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MultiTrack Interconnect

asynchronous load, and clear signals. An asynchronous clear signal takes 
precedence if both signals are asserted simultaneously. Each LAB 
supports up to two clears and one preset signal.

In addition to the clear and preset ports, Stratix devices provide a chip-
wide reset pin (DEV_CLRn) that resets all registers in the device. An 
option set before compilation in the Quartus II software controls this pin. 
This chip-wide reset overrides all other control signals. 

MultiTrack 
Interconnect

In the Stratix architecture, connections between LEs, TriMatrix memory, 
DSP blocks, and device I/O pins are provided by the MultiTrack 
interconnect structure with DirectDriveTM technology. The MultiTrack 
interconnect consists of continuous, performance-optimized routing lines 
of different lengths and speeds used for inter- and intra-design block 
connectivity. The Quartus II Compiler automatically places critical design 
paths on faster interconnects to improve design performance.

DirectDrive technology is a deterministic routing technology that ensures 
identical routing resource usage for any function regardless of placement 
within the device. The MultiTrack interconnect and DirectDrive 
technology simplify the integration stage of block-based designing by 
eliminating the re-optimization cycles that typically follow design 
changes and additions.

The MultiTrack interconnect consists of row and column interconnects 
that span fixed distances. A routing structure with fixed length resources 
for all devices allows predictable and repeatable performance when 
migrating through different device densities. Dedicated row 
interconnects route signals to and from LABs, DSP blocks, and TriMatrix 
memory within the same row. These row resources include:

■ Direct link interconnects between LABs and adjacent blocks.
■ R4 interconnects traversing four blocks to the right or left.
■ R8 interconnects traversing eight blocks to the right or left.
■ R24 row interconnects for high-speed access across the length of the 

device.

The direct link interconnect allows an LAB, DSP block, or TriMatrix 
memory block to drive into the local interconnect of its left and right 
neighbors and then back into itself. Only one side of a M-RAM block 
interfaces with direct link and row interconnects. This provides fast 
communication between adjacent LABs and/or blocks without using row 
interconnect resources.

The R4 interconnects span four LABs, three LABs and one M512 RAM 
block, two LABs and one M4K RAM block, or two LABs and one DSP 
block to the right or left of a source LAB. These resources are used for fast 
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TriMatrix Memory

Figure 2–23. M-RAM Column Unit Interface to Interconnect

12 12

Column Interface
Block

M-RAM Block to
LAB Row Interface
Block Interconnect
Region

datain dataout

LAB LABLAB

C4 and C8 Interconnects

M-RAM Block



Altera Corporation 2–51
July 2005 Stratix Device Handbook, Volume 1

Stratix Architecture

Single-Port Mode

The memory blocks also support single-port mode, used when 
simultaneous reads and writes are not required. See Figure 2–28. A single 
block in a memory block can support up to two single-port mode RAM 
blocks in the M4K RAM blocks if each RAM block is less than or equal to 
2K bits in size.

Figure 2–28. Single-Port Mode Note (1)

Note to Figure 2–28:
(1) Violating the setup or hold time on the address registers could corrupt the memory contents. This applies to both 

read and write operations.
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VCO period from up to eight taps for individual fine step selection. Also, 
each clock output counter can use a unique initial count setting to achieve 
individual coarse shift selection in steps of one VCO period. The 
combination of coarse and fine shifts allows phase shifting for the entire 
input clock period.

The equation to determine the precision of the phase shifting in degrees 
is: 45° ÷ post-scale counter value. Therefore, the maximum step size is 
45° , and smaller steps are possible depending on the multiplication and 
division ratio necessary on the output counter port.

This type of phase shift provides the highest precision since it is the least 
sensitive to process, supply, and temperature variation.

Clock Delay
In addition to the phase shift feature, the ability to fine tune the Δt clock 
delay provides advanced time delay shift control on each of the four PLL 
outputs. There are time delays for each post-scale counter (e, g, or l) from 
the PLL, the n counter, and m counter. Each of these can shift in 250-ps 
increments for a range of 3.0 ns. The m delay shifts all outputs earlier in 
time, while n delay shifts all outputs later in time. Individual delays on 
post-scale counters (e, g, and l) provide positive delay for each output. 
Table 2–21 shows the combined delay for each output for normal or zero 
delay buffer mode where Δte, Δtg, or Δtl is unique for each PLL output.

