Altera - EP1S40B956C6 Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	4125
Number of Logic Elements/Cells	41250
Total RAM Bits	3423744
Number of I/O	683
Number of Gates	-
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	956-BBGA, FCBGA
Supplier Device Package	956-BGA (40x40)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=ep1s40b956c6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Independent Clock Mode

The memory blocks implement independent clock mode for true dualport memory. In this mode, a separate clock is available for each port (ports A and B). Clock A controls all registers on the port A side, while clock B controls all registers on the port B side. Each port, A and B, also supports independent clock enables and asynchronous clear signals for port A and B registers. Figure 2–24 shows a TriMatrix memory block in independent clock mode.

Notes to Figure 2–24

- (1) All registers shown have asynchronous clear ports.
- (2) Violating the setup or hold time on the address registers could corrupt the memory contents. This applies to both read and write operations.

Notes to Figure 2-25:

- (1) All registers shown have asynchronous clear ports.
- (2) Violating the setup or hold time on the address registers could corrupt the memory contents. This applies to both read and write operations.

Pipeline/Post Multiply Register

The output of 9×9 - or 18×18 -bit multipliers can optionally feed a register to pipeline multiply-accumulate and multiply-add/subtract functions. For 36×36 -bit multipliers, this register will pipeline the multiplier function.

Adder/Output Blocks

The result of the multiplier sub-blocks are sent to the adder/output block which consist of an adder/subtractor/accumulator unit, summation unit, output select multiplexer, and output registers. The results are used to configure the adder/output block as a pure output, accumulator, a simple two-multiplier adder, four-multiplier adder, or final stage of the 36-bit multiplier. You can configure the adder/output block to use output registers in any mode, and must use output registers for the accumulator. The system cannot use adder/output blocks independently of the multiplier. Figure 2–34 shows the adder and output stages.

Note to Figure 2–42:

(1) The corner fast PLLs can also be driven through the global or regional clock networks. The global or regional clock input to the fast PLL can be driven by an output from another PLL, a pin-driven global or regional clock, or internallygenerated global signals.

Regional Clock Network

There are four regional clock networks within each quadrant of the Stratix device that are driven by the same dedicated CLK[15..0] input pins or from PLL outputs. From a top view of the silicon, RCLK[0..3] are in the top left quadrant, RCLK[8..11] are in the top-right quadrant, RCLK[4..7] are in the bottom-left quadrant, and RCLK[12..15] are in the bottom-right quadrant. The regional clock networks only pertain to the quadrant they drive into. The regional clock networks provide the lowest clock delay and skew for logic contained within a single quadrant. RCLK cannot be driven by internal logic. The CLK clock pins symmetrically drive the RCLK networks within a particular quadrant, as shown in Figure 2–43. See Figures 2–50 and 2–51 for RCLK connections from PLLs and CLK pins.

The pllenable pin is a dedicated pin that enables/disables PLLs. When the pllenable pin is low, the clock output ports are driven by GND and all the PLLs go out of lock. When the pllenable pin goes high again, the PLLs relock and resynchronize to the input clocks. You can choose which PLLs are controlled by the pllenable signal by connecting the pllenable input port of the altpll megafunction to the common pllenable input pin.

The areset signals are reset/resynchronization inputs for each PLL. The areset signal should be asserted every time the PLL loses lock to guarantee correct phase relationship between the PLL output clocks. Users should include the areset signal in designs if any of the following conditions are true:

- PLL Reconfiguration or Clock switchover enables in the design.
- Phase relationships between output clocks need to be maintained after a loss of lock condition

The device input pins or logic elements (LEs) can drive these input signals. When driven high, the PLL counters will reset, clearing the PLL output and placing the PLL out of lock. The VCO will set back to its nominal setting (~700 MHz). When driven low again, the PLL will resynchronize to its input as it relocks. If the target VCO frequency is below this nominal frequency, then the output frequency will start at a higher value than desired as the PLL locks. If the system cannot tolerate this, the clkena signal can disable the output clocks until the PLL locks.

