

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Product StatusActiveNumber of LABs/CLBs-Number of Logic Elements/Cells-Total RAM Bits-Number of I/O683Number of Gates-
Number of LABs/CLBs-Number of Logic Elements/Cells-Total RAM Bits-Number of I/O683Number of Gates-
Number of Logic Elements/Cells - Total RAM Bits - Number of I/O 683 Number of Gates -
Total RAM Bits - Number of I/O 683 Number of Gates -
Number of I/O 683 Number of Gates -
Number of Gates -
Voltage - Supply 1.425V ~ 1.575V
Mounting Type Surface Mount
Operating Temperature -40°C ~ 100°C (TJ)
Package / Case 956-BBGA
Supplier Device Package956-BGA (40x40)
Purchase URL https://www.e-xfl.com/pro/item?MUrl=&PartUrl=ep1s40b956i6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

asynchronous load, and clear signals. An asynchronous clear signal takes precedence if both signals are asserted simultaneously. Each LAB supports up to two clears and one preset signal.

In addition to the clear and preset ports, Stratix devices provide a chipwide reset pin (DEV_CLRn) that resets all registers in the device. An option set before compilation in the Quartus II software controls this pin. This chip-wide reset overrides all other control signals.

MultiTrack Interconnect

In the Stratix architecture, connections between LEs, TriMatrix memory, DSP blocks, and device I/O pins are provided by the MultiTrack interconnect structure with DirectDrive™ technology. The MultiTrack interconnect consists of continuous, performance-optimized routing lines of different lengths and speeds used for inter- and intra-design block connectivity. The Quartus II Compiler automatically places critical design paths on faster interconnects to improve design performance.

DirectDrive technology is a deterministic routing technology that ensures identical routing resource usage for any function regardless of placement within the device. The MultiTrack interconnect and DirectDrive technology simplify the integration stage of block-based designing by eliminating the re-optimization cycles that typically follow design changes and additions.

The MultiTrack interconnect consists of row and column interconnects that span fixed distances. A routing structure with fixed length resources for all devices allows predictable and repeatable performance when migrating through different device densities. Dedicated row interconnects route signals to and from LABs, DSP blocks, and TriMatrix memory within the same row. These row resources include:

- Direct link interconnects between LABs and adjacent blocks.
- **R**4 interconnects traversing four blocks to the right or left.
- R8 interconnects traversing eight blocks to the right or left.
- R24 row interconnects for high-speed access across the length of the device.

The direct link interconnect allows an LAB, DSP block, or TriMatrix memory block to drive into the local interconnect of its left and right neighbors and then back into itself. Only one side of a M-RAM block interfaces with direct link and row interconnects. This provides fast communication between adjacent LABs and/or blocks without using row interconnect resources.

The R4 interconnects span four LABs, three LABs and one M512 RAM block, two LABs and one M4K RAM block, or two LABs and one DSP block to the right or left of a source LAB. These resources are used for fast

Single-Port Mode

The memory blocks also support single-port mode, used when simultaneous reads and writes are not required. See Figure 2–28. A single block in a memory block can support up to two single-port mode RAM blocks in the M4K RAM blocks if each RAM block is less than or equal to 2K bits in size.

Figure 2–28. Single-Port Mode Note (1)

Note to Figure 2–28:

(1) Violating the setup or hold time on the address registers could corrupt the memory contents. This applies to both read and write operations.

VCO period from up to eight taps for individual fine step selection. Also, each clock output counter can use a unique initial count setting to achieve individual coarse shift selection in steps of one VCO period. The combination of coarse and fine shifts allows phase shifting for the entire input clock period.

The equation to determine the precision of the phase shifting in degrees is: $45^{\circ} \div \text{post-scale}$ counter value. Therefore, the maximum step size is 45° , and smaller steps are possible depending on the multiplication and division ratio necessary on the output counter port.

This type of phase shift provides the highest precision since it is the least sensitive to process, supply, and temperature variation.

