Register minimum clock high or low time. The maximum I/O 
clock frequency can be calculated by 1/(2 × tCLKHL). 
Performance may also be affected by I/O timing, use of PLL, 
and I/O programmable settings.
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Timing Model

Table 4–40. M512 Block Internal Timing Microparameter Descriptions

Symbol Parameter

tM512RC Synchronous read cycle time

tM512WC Synchronous write cycle time

tM512WERESU Write or read enable setup time before clock

tM512WEREH Write or read enable hold time after clock

tM512CLKENSU Clock enable setup time before clock

tM512CLKENH Clock enable hold time after clock

tM512DATASU Data setup time before clock

tM512DATAH Data hold time after clock

tM512WADDRSU Write address setup time before clock

tM512WADDRH Write address hold time after clock

tM512RADDRSU Read address setup time before clock

tM512RADDRH Read address hold time after clock

tM512DATACO1 Clock-to-output delay when using output registers

tM512DATACO2 Clock-to-output delay without output registers

tM512CLKHL Register minimum clock high or low time. This is a limit on 
the min time for the clock on the registers in these blocks. 
The actual performance is dependent upon the internal 
point-to-point delays in the blocks and may give slower 
performance as shown in Table 4–36 on page 4–20 and as 
reported by the timing analyzer in the Quartus II software.

tM512CLR Minimum clear pulse width

Table 4–41. M4K Block Internal Timing Microparameter Descriptions (Part 
1 of 2)

Symbol Parameter

tM4KRC Synchronous read cycle time

tM4KWC Synchronous write cycle time

tM4KWERESU Write or read enable setup time before clock

tM4KWEREH Write or read enable hold time after clock

tM4KCLKENSU Clock enable setup time before clock

tM4KCLKENH Clock enable hold time after clock

tM4KBESU Byte enable setup time before clock

tM4KBEH Byte enable hold time after clock

tM4KDATAASU A port data setup time before clock
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Table 4–95. EP1S80 External I/O Timing on Row Pins Using Regional Clock Networks Note (1)

Parameter
-5 Speed Grade -6 Speed Grade -7 Speed Grade -8 Speed Grade

Unit

Min Max Min Max Min Max Min Max

tINSU 2.295  2.454  2.767  NA  ns

tINH 0.000  0.000  0.000  NA  ns

tOUTCO 2.917 5.732 2.917 6.148 2.917 6.705 NA NA ns

tXZ 2.944 5.786 2.944 6.204 2.944 6.773 NA NA ns

tZX 2.944 5.786 2.944 6.204 2.944 6.773 NA NA ns

tINSUPLL 1.011  1.161  1.372  NA  ns

tINHPLL 0.000  0.000  0.000  NA  ns

tOUTCOPLL 1.808 3.169 1.808 3.209 1.808 3.233 NA NA ns

tXZPLL 1.835 3.223 1.835 3.265 1.835 3.301 NA NA ns

tZXPLL 1.835 3.223 1.835 3.265 1.835 3.301 NA NA ns

Table 4–96. EP1S80 External I/O Timing on Rows Using Pin Global Clock Networks Note (1)

Symbol
-5 Speed Grade -6 Speed Grade -7 Speed Grade -8 Speed Grade

Unit
Min Max Min Max Min Max Min Max

tINSU 1.362  1.451  1.613  NA  ns

tINH 0.000  0.000  0.000  NA  ns

tOUTCO 3.457 6.665 3.457 7.151 3.457 7.859 NA NA ns

tXZ 3.484 6.719 3.484 7.207 3.484 7.927 NA NA ns

tZX 3.484 6.719 3.484 7.207 3.484 7.927 NA NA ns

tINSUPLL o.994  1.143  1.351  NA  ns

tINHPLL 0.000  0.000  0.000  NA  ns

tOUTCOPLL 1.821 3.186 1.821 3.227 1.821 3.254 NA NA ns

tXZPLL 1.848 3.240 1.848 3.283 1.848 3.322 NA NA ns

tZXPLL 1.848 3.240 1.848 3.283 1.848 3.322 NA NA ns

Note to Tables 4–91 to 4–96:
(1) Only EP1S25, EP1S30, and EP1S40 devices have the -8 speed grade.