The pfdena signals control the phase frequency detector (PFD) output with a programmable gate. If you disable the PFD, the VCO operates at its last set value of control voltage and frequency with some long-term drift to a lower frequency. The system continues running when the PLL goes out of lock or the input clock is disabled. By maintaining the last locked frequency, the system has time to store its current settings before shutting down. You can either use your own control signal or a clkloss status signal to trigger pfdena.

The clkena signals control the enhanced PLL regional and global outputs. Each regional and global output port has its own clkena signal. The clkena signals synchronously disable or enable the clock at the PLL output port by gating the outputs of the *g* and *l* counters. The clkena signals are registered on the falling edge of the counter output clock to enable or disable the clock without glitches. Figure 2–57 shows the waveform example for a PLL clock port enable. The PLL can remain locked independent of the clkena signals since the loop-related counters are not affected. This feature is useful for applications that require a low power or sleep mode. Upon re-enabling, the PLL does not need a

Figure 2–61. Column I/O Block Connection to the Interconnect

Notes to Figure 2–61:

- (1) The 16 control signals are composed of four output enables io_boe[3..0], four clock enables io_bce[3..0], four clocks io_bclk[3..0], and four clear signals io_bclr[3..0].
- (2) The 42 data and control signals consist of 12 data out lines; six lines each for DDR applications io_dataouta[5..0] and io_dataoutb[5..0], six output enables io_coe[5..0], six input clock enables io_cce_in[5..0], six output clock enables io_cce_out[5..0], six clocks io_cclk[5..0], and six clear signals io_cclr[5..0].

•

For more information on I/O standards supported by Stratix devices, see the *Selectable I/O Standards in Stratix & Stratix GX Devices* chapter of the *Stratix Device Handbook, Volume* 2.

Stratix devices contain eight I/O banks in addition to the four enhanced PLL external clock out banks, as shown in Figure 2–70. The four I/O banks on the right and left of the device contain circuitry to support high-speed differential I/O for LVDS, LVPECL, 3.3-V PCML, and HyperTransport inputs and outputs. These banks support all I/O standards listed in Table 2–31 except PCI I/O pins or PCI-X 1.0, GTL, SSTL-18 Class II, and HSTL Class II outputs. The top and bottom I/O banks support all single-ended I/O standards. Additionally, Stratix devices support four enhanced PLL external clock output banks, allowing clock output capabilities such as differential support for SSTL and HSTL. Table 2–32 shows I/O standard support for each I/O bank.

Table 2–32. I/O Support by Bank (Part 2 of 2)									
I/O Standard	Top & Bottom Banks (3, 4, 7 & 8)	Left & Right Banks (1, 2, 5 & 6)	Enhanced PLL External Clock Output Banks (9, 10, 11 & 12)						
SSTL-3 Class II	\checkmark	\checkmark	\checkmark						
AGP (1× and 2×)	~		\checkmark						
СТТ	\checkmark	\checkmark	\checkmark						

Each I/O bank has its own VCCIO pins. A single device can support 1.5-, 1.8-, 2.5-, and 3.3-V interfaces; each bank can support a different standard independently. Each bank also has dedicated VREF pins to support any one of the voltage-referenced standards (such as SSTL-3) independently.

Each I/O bank can support multiple standards with the same V_{CCIO} for input and output pins. Each bank can support one voltage-referenced I/O standard. For example, when V_{CCIO} is 3.3 V, a bank can support LVTTL, LVCMOS, 3.3-V PCI, and SSTL-3 for inputs and outputs.

Differential On-Chip Termination

Stratix devices provide differential on-chip termination (LVDS I/O standard) to reduce reflections and maintain signal integrity. Differential on-chip termination simplifies board design by minimizing the number of external termination resistors required. Termination can be placed inside the package, eliminating small stubs that can still lead to reflections. The internal termination is designed using transistors in the linear region of operation.