Clock Delay

In addition to the phase shift feature, the ability to fine tune the Δt clock delay provides advanced time delay shift control on each of the four PLL outputs. There are time delays for each post-scale counter (*e*, *g*, or *l*) from the PLL, the *n* counter, and *m* counter. Each of these can shift in 250-ps increments for a range of 3.0 ns. The *m* delay shifts all outputs earlier in time, while *n* delay shifts all outputs later in time. Individual delays on post-scale counters (*e*, *g*, and *l*) provide positive delay for each output. Table 2–21 shows the combined delay for each output for normal or zero delay buffer mode where Δt_e , Δt_e , or Δt_l is unique for each PLL output.

The t_{OUTPUT} for a single output can range from –3 ns to +6 ns. The total delay shift difference between any two PLL outputs, however, must be less than ± 3 ns. For example, shifts on two outputs of –1 and +2 ns is allowed, but not –1 and +2.5 ns because these shifts would result in a difference of 3.5 ns. If the design uses external feedback, the Δt_e delay will remove delay from outputs, represented by a negative sign (see Table 2–21). This effect occurs because the Δt_e delay is then part of the feedback loop.

Table 2–21. Output Clock Delay for Enhanced PLLs								
Normal or Zero Delay Buffer Mode	External Feedback Mode							
$ \begin{split} \Delta \mathbf{t}_{e\mathrm{OUTPUT}} &= \Delta \mathbf{t}_n - \Delta \mathbf{t}_m + \Delta \mathbf{t}_e \\ \Delta \mathbf{t}_{g\mathrm{OUTPUT}} &= \Delta \mathbf{t}_n - \Delta \mathbf{t}_m + \Delta \mathbf{t}_g \\ \Delta \mathbf{t}_{\mathrm{OUTPUT}} &= \Delta \mathbf{t}_n - \Delta \mathbf{t}_m + \Delta \mathbf{t}_l \end{split} $	$\begin{array}{l} \Delta t_{eOUTPUT} = \Delta t_n - \Delta t_m - \Delta t_e \ (1) \\ \Delta t_{gOUTPUT} = \Delta t_n - \Delta t_m + \Delta t_g \\ \Delta t_{OUTPUT} = \Delta t_n - \Delta t_m + \Delta t_l \end{array}$							

Note to Table 2–21:

(1) Δt_e removes delay from outputs in external feedback mode.

Figure 2–59. Stratix IOE Structure

The IOEs are located in I/O blocks around the periphery of the Stratix device. There are up to four IOEs per row I/O block and six IOEs per column I/O block. The row I/O blocks drive row, column, or direct link interconnects. The column I/O blocks drive column interconnects. Figure 2–60 shows how a row I/O block connects to the logic array. Figure 2–61 shows how a column I/O block connects to the logic array.

Figure 2–65. Stratix IOE in DDR Input I/O Configuration Note (1)

Notes to Figure 2–65:

- (1) All input signals to the IOE can be inverted at the IOE.
- (2) This signal connection is only allowed on dedicated DQ function pins.
- (3) This signal is for dedicated DQS function pins only.

When using the IOE for DDR outputs, the two output registers are configured to clock two data paths from LEs on rising clock edges. These output registers are multiplexed by the clock to drive the output pin at a ×2 rate. One output register clocks the first bit out on the clock high time, while the other output register clocks the second bit out on the clock low time. Figure 2–67 shows the IOE configured for DDR output. Figure 2–68 shows the DDR output timing diagram.

The transmitter external clock output is transmitted on a data channel. The txclk pin for each bank is located in between data transmitter pins. For ×1 clocks (e.g., 622 Mbps, 622 MHz), the high-speed PLL clock bypasses the SERDES to drive the output pins. For half-rate clocks (e.g., 622 Mbps, 311 MHz) or any other even-numbered factor such as 1/4, 1/7, 1/8, or 1/10, the SERDES automatically generates the clock in the Quartus II software.