The tOUTPUT for a single output can range from –3 ns to +6 ns. The total 
delay shift difference between any two PLL outputs, however, must be 
less than ±3 ns. For example, shifts on two outputs of –1 and +2 ns is 
allowed, but not –1 and +2.5 ns because these shifts would result in a 
difference of 3.5 ns. If the design uses external feedback, the Δte delay will 
remove delay from outputs, represented by a negative sign (see 
Table 2–21). This effect occurs because the Δte delay is then part of the 
feedback loop.

Table 2–21. Output Clock Delay for Enhanced PLLs

Normal or Zero Delay Buffer Mode External Feedback Mode

ΔteOUTPUT = Δtn − Δtm + Δte
ΔtgOUTPUT = Δtn − Δtm + Δtg
ΔtlOUTPUT = Δtn − Δtm + Δtl

ΔteOUTPUT = Δtn − Δtm − Δte (1)
ΔtgOUTPUT = Δtn − Δtm + Δtg
ΔtlOUTPUT = Δtn − Δtm + Δtl

Note to Table 2–21:
(1) Δte removes delay from outputs in external feedback mode.
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Figure 2–59. Stratix IOE Structure

The IOEs are located in I/O blocks around the periphery of the Stratix 
device. There are up to four IOEs per row I/O block and six IOEs per 
column I/O block. The row I/O blocks drive row, column, or direct link 
interconnects. The column I/O blocks drive column interconnects. 
Figure 2–60 shows how a row I/O block connects to the logic array. 
Figure 2–61 shows how a column I/O block connects to the logic array.
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I/O Structure

Figure 2–65. Stratix IOE in DDR Input I/O Configuration Note (1)

Notes to Figure 2–65:
(1) All input signals to the IOE can be inverted at the IOE.
(2) This signal connection is only allowed on dedicated DQ function pins.
(3) This signal is for dedicated DQS function pins only.
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Figure 2–66. Input Timing Diagram in DDR Mode

When using the IOE for DDR outputs, the two output registers are 
configured to clock two data paths from LEs on rising clock edges. These 
output registers are multiplexed by the clock to drive the output pin at a 
×2 rate. One output register clocks the first bit out on the clock high time, 
while the other output register clocks the second bit out on the clock low 
time. Figure 2–67 shows the IOE configured for DDR output. Figure 2–68 
shows the DDR output timing diagram.
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Power Sequencing & Hot Socketing

The transmitter external clock output is transmitted on a data channel. 
The txclk pin for each bank is located in between data transmitter pins. 
For ×1 clocks (e.g., 622 Mbps, 622 MHz), the high-speed PLL clock 
bypasses the SERDES to drive the output pins. For half-rate clocks (e.g., 
622 Mbps, 311 MHz) or any other even-numbered factor such as 1/4, 1/7, 
1/8, or 1/10, the SERDES automatically generates the clock in the 
Quartus II software.

For systems that require more than four or eight high-speed differential 
I/O clock domains, a SERDES bypass implementation is possible using 
IOEs.

Byte Alignment

For high-speed source synchronous interfaces such as POS-PHY 4, XSBI, 
RapidIO, and HyperTransport technology, the source synchronous clock 
rate is not a byte- or SERDES-rate multiple of the data rate. Byte 
alignment is necessary for these protocols since the source synchronous 
clock does not provide a byte or word boundary since the clock is one half 
the data rate, not one eighth. The Stratix device’s high-speed differential 
I/O circuitry provides dedicated data realignment circuitry for user-
controlled byte boundary shifting. This simplifies designs while saving 
LE resources. An input signal to each fast PLL can stall deserializer 
parallel data outputs by one bit period. You can use an LE-based state 
machine to signal the shift of receiver byte boundaries until a specified 
pattern is detected to indicate byte alignment.

Power 
Sequencing & 
Hot Socketing

Because Stratix devices can be used in a mixed-voltage environment, they 
have been designed specifically to tolerate any possible power-up 
sequence. Therefore, the VCCIO and VCCINT power supplies may be 
powered in any order. 

Although you can power up or down the VCCIO and VCCINT power 
supplies in any sequence, you should not power down any I/O banks 
that contain configuration pins while leaving other I/O banks powered 
on. For power up and power down, all supplies (VCCINT and all VCCIO 
power planes) must be powered up and down within 100 ms of each 
other. This prevents I/O pins from driving out.