Stratix devices support internal differential termination with a nominal resistance value of 137.5 Ω for LVDS input receiver buffers. LVPECL signals require an external termination resistor. Figure 2–71 shows the device with differential termination.

The transmitter external clock output is transmitted on a data channel. The txclk pin for each bank is located in between data transmitter pins. For ×1 clocks (e.g., 622 Mbps, 622 MHz), the high-speed PLL clock bypasses the SERDES to drive the output pins. For half-rate clocks (e.g., 622 Mbps, 311 MHz) or any other even-numbered factor such as 1/4, 1/7, 1/8, or 1/10, the SERDES automatically generates the clock in the Quartus II software.

For systems that require more than four or eight high-speed differential I/O clock domains, a SERDES bypass implementation is possible using IOEs.

Byte Alignment

For high-speed source synchronous interfaces such as POS-PHY 4, XSBI, RapidIO, and HyperTransport technology, the source synchronous clock rate is not a byte- or SERDES-rate multiple of the data rate. Byte alignment is necessary for these protocols since the source synchronous clock does not provide a byte or word boundary since the clock is one half the data rate, not one eighth. The Stratix device's high-speed differential I/O circuitry provides dedicated data realignment circuitry for usercontrolled byte boundary shifting. This simplifies designs while saving LE resources. An input signal to each fast PLL can stall deserializer parallel data outputs by one bit period. You can use an LE-based state machine to signal the shift of receiver byte boundaries until a specified pattern is detected to indicate byte alignment.

Power Sequencing & Hot Socketing

Because Stratix devices can be used in a mixed-voltage environment, they have been designed specifically to tolerate any possible power-up sequence. Therefore, the VCCIO and VCCINT power supplies may be powered in any order.

Although you can power up or down the VCCIO and VCCINT power supplies in any sequence, you should not power down any I/O banks that contain configuration pins while leaving other I/O banks powered on. For power up and power down, all supplies (VCCINT and all VCCIO power planes) must be powered up and down within 100 ms of each other. This prevents I/O pins from driving out.

Signals can be driven into Stratix devices before and during power up without damaging the device. In addition, Stratix devices do not drive out during power up. Once operating conditions are reached and the device is configured, Stratix devices operate as specified by the user. For more information, see *Hot Socketing* in the *Selectable I/O Standards in Stratix & Stratix GX Devices* chapter in the *Stratix Device Handbook, Volume 2.*

Figure 3–1 shows the timing requirements for the JTAG signals.

Figure 3–1. Stratix JTAG Waveforms

Table 3–4 shows the JTAG timing parameters and values for Stratix devices.

Table 3-	Table 3–4. Stratix JTAG Timing Parameters & Values									
Symbol	Parameter	Min	Max	Unit						
t _{JCP}	TCK clock period	100		ns						
t _{JCH}	TCK clock high time	50		ns						
t _{JCL}	TCK clock low time	50		ns						
t _{JPSU}	JTAG port setup time	20		ns						
t _{JPH}	JTAG port hold time	45		ns						
t _{JPCO}	JTAG port clock to output		25	ns						
t _{JPZX}	JTAG port high impedance to valid output		25	ns						
t _{JPXZ}	JTAG port valid output to high impedance		25	ns						
t _{JSSU}	Capture register setup time	20		ns						
t _{JSH}	Capture register hold time	45		ns						
t _{JSCO}	Update register clock to output		35	ns						
t _{JSZX}	Update register high impedance to valid output		35	ns						
t _{JSXZ}	Update register valid output to high impedance		35	ns						

The temperature-sensing diode works for the entire operating range shown in Figure 3–6.