For systems that require more than four or eight high-speed differential I/O clock domains, a SERDES bypass implementation is possible using IOEs.

Byte Alignment

For high-speed source synchronous interfaces such as POS-PHY 4, XSBI, RapidIO, and HyperTransport technology, the source synchronous clock rate is not a byte- or SERDES-rate multiple of the data rate. Byte alignment is necessary for these protocols since the source synchronous clock does not provide a byte or word boundary since the clock is one half the data rate, not one eighth. The Stratix device's high-speed differential I/O circuitry provides dedicated data realignment circuitry for usercontrolled byte boundary shifting. This simplifies designs while saving LE resources. An input signal to each fast PLL can stall deserializer parallel data outputs by one bit period. You can use an LE-based state machine to signal the shift of receiver byte boundaries until a specified pattern is detected to indicate byte alignment.

Power Sequencing & Hot Socketing

Because Stratix devices can be used in a mixed-voltage environment, they have been designed specifically to tolerate any possible power-up sequence. Therefore, the VCCIO and VCCINT power supplies may be powered in any order.

Although you can power up or down the VCCIO and VCCINT power supplies in any sequence, you should not power down any I/O banks that contain configuration pins while leaving other I/O banks powered on. For power up and power down, all supplies (VCCINT and all VCCIO power planes) must be powered up and down within 100 ms of each other. This prevents I/O pins from driving out.

Signals can be driven into Stratix devices before and during power up without damaging the device. In addition, Stratix devices do not drive out during power up. Once operating conditions are reached and the device is configured, Stratix devices operate as specified by the user. For more information, see *Hot Socketing* in the *Selectable I/O Standards in Stratix & Stratix GX Devices* chapter in the *Stratix Device Handbook, Volume 2.*

Table 4–2. Stratix Device Recommended Operating Conditions (Part 2 of 2)										
Symbol	Parameter	Conditions	Minimum	Maximum	Unit					
V _{CCIO}	Supply voltage for output buffers, 3.3-V operation	(4), (5)	3.00 (3.135)	3.60 (3.465)	V					
	Supply voltage for output buffers, 2.5-V operation	(4)	2.375	2.625	V					
	Supply voltage for output buffers, 1.8-V operation	(4)	1.71	1.89	V					
	Supply voltage for output buffers, 1.5-V operation	(4)	1.4	1.6	V					
VI	Input voltage	(3), (6)	-0.5	4.0	V					
Vo	Output voltage		0	V _{CCIO}	V					
TJ	Operating junction	For commercial use	0	85	°C					
	temperature	For industrial use	-40	100	°C					

Table 4–3.	Table 4–3. Stratix Device DC Operating Conditions Note (7) (Part 1 of 2)										
Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Unit					
I _I	Input pin leakage current	$V_{I} = V_{CCIOmax}$ to 0 V (8)	-10		10	μA					
I _{OZ}	Tri-stated I/O pin leakage current	$V_{O} = V_{CCIOmax}$ to 0 V (8)	-10		10	μA					
I _{CC0}	V _{CC} supply current (standby) (All	V _I = ground, no load, no toggling inputs				mA					
	memory blocks in power-down mode)	EP1S10. V_1 = ground, no load, no toggling inputs		37		mA					
		EP1S20. V_1 = ground, no load, no toggling inputs		65		mA					
		EP1S25. V _I = ground, no load, no toggling inputs		90		mA					
		EP1S30. V _I = ground, no load, no toggling inputs		114		mA					
		EP1S40. V_1 = ground, no load, no toggling inputs		145		mA					
		EP1S60. V_1 = ground, no load, no toggling inputs		200		mA					
		EP1S80. V _I = ground, no load, no toggling inputs		277		mA					