Signals can be driven into Stratix devices before and during power up 
without damaging the device. In addition, Stratix devices do not drive 
out during power up. Once operating conditions are reached and the 
device is configured, Stratix devices operate as specified by the user. For 
more information, see Hot Socketing in the Selectable I/O Standards in 
Stratix & Stratix GX Devices chapter in the Stratix Device Handbook, 
Volume 2.
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Operating Conditions

VCCIO Supply voltage for output 
buffers, 3.3-V operation

(4), (5) 3.00 (3.135) 3.60 (3.465) V

Supply voltage for output 
buffers, 2.5-V operation

(4) 2.375 2.625 V

Supply voltage for output 
buffers, 1.8-V operation

(4) 1.71 1.89 V

Supply voltage for output 
buffers, 1.5-V operation

(4) 1.4 1.6 V

VI Input voltage (3), (6) –0.5 4.0 V

VO Output voltage 0 VCCIO V

TJ Operating junction 
temperature

For commercial use 0 85 °C

For industrial use –40 100 °C

Table 4–3. Stratix Device DC Operating Conditions Note (7) (Part 1 of 2)

Symbol Parameter Conditions Minimum Typical Maximum Unit

II Input pin leakage 
current

VI = VCCIOmax to 0 V (8) –10 10 μA

IOZ Tri-stated I/O pin 
leakage current

VO = VCCIOmax to 0 V (8) –10 10 μA

ICC0 VCC supply current 
(standby) (All 
memory blocks in 
power-down mode)

VI = ground, no load, no 
toggling inputs

mA

EP1S10. VI  = ground, no 
load, no toggling inputs

37 mA

EP1S20. VI  = ground, no 
load, no toggling inputs

65 mA

EP1S25. VI  = ground, no 
load, no toggling inputs

90 mA

EP1S30. VI  = ground, no 
load, no toggling inputs

114 mA

EP1S40. VI  = ground, no 
load, no toggling inputs

145 mA

EP1S60. VI  = ground, no 
load, no toggling inputs

200 mA

EP1S80. VI  = ground, no 
load, no toggling inputs

277 mA

Table 4–2. Stratix Device Recommended Operating Conditions (Part 2 of 2)

Symbol Parameter Conditions Minimum  Maximum Unit
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RCONF Value of I/O pin pull-
up resistor before 
and during 
configuration

VCCIO = 3.0 V (9) 20 50 kΩ

VCCIO = 2.375 V (9) 30 80 kΩ

VCCIO = 1.71 V (9) 60 150 kΩ

Table 4–4. LVTTL Specifications

Symbol Parameter Conditions Minimum Maximum Unit

VCCIO Output supply voltage 3.0 3.6 V

VI H High-level input voltage 1.7 4.1 V

VIL Low-level input voltage –0.5 0.7 V

VOH High-level output voltage IOH = –4 to –24 mA (10) 2.4 V

VOL Low-level output voltage IOL = 4 to 24 mA (10) 0.45 V

Table 4–5. LVCMOS Specifications

Symbol Parameter Conditions Minimum Maximum Unit

VCCIO Output supply voltage 3.0 3.6 V

VIH High-level input voltage 1.7 4.1 V

VIL Low-level input voltage –0.5 0.7 V

VOH High-level output voltage VCCIO = 3.0, 
IOH = –0.1 mA

VCCIO – 0.2 V

VOL Low-level output voltage VCCIO = 3.0,
IOL = 0.1 mA

0.2 V

Table 4–6. 2.5-V I/O Specifications

Symbol Parameter Conditions Minimum Maximum Unit

VCCIO Output supply voltage 2.375 2.625 V

VIH High-level input voltage 1.7 4.1 V

VIL Low-level input voltage –0.5 0.7 V

VOH High-level output voltage IOH = –1 mA (10) 2.0 V

VOL Low-level output voltage IOL = 1 mA (10) 0.4 V

Table 4–3. Stratix Device DC Operating Conditions Note (7) (Part 2 of 2)

Symbol Parameter Conditions Minimum Typical Maximum Unit
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Performance

Table 4–36 shows Stratix performance for some common designs. All 
performance values were obtained with Quartus II software compilation 
of LPM, or MegaCore® functions for the FIR and FFT designs.