Figure 3–6. Temperature vs. Temperature-Sensing Diode Voltage

Table 4–71. EP1S25 External I/O Timing on Row Pins Using Regional Clock Networks									
Doromotor	-5 Speed Grade		-6 Spee	-6 Speed Grade		-7 Speed Grade		-8 Speed Grade	
Farailieler	Min	Max	Min	Max	Min	Max	Min	Max	UIII
t _{INSU}	1.793		1.927		2.182		2.542		ns
t _{INH}	0.000		0.000		0.000		0.000		ns
t _{OUTCO}	2.759	5.457	2.759	5.835	2.759	6.346	2.759	7.024	ns
t _{xz}	2.786	5.511	2.786	5.891	2.786	6.414	2.786	7.106	ns
t _{ZX}	2.786	5.511	2.786	5.891	2.786	6.414	2.786	7.106	ns
t _{INSUPLL}	1.169		1.221		1.373		1.600		ns
t _{INHPLL}	0.000		0.000		0.000		0.000		ns
t _{OUTCOPLL}	1.375	2.861	1.375	2.999	1.375	3.082	1.375	3.174	ns
t _{XZPLL}	1.402	2.915	1.402	3.055	1.402	3.150	1.402	3.256	ns
t _{ZXPLL}	1.402	2.915	1.402	3.055	1.402	3.150	1.402	3.256	ns

Table 4–72. EP1S25 External I/O Timing on Row Pins Using Global Clock Networks									
Deremeter	-5 Speed Grade		-6 Spee	-6 Speed Grade		-7 Speed Grade		-8 Speed Grade	
Parameter	Min	Max	Min	Max	Min	Max	Min	Max	UIII
t _{INSU}	1.665		1.779		2.012		2.372		ns
t _{INH}	0.000		0.000		0.000		0.000		ns
t _{outco}	2.834	5.585	2.834	5.983	2.834	6.516	2.834	7.194	ns
t _{xz}	2.861	5.639	2.861	6.039	2.861	6.584	2.861	7.276	ns
t _{ZX}	2.861	5.639	2.861	6.039	2.861	6.584	2.861	7.276	ns
t _{INSUPLL}	1.538		1.606		1.816		2.121		ns
t _{INHPLL}	0.000		0.000		0.000		0.000		ns
t _{OUTCOPLL}	1.164	2.492	1.164	2.614	1.164	2.639	1.164	2.653	ns
t _{XZPLL}	1.191	2.546	1.191	2.670	1.191	2.707	1.191	2.735	ns
t _{ZXPLL}	1.191	2.546	1.191	2.670	1.191	2.707	1.191	2.735	ns

Table 4–83. EP1S40 External I/O Timing on Row Pins Using Regional Clock Networks									
Doromotor	-5 Speed Grade		-6 Spee	-6 Speed Grade		-7 Speed Grade		-8 Speed Grade	
Farailieler	Min	Max	Min	Max	Min	Max	Min	Max	Unit
t _{INSU}	2.349		2.526		2.898		2.952		ns
t _{INH}	0.000		0.000		0.000		0.000		ns
t _{OUTCO}	2.725	5.381	2.725	5.784	2.725	6.290	2.725	7.426	ns
t _{xz}	2.752	5.435	2.752	5.840	2.752	6.358	2.936	7.508	ns
t _{ZX}	2.752	5.435	2.752	5.840	2.752	6.358	2.936	7.508	ns
t _{INSUPLL}	1.328		1.322		1.605		1.883		ns
t _{INHPLL}	0.000		0.000		0.000		0.000		ns
t _{OUTCOPLL}	1.169	2.502	1.169	2.698	1.169	2.650	1.169	2.691	ns
t _{XZPLL}	1.196	2.556	1.196	2.754	1.196	2.718	1.196	2.773	ns
t _{ZXPLL}	1.196	2.556	1.196	2.754	1.196	2.718	1.196	2.773	ns