Table 4–3.	Table 4-3. Stratix Device DC Operating Conditions Note (7) (Part 2 of 2)										
Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Unit					
R _{CONF}	Value of I/O pin pull-	$V_{CCIO} = 3.0 V (9)$	20		50	kΩ					
	up resistor before and during configuration	V _{CCIO} = 2.375 V <i>(9)</i>	30		80	kΩ					
		$V_{CCIO} = 1.71 V (9)$	60		150	kΩ					

Table 4–4. l	Table 4–4. LVTTL Specifications											
Symbol	Parameter	Conditions	Minimum	Maximum	Unit							
V _{CCIO}	Output supply voltage		3.0	3.6	V							
V _{IH}	High-level input voltage		1.7	4.1	V							
V _{IL}	Low-level input voltage		-0.5	0.7	V							
V _{OH}	High-level output voltage	$I_{OH} = -4$ to -24 mA (10)	2.4		V							
V _{OL}	Low-level output voltage	I _{OL} = 4 to 24 mA <i>(10)</i>		0.45	V							

Table 4–5. LVCMOS Specifications											
Symbol	Parameter	Conditions	Minimum	Maximum	Unit						
V _{CCIO}	Output supply voltage		3.0	3.6	V						
V _{IH}	High-level input voltage		1.7	4.1	V						
V _{IL}	Low-level input voltage		-0.5	0.7	V						
V _{OH}	High-level output voltage	$V_{CCIO} = 3.0,$ $I_{OH} = -0.1 \text{ mA}$	V _{CCIO} – 0.2		V						
V _{OL}	Low-level output voltage	$V_{CCIO} = 3.0,$ $I_{OL} = 0.1 \text{ mA}$		0.2	V						

Table 4–6. 2.5-V I/O Specifications											
Symbol	Parameter	Conditions	Minimum	Maximum	Unit						
V _{CCIO}	Output supply voltage		2.375	2.625	V						
V _{IH}	High-level input voltage		1.7	4.1	V						
V _{IL}	Low-level input voltage		-0.5	0.7	V						
V _{OH}	High-level output voltage	I _{OH} = -1 mA <i>(10)</i>	2.0		V						
V _{OL}	Low-level output voltage	I _{OL} = 1 mA <i>(10)</i>		0.4	V						

Performance

Table 4–36 shows Stratix performance for some common designs. All performance values were obtained with Quartus II software compilation of LPM, or MegaCore[®] functions for the FIR and FFT designs.

Table 4–36	Table 4–36. Stratix Performance (Part 1 of 2) Notes (1), (2)								
		F	lesources U	Jsed		Р	erforman	ce	
ļ	Applications	LEs	TriMatrix Memory Blocks	DSP Blocks	-5 Speed Grade	-6 Speed Grade	-7 Speed Grade	-8 Speed Grade	Units
LE	16-to-1 multiplexer (1)	22	0	0	407.83	324.56	288.68	228.67	MHz
	32-to-1 multiplexer (3)	46	0	0	318.26	255.29	242.89	185.18	MHz
	16-bit counter	16	0	0	422.11	422.11	390.01	348.67	MHz
	64-bit counter	64	0	0	321.85	290.52	261.23	220.5	MHz
TriMatrix memory	Simple dual-port RAM 32×18 bit	0	1	0	317.76	277.62	241.48	205.21	MHz
M512 block	FIFO 32×18 bit	30	1	0	319.18	278.86	242.54	206.14	MHz
TriMatrix memory	Simple dual-port RAM 128×36 bit	0	1	0	290.86	255.55	222.27	188.89	MHz
M4K block	True dual-port RAM 128 \times 18 bit	0	1	0	290.86	255.55	222.27	188.89	MHz
	FIFO 128 \times 36 bit	34	1	0	290.86	255.55	222.27	188.89	MHz
TriMatrix memory	Single port RAM 4K \times 144 bit	1	1	0	255.95	223.06	194.06	164.93	MHz
M-RAM block	Simple dual-port RAM $4K \times 144$ bit	0	1	0	255.95	233.06	194.06	164.93	MHz
	True dual-port RAM 4K \times 144 bit	0	1	0	255.95	233.06	194.06	164.93	MHz
	Single port RAM 8K \times 72 bit	0	1	0	278.94	243.19	211.59	179.82	MHz
	Simple dual-port RAM 8K \times 72 bit	0	1	0	255.95	223.06	194.06	164.93	MHz
	True dual-port RAM 8K \times 72 bit	0	1	0	255.95	223.06	194.06	164.93	MHz
	Single port RAM 16K \times 36 bit	0	1	0	280.66	254.32	221.28	188.00	MHz
	Simple dual-port RAM 16K $ imes$ 36 bit	0	1	0	269.83	237.69	206.82	175.74	MHz