Table 4–36. Stratix Performance (Part 1 of 2) Notes (1), (2)

Applications

Resources Used Performance

LEs
TriMatrix 
Memory 
Blocks

DSP 
Blocks

-5 
Speed 
Grade

-6 
Speed 
Grade

-7 
Speed 
Grade

-8 
Speed 
Grade

Units

LE 16-to-1 multiplexer (1) 22 0 0 407.83 324.56 288.68 228.67 MHz

32-to-1 multiplexer (3) 46 0 0 318.26 255.29 242.89 185.18 MHz

16-bit counter 16 0 0 422.11 422.11 390.01 348.67 MHz

64-bit counter 64 0 0 321.85 290.52 261.23 220.5 MHz

TriMatrix 
memory 
M512 block

Simple dual-port RAM 
32 ×  18 bit 

0 1 0 317.76 277.62 241.48 205.21 MHz

FIFO 32 ×  18 bit 30 1 0 319.18 278.86 242.54 206.14 MHz

TriMatrix 
memory 
M4K block

Simple dual-port RAM 
128 ×  36 bit 

0 1 0 290.86 255.55 222.27 188.89 MHz

True dual-port RAM 
128 ×  18 bit 

0 1 0 290.86 255.55 222.27 188.89 MHz

FIFO 128 ×  36 bit 34 1 0 290.86 255.55 222.27 188.89 MHz

TriMatrix 
memory 
M-RAM 
block

Single port
RAM 4K ×  144 bit 

1 1 0 255.95 223.06 194.06 164.93 MHz

Simple dual-port
RAM 4K ×  144 bit

0 1 0 255.95 233.06 194.06 164.93 MHz

True dual-port
RAM 4K ×  144 bit

0 1 0 255.95 233.06 194.06 164.93 MHz

Single port
RAM 8K ×  72 bit 

0 1 0 278.94 243.19 211.59 179.82 MHz

Simple dual-port
RAM 8K ×  72 bit

0 1 0 255.95 223.06 194.06 164.93 MHz

True dual-port
RAM 8K ×  72 bit

0 1 0 255.95 223.06 194.06 164.93 MHz

Single port
RAM 16K ×  36 bit 

0 1 0 280.66 254.32 221.28 188.00 MHz

Simple dual-port
RAM 16K ×  36 bit

0 1 0 269.83 237.69 206.82 175.74 MHz
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Table 4–39. DSP Block Internal Timing Microparameter Descriptions

Symbol Parameter

tSU Input, pipeline, and output register setup time before clock

tH Input, pipeline, and output register hold time after clock

tCO Input, pipeline, and output register clock-to-output delay

tINREG2PIPE9 Input Register to DSP Block pipeline register in 9 × 9-bit 
mode

tINREG2PIPE18 Input Register to DSP Block pipeline register in 18 × 18-bit 
mode

tPIPE2OUTREG2ADD DSP Block Pipeline Register to output register delay in Two-
Multipliers Adder mode

tPIPE2OUTREG4ADD DSP Block Pipeline Register to output register delay in Four-
Multipliers Adder mode

tPD9 Combinatorial input to output delay for 9 × 9

tPD18 Combinatorial input to output delay for 18 × 18

tPD36 Combinatorial input to output delay for 36 × 36

tCLR Minimum clear pulse width

tCLKHL Register minimum clock high or low time. This is a limit on 
the min time for the clock on the registers in these blocks. 
The actual performance is dependent upon the internal 
point-to-point delays in the blocks and may give slower 
performance as shown in Table 4–36 on page 4–20 and as 
reported by the timing analyzer in the Quartus II software.
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EP1S40 tSU_R 76 80 80 80 ps

tSU_C 376 380 380 380 ps

EP1S60 tSU_R 276 280 280 280 ps

tS U_ C 276 280 280 280 ps

EP1S80 tSU_R 426 430 430 430 ps

tSU_C 76 80 80 80 ps

Table 4–46. IOE Internal Timing Microparameters

Symbol
-5 -6 -7 -8

Unit
Min Max Min Max Min Max Min Max

tH 68  71  82  96  ps

tCO_R  171  179  206  242 ps

tCO_C  171  179  206  242 ps

tPIN2COMBOUT_R  1,234  1,295  1,490  1,753 ps

tPIN2COMBOUT_C  1,087  1,141  1,312  1,544 ps

tCOMBIN2PIN_R  3,894  4,089  4,089  4,089 ps

tCOMBIN2PIN_C  4,299  4,494  4,494  4,494 ps

tCLR 276  289  333  392  ps

tPRE 260  273  313  369  ps

tCLKHL 1,000  1,111  1,190  1,400  ps

Table 4–47. DSP Block Internal Timing Microparameters (Part 1 of 2)

Symbol
-5 -6 -7 -8

Unit
Min Max Min Max Min Max Min Max

tSU 0 0 0 0 ps

tH 67  75  86  101  ps

tCO  142  158  181  214 ps

tINREG2PIPE9  2,613  2,982  3,429  4,035 ps

tINREG2PIPE18  3,390  3,993  4,591  5,402 ps

Table 4–45.  IOE Internal TSU Microparameter by Device Density (Part 2 of 2)

Device Symbol
-5 -6 -7 -8 Unit

Min Max Min Max Min Max Min Max
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Tables 4–79 through 4–84 show the external timing parameters on column 
and row pins for EP1S40 devices.