Table 4–84. EP1S40 External I/O Timing on Row Pins Using Global Clock Networks									
Deremeter	-5 Speed Grade		-6 Spee	-6 Speed Grade		-7 Speed Grade		-8 Speed Grade	
Parameter	Min	Max	Min	Max	Min	Max	Min	Max	UIII
t _{INSU}	2.020		2.171		2.491		2.898		ns
t _{INH}	0.000		0.000		0.000		0.000		ns
t _{OUTCO}	2.912	5.710	2.912	6.139	2.912	6.697	2.931	7.480	ns
t _{xz}	2.939	5.764	2.939	6.195	2.939	6.765	2.958	7.562	ns
t _{ZX}	2.939	5.764	2.939	6.195	2.939	6.765	2.958	7.562	ns
t _{INSUPLL}	1.370		1.368		1.654		1.881		ns
t _{INHPLL}	0.000		0.000		0.000		0.000		ns
t _{OUTCOPLL}	1.144	2.460	1.144	2.652	1.144	2.601	1.170	2.693	ns
t _{XZPLL}	1.171	2.514	1.171	2.708	1.171	2.669	1.197	2.775	ns
t _{ZXPLL}	1.171	2.514	1.171	2.708	1.171	2.669	1.197	2.775	ns

the FPGA device. The Quartus II software calculates the I/O timing for each I/O standard with a default baseline loading as specified by the I/O standard.

Altera measures clock-to-output delays (t_{CO}) at worst-case process, minimum voltage, and maximum temperature (PVT) for the 3.3-V LVTTL I/O standard with 24 mA (default case) current drive strength setting and fast slew rate setting. I/O adder delays are measured to calculate the t_{CO} change at worst-case PVT across all I/O standards and current drive strength settings with the default loading shown in Table 4–101 on page 4–62. Timing derating data for additional loading is taken for t_{CO} across worst-case PVT for all I/O standards and drive strength settings. These three pieces of data are used to predict the timing at the output pin.

 t_{CO} at pin = t_{OUTCO} max for 3.3-V 24 mA LVTTL + I/O Adder + Output Delay Adder for Loading

Simulation using IBIS models is required to determine the delays on the PCB traces in addition to the output pin delay timing reported by the Quartus II software and the timing model in the device handbook.

- 1. Simulate the output driver of choice into the generalized test setup using values from Table 4–101 on page 4–62.
- 2. Record the time to VMEAS.
- 3. Simulate the output driver of choice into the actual PCB trace and load, using the appropriate IBIS input buffer model or an equivalent capacitance value to represent the load.
- 4. Record the time to VMEAS.
- 5. Compare the results of steps 2 and 4. The increase or decrease in delay should be added to or subtracted from the I/O Standard Output Adder delays to yield the actual worst-case propagation delay (clock-to-input) of the PCB trace.

The Quartus II software reports maximum timing with the conditions shown in Table 4–101 on page 4–62 using the proceeding equation. Figure 4–7 on page 4–62 shows the model of the circuit that is represented by the Quartus II output timing.

Figure 4–7. Output Delay Timing Reporting Setup Modeled by Quartus II

Notes to Figure 4–7:

- Output pin timing is reported at the output pin of the FPGA device. Additional delays for loading and board trace delay need to be accounted for with IBIS model simulations.
- (2) V_{CCINT} is 1.42-V unless otherwise specified.

Table 4–101. Reporting Methodology For Maximum Timing For Single-Ended Output Pins	(Part 1 of 2)
Notes (1), (2), (3)	

1/0 Otendered		Measurement Point						
i/U Standard	R _{UP} Ω	R _{DN} Ω	Rs Ω	R _T Ω	V _{ccio} (V)	VTT (V)	C _L (pF)	V _{MEAS}
3.3-V LVTTL	-	-	0	-	2.950	2.95	10	1.500
2.5-V LVTTL	-	-	0	-	2.370	2.37	10	1.200
1.8-V LVTTL	-	-	0	-	1.650	1.65	10	0.880
1.5-V LVTTL	-	-	0	-	1.400	1.40	10	0.750
3.3-V LVCMOS	-	-	0	-	2.950	2.95	10	1.500
2.5-V LVCMOS	-	-	0	-	2.370	2.37	10	1.200
1.8-V LVCMOS	-	-	0	-	1.650	1.65	10	0.880
1.5-V LVCMOS	-	-	0	-	1.400	1.40	10	0.750
3.3-V GTL	-	-	0	25	2.950	1.14	30	0.740
2.5-V GTL	-	-	0	25	2.370	1.14	30	0.740
3.3-V GTL+	-	-	0	25	2.950	1.35	30	0.880
2.5-V GTL+	-	-	0	25	2.370	1.35	30	0.880
3.3-V SSTL-3 Class II	-	-	25	25	2.950	1.25	30	1.250