Table 4–39. DSP	Block Internal Timing Microparameter Descriptions
Symbol	Parameter
t _{SU}	Input, pipeline, and output register setup time before clock
t _H	Input, pipeline, and output register hold time after clock
t _{co}	Input, pipeline, and output register clock-to-output delay
t _{INREG2PIPE9}	Input Register to DSP Block pipeline register in 9×9 -bit mode
t _{INREG2PIPE18}	Input Register to DSP Block pipeline register in 18×18 -bit mode
	DSP Block Pipeline Register to output register delay in Two- Multipliers Adder mode
t _{PIPE2OUTREG4ADD}	DSP Block Pipeline Register to output register delay in Four- Multipliers Adder mode
t _{PD9}	Combinatorial input to output delay for 9×9
t _{PD18}	Combinatorial input to output delay for 18×18
t _{PD36}	Combinatorial input to output delay for 36×36
t _{CLR}	Minimum clear pulse width
t _{olkhl}	Register minimum clock high or low time. This is a limit on the min time for the clock on the registers in these blocks. The actual performance is dependent upon the internal point-to-point delays in the blocks and may give slower performance as shown in Table 4–36 on page 4–20 and as reported by the timing analyzer in the Quartus II software.

Altera Corporation January 2006

Table 4–45. IOE Internal TSU Microparameter by Device Density (Part 2 of 2)										
Dovico	0h.e.l	-	-5		-6		-7		-8	
Device	əyiinuli	Min	Max	Min	Max	Min	Max	Min	Max	
EP1S40	t _{SU_R}	76		80		80		80		ps
	t _{SU_C}	376		380		380		380		ps
EP1S60	t _{SU_R}	276		280		280		280		ps
	t _{SU_C}	276		280		280		280		ps
EP1S80	t _{SU_R}	426		430		430		430		ps
	t _{SU_C}	76		80		80		80		ps

Table 4–46. IOE Internal Timing Microparameters											
Symbol	-	5	-	-6		-7		-8			
	Min	Max	Min	Max	Min	Max	Min	Max	Unit		
t _H	68		71		82		96		ps		
t _{CO_R}		171		179		206		242	ps		
t _{CO_C}		171		179		206		242	ps		
t _{PIN2COMBOUT_R}		1,234		1,295		1,490		1,753	ps		
t _{PIN2COMBOUT_C}		1,087		1,141		1,312		1,544	ps		
t _{COMBIN2PIN_R}		3,894		4,089		4,089		4,089	ps		
t _{COMBIN2PIN_C}		4,299		4,494		4,494		4,494	ps		
t _{CLR}	276		289		333		392		ps		
t _{PRE}	260		273		313		369		ps		
t _{CLKHL}	1,000		1,111		1,190		1,400		ps		

Table 4–47. DSP Block Internal Timing Microparameters (Part 1 of 2)												
Quantast	-	5	-6		-7		-8		11			
Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unit			
t _{SU}	0		0		0		0		ps			
t _H	67		75		86		101		ps			
t _{CO}		142		158		181		214	ps			
t _{INREG2PIPE9}		2,613		2,982		3,429		4,035	ps			
t _{INREG2PIPE18}		3,390		3,993		4,591		5,402	ps			

Tables 4–79 through 4–84 show the external timing parameters on column and row pins for EP1S40 devices.