Table 4–79. EP1S40 External I/O Timing on Column Pins Using Fast Regional Clock Networks

Parameter
-5 Speed Grade -6 Speed Grade -7 Speed Grade -8 Speed Grade

Unit
Min Max Min Max Min Max Min Max

tINSU 2.696  2.907  3.290  2.899  ns

tINH 0.000  0.000  0.000  0.000  ns

tOUTCO 2.506 5.015 2.506 5.348 2.506 5.809 2.698 7.286 ns

tXZ 2.446 4.889 2.446 5.216 2.446 5.685 2.638 7.171 ns

tZX 2.446 4.889 2.446 5.216 2.446 5.685 2.638 7.171 ns

Table 4–80. EP1S40 External I/O Timing on Column Pins Using Regional Clock Networks

Parameter
-5 Speed Grade -6 Speed Grade -7 Speed Grade -8 Speed Grade

Unit
Min Max Min Max Min Max Min Max

tINSU 2.413  2.581  2.914  2.938  ns

tINH 0.000  0.000  0.000  0.000  ns

tOUTCO 2.668 5.254 2.668 5.628 2.668 6.132 2.869 7.307 ns

tXZ 2.608 5.128 2.608 5.496 2.608 6.008 2.809 7.192 ns

tZX 2.608 5.128 2.608 5.496 2.608 6.008 2.809 7.192 ns

tINSUPLL 1.385  1.376  1.609  1.837  ns

tINHPLL 0.000  0.000  0.000  0.000  ns

tOUTCOPLL 1.117 2.382 1.117 2.552 1.117 2.504 1.117 2.542 ns

tXZPLL 1.057 2.256 1,057 2.420 1.057 2.380 1.057 2.427 ns

tZXPLL 1.057 2.256 1,057 2.420 1.057 2.380 1.057 2.427 ns
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Figure 4–6 shows the case where four IOE registers are located in two 
different I/O banks.

Figure 4–6. I/O Skew Across Two I/O Banks

Table 4–97 defines the timing parameters used to define the timing for 
horizontal I/O pins (side banks 1, 2, 5, 6) and vertical I/O pins (top and 
bottom banks 3, 4, 7, 8). The timing parameters define the skew within an 
I/O bank, across two neighboring I/O banks on the same side of the 
device, across all horizontal I/O banks, across all vertical I/O banks, and 
the skew for the overall device.

Table 4–97. Output Pin Timing Skew Definitions (Part 1 of 2)

Symbol Definition

tSB_HIO Row I/O (HIO) within one I/O bank (1)

tSB_VIO Column I/O (VIO) within one I/O bank (1)

tSS_HIO Row I/O (HIO) same side of the device, across two 
banks (2)

tSS_VIO Column I/O (VIO) same side of the device, across two 
banks (2)

Common Source of GCLK

I/O Bank

I/O Bank

I/O Pin A

I/O Pin B

I/O Pin C

I/O Pin D

I/O Pin A

I/O Pin B

I/O Pin C

I/O Pin D

I/O Pin Skew across
two Banks
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Table 4–104. Stratix I/O Standard Row Pin Input Delay Adders 

Parameter
-5 Speed Grade -6 Speed Grade -7 Speed Grade -8 Speed Grade

Unit
Min Max Min Max Min Max Min Max

LVCMOS  0  0  0  0 ps

3.3-V LVTTL  0  0  0  0 ps

2.5-V LVTTL  21  22  25  29 ps

1.8-V LVTTL  181  190  218  257 ps

1.5-V LVTTL  300  315  362  426 ps

GTL+  –152  –160  –184  –216 ps

CTT  –168  –177  –203  –239 ps

SSTL-3 Class I  –193  –203  –234  –275 ps

SSTL-3 Class II  –193  –203  –234  –275 ps

SSTL-2 Class I  –262  –276  –317  –373 ps

SSTL-2 Class II  –262  –276  –317  –373 ps

SSTL-18 Class I  –105  –111  –127  –150 ps

SSTL-18 Class II  0  0  0  0 ps

1.5-V HSTL Class I  –151  –159  –183  –215 ps

1.8-V HSTL Class I  –126  –133  –153  –179 ps

LVDS  –149 –157  –180  –212 ps

LVPECL  –149 –157  –180  –212 ps

3.3-V PCML  –65  –69  –79  –93 ps

HyperTransport  77  –81  –93  –110 ps
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SW PCML (J = 4, 7, 
8, 10)