The scaling factors for column output pin timing in Tables 4–111 to 4–113 are shown in units of time per pF unit of capacitance (ps/pF). Add this delay to the t_{CO} or combinatorial timing path for output or bidirectional pins in addition to the I/O adder delays shown in Tables 4–103 through 4–108 and the IOE programmable delays in Tables 4–109 and 4–110.

Table 4–111. Output Delay Adder for Loading on LVTTL/LVCMOS Output Buffers Note (1)										
Conditi	ons	Output Pin Adder Delay (ps/pF)								
Parameter	Value	3.3-V LVTTL	3.3-V LVTTL 2.5-V LVTTL 1.8-V LVTTL 1.5-V LVTTL LVCMOS							
	24mA	15	-	-	-	8				
	16mA	25	18	-	-	-				
Drive Strength	12mA	30	25	25	Ι	15				
Drive Strength	8mA	50	35	40	35	20				
	4mA	60	-	-	80	30				
	2mA	-	75	120	160	60				

Note to Table 4–111:

(1) The timing information in this table is preliminary.

Table 4–112. Output Delay Adder for Loading on SSTL/HSTL Output Buffers Note (1)								
Conditions		Output Pin Add	er Delay (ps/pF)					
Conditions	SSTL-3	SSTL-2	SSTL-1.8	1.5-V HSTL				
Class I	25	25	25	25				
Class II	25	20	25	20				

Note to Table 4–112:

(1) The timing information in this table is preliminary.

Table 4–113. Output Delay Adder for Loading on GTL+/GTL/CTT/PCI Output Buffers Note (1)									
Conditions Output Pin Adder Delay (ps/pF)									
Parameter	Value	GTL+	GTL+ GTL CTT PCI AGP						
VCCIO Voltage	3.3V	18	18	25	20	20			
Level	2.5V	15	18	-	-	-			

Note to Table 4–113:

(1) The timing information in this table is preliminary.

Table 4–125. High-Speed I/O Specifications for Flip-Chip Packages (Part 2 of 4) Notes (1), (2)														
Symbol	Conditions	-5 Speed Grade		-6 Speed Grade		-7 Speed Grade			-8 Speed Grade			11		
		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
f _{HSCLK} (Clock frequency) (PCML) f _{HSCLK} = f _{HSDR} / W	W = 4 to 30 (Serdes used)	10		100	10		100	10		77.75	10		77.75	MHz
	W = 2 (Serdes bypass)	50		200	50		200	50		150	50		150	MHz
	W = 2 (Serdes used)	150		200	150		200	150		155.5	150		155.5	MHz
	W = 1 (Serdes bypass)	100		250	100		250	100		200	100		200	MHz
	W = 1 (Serdes used)	300		400	300		400	300		311	300		311	MHz
f _{HSDR} Device operation (PCML)	<i>J</i> = 10	300		400	300		400	300		311	300		311	Mbps
	<i>J</i> = 8	300		400	300		400	300		311	300		311	Mbps
	<i>J</i> = 7	300		400	300		400	300		311	300		311	Mbps
	<i>J</i> = 4	300		400	300		400	300		311	300		311	Mbps
	<i>J</i> = 2	100		400	100		400	100		300	100		300	Mbps
	<i>J</i> = 1	100		250	100		250	100		200	100		200	Mbps
TCCS	All			200			200			300			300	ps

Altera Corporation January 2006 Tables 4–131 through 4–133 describe the Stratix device fast PLL specifications.