750 750 800 800 ps

PCML (J = 2) 900 900 1,200 1,200 ps

PCML (J = 1) 1,500 1,500 1,700 1,700 ps

LVDS and 
LVPECL (J = 1)

500 500 550 550 ps

LVDS, 
LVPECL, 
HyperTransport 
technology 
(J = 2 through 
10)

440 440 500 500 ps

Input jitter 
tolerance 
(peak-to-peak)

All 250 250 250 250 ps

Output jitter 
(peak-to-peak)

All 160 160 200 200 ps

Output tRISE LVDS 80 110 120 80 110 120 80 110 120 80 110 120 ps

HyperTransport 
technology

110 170 200 110 170 200 120 170 200 120 170 200 ps

LVPECL 90 130 150 90 130 150 100 135 150 100 135 150 ps

PCML 80 110 135 80 110 135 80 110 135 80 110 135 ps

Output tFALL LVDS 80 110 120 80 110 120 80 110 120 80 110 120 ps

HyperTransport 
technology

110 170 200 110 170 200 110 170 200 110 170 200 ps

LVPECL 90 130 160 90 130 160 100 135 160 100 135 160 ps

PCML 105 140 175 105 140 175 110 145 175 110 145 175 ps

Table 4–125. High-Speed I/O Specifications for Flip-Chip Packages (Part 3 of 4) Notes (1), (2)

Symbol Conditions
-5 Speed Grade -6 Speed Grade -7 Speed Grade -8 Speed Grade

Unit
Min Typ Max Min Typ Max Min Typ Max Min Typ Max



4–104 Altera Corporation
Stratix Device Handbook, Volume 1 January 2006

DLL Specifications



Altera Corporation  Index–1

Index

A
Accumulator 2–63
Adder/Output Blocks 2–61
Adder/Subtractor

2–63
Accumulator

2–63
AGP 1x Specifications 4–13
AGP 2x Specifications 4–13
Architecture 2–1

36 x 36 Multiply Mode 2–66
addnsub Signal 2–8
Block Diagram 2–2
Bus Hold 2–121
Byte Alignment 2–140
Carry-Select Chain 2–11
Clear & Preset Logic Control 2–13
Combined Resources 2–78
Dedicated Circuitry 2–137
Device Resources 2–3
Device Routing Scheme 2–20
Digital Signal Processing Block 2–52
Direct Link Connection 2–5
Dynamic Arithmetic Mode 2–10

in LE 2–11
Four-Multipliers

Adder Mode 2–68
Functional Description 2–1
LAB

Interconnects 2–4
Logic Array Blocks 2–3
Structure 2–4

LE Operating Modes 2–8
Logic Elements 2–6
Modes of Operation 2–64
Multiplier Size & Configurations per DSP

block 2–70
Multiply-Accumulator Mode 2–67
MultiTrack Interconnect 2–14
Normal Mode 2–9

in LE 2–9

Open-Drain Output 2–120
Power Sequencing & Hot Socketing 2–140
Programmable Drive Strength 2–119
Programmable Pull-Up Resistor 2–122
Simple Multiplier Mode 2–64
Single-Port Mode 2–51
Slew-Rate Control 2–120
Two-Multipliers

Adder Mode 2–67
Adder Mode Implementing Complex

Multiply 2–68

C
Class I Specifications 4–11, 4–12
Class II Specifications 4–11, 4–12, 4–13
Clocks

Clock Feedback 2–96
Clock Multiplication & Division 2–88, 2–101
Clock Switchover

2–88
Delay 2–97
EP1S10, EP1S20 & EP1S25

Device I/O Clock Groups
2–80

EP1S25, EP1S20 & EP1S10 Device Fast Clock
Pin Connections to Fast Regional
Clocks 2–77

EP1S30 Device Fast Regional Clock Pin Con-
nections to Fast Regional Clocks 2–78

EP1S30, EP1S40, EP1S60, EP1S80
Device I/O Clock Groups

2–81
External Clock

Inputs 2–102
Outputs 2–92, 2–103
Outputs for Enhanced PLLs 11 & 12 2–95
Outputs for PLLs 5 & 6 2–93

Fast Regional Clock External I/O Timing
Parameters 4–34

Fast Regional Clock Network 2–76