Table 4–131. Fast PLL Specifications for -5 & -6 Speed Grade Devices							
Symbol	Parameter		Max	Unit			
f _{IN}	CLKIN frequency (1), (2), (3)	10	717	MHz			
f _{INPFD}	Input frequency to PFD	10	500	MHz			
f _{OUT}	Output frequency for internal global or regional clock (3)	9.375	420	MHz			
fout_diffio	Output frequency for external clock driven out on a differential I/O data channel (2)	(5)	(5)				
f _{VCO}	VCO operating frequency	300	1,000	MHz			
t _{INDUTY}	CLKIN duty cycle	40	60	%			
t _{INJITTER}	Period jitter for CLKIN pin		±200	ps			
t _{DUTY}	Duty cycle for DFFIO 1× CLKOUT pin (6)	45	55	%			
t _{JITTER}	Period jitter for DIFFIO clock out (6)		(5)	ps			
t _{LOCK}	Time required for PLL to acquire lock	10	100	μs			
m	Multiplication factors for <i>m</i> counter (6)	1	32	Integer			
<i>I</i> 0, <i>I</i> 1, <i>g</i> 0	Multiplication factors for I0, I1, and $g0$ counter (7), (8)	1	32	Integer			
t _{ARESET}	Minimum pulse width on areset signal	10		ns			

Table 4–132. Fast PLL Specifications for -7 Speed Grades (Part 1 of 2)							
Symbol	Parameter		Max	Unit			
f _{IN}	CLKIN frequency (1), (3)	10	640	MHz			
f _{INPFD}	Input frequency to PFD	10	500	MHz			
f _{OUT}	Output frequency for internal global or regional clock (4)	9.375	420	MHz			
fout_diffio	Output frequency for external clock driven out on a differential I/O data channel	(5)	(5)	MHz			
f _{VCO}	VCO operating frequency	300	700	MHz			
t _{INDUTY}	CLKIN duty cycle	40	60	%			
t _{INJITTER}	Period jitter for CLKIN pin		±200	ps			
t _{DUTY}	Duty cycle for DFFIO 1× CLKOUT pin (6)	45	55	%			

Table 4–132. Fast PLL Specifications for -7 Speed Grades (Part 2 of 2)							
Symbol	Parameter	Min	Мах	Unit			
t _{JITTER}	Period jitter for DIFFIO clock out (6)		(5)	ps			
t _{LOCK}	Time required for PLL to acquire lock	10	100	μs			
m	Multiplication factors for <i>m</i> counter (7)	1	32	Integer			
<i>I</i> 0, <i>I</i> 1, <i>g</i> 0	Multiplication factors for I0, I1, and $g0$ counter (7), (8)	1	32	Integer			
t _{ARESET}	Minimum pulse width on areset signal	10		ns			

Table 4–133. Fast PLL Specifications for -8 Speed Grades (Part 1 of 2)							
Symbol	Parameter		Max	Unit			
f _{IN}	CLKIN frequency (1), (3)	10	460	MHz			
f _{INPFD}	Input frequency to PFD	10	500	MHz			
f _{OUT}	Output frequency for internal global or regional clock (4)	9.375	420	MHz			
f _{OUT_DIFFIO}	Output frequency for external clock driven out on a differential I/O data channel	(5)	(5)	MHz			
f _{VCO}	VCO operating frequency	300	700	MHz			
t _{INDUTY}	CLKIN duty cycle	40	60	%			
t _{INJITTER}	Period jitter for CLKIN pin		±200	ps			
t _{DUTY}	Duty cycle for DFFIO 1× CLKOUT pin (6)	45	55	%			
t _{JITTER}	Period jitter for DIFFIO clock out (6)		(5)	ps			
t _{LOCK}	Time required for PLL to acquire lock	10	100	μs			
m	Multiplication factors for <i>m</i> counter (7)	1	32	Integer			
<i>I</i> 0, <i>I</i> 1, <i>g</i> 0	Multiplication factors for $I0$, $I1$, and $g0$ counter (7), (8)	1	32	Integer			