Table 4–79. EP1S40 External I/O Timing on Column Pins Using Fast Regional Clock Networks												
Demonster	-5 Spee	d Grade	-6 Spee	d Grade	-7 Spee	d Grade	-8 Spee	Unit				
Farailieler	Min	Max	Min	Max	Min	Max	Min	Max	UIII			
t _{INSU}	2.696		2.907		3.290		2.899		ns			
t _{INH}	0.000		0.000		0.000		0.000		ns			
t _{OUTCO}	2.506	5.015	2.506	5.348	2.506	5.809	2.698	7.286	ns			
t _{XZ}	2.446	4.889	2.446	5.216	2.446	5.685	2.638	7.171	ns			
t _{ZX}	2.446	4.889	2.446	5.216	2.446	5.685	2.638	7.171	ns			

Table 4–80. EP1S40 External I/O Timing on Column Pins Using Regional Clock Networks												
Demonstern	-5 Spee	d Grade	-6 Spee	d Grade	-7 Spee	d Grade	-8 Spee	11 14				
Farailieler	Min Max		Min	Max	Min	Max	Min Max		Unit			
t _{INSU}	2.413		2.581		2.914		2.938		ns			
t _{INH}	0.000		0.000		0.000		0.000		ns			
t _{OUTCO}	2.668	5.254	2.668	5.628	2.668	6.132	2.869	7.307	ns			
t _{xz}	2.608	5.128	2.608	5.496	2.608	6.008	2.809	7.192	ns			
t _{ZX}	2.608	5.128	2.608	5.496	2.608	6.008	2.809	7.192	ns			
t _{INSUPLL}	1.385		1.376		1.609		1.837		ns			
t _{INHPLL}	0.000		0.000		0.000		0.000		ns			
t _{OUTCOPLL}	1.117	2.382	1.117	2.552	1.117	2.504	1.117	2.542	ns			
t _{XZPLL}	1.057	2.256	1,057	2.420	1.057	2.380	1.057	2.427	ns			
t _{ZXPLL}	1.057	2.256	1,057	2.420	1.057	2.380	1.057	2.427	ns			

Figure 4–6 shows the case where four IOE registers are located in two different I/O banks.

Table 4–97 defines the timing parameters used to define the timing for horizontal I/O pins (side banks 1, 2, 5, 6) and vertical I/O pins (top and bottom banks 3, 4, 7, 8). The timing parameters define the skew within an I/O bank, across two neighboring I/O banks on the same side of the device, across all horizontal I/O banks, across all vertical I/O banks, and the skew for the overall device.

Table 4–97. Output Pin Timing Skew Definitions (Part 1 of 2)									
Symbol	Definition								
t _{SB_HIO}	Row I/O (HIO) within one I/O bank (1)								
t _{SB_VIO}	Column I/O (VIO) within one I/O bank (1)								
t _{ss_ню}	Row I/O (HIO) same side of the device, across two banks (2)								
t _{SS_VIO}	Column I/O (VIO) same side of the device, across two banks (2)								

Table 4–104. Stratix I/O Standard Row Pin Input Delay Adders												
Parameter	-5 Spee	ed Grade	-6 Spee	d Grade	-7 Spee	d Grade	-8 Spee	Unit				
	Min	Max	Min	Max	Min	Max	Min	Max	Unit			
LVCMOS		0		0		0		0	ps			
3.3-V LVTTL		0		0		0		0	ps			
2.5-V LVTTL		21		22		25		29	ps			
1.8-V LVTTL		181		190		218		257	ps			
1.5-V LVTTL		300		315		362		426	ps			
GTL+		-152		-160		-184		-216	ps			
СТТ		-168		-177		-203		-239	ps			
SSTL-3 Class I		-193		-203		-234		-275	ps			
SSTL-3 Class II		-193		-203		-234		-275	ps			
SSTL-2 Class I		-262		-276		-317		-373	ps			
SSTL-2 Class II		-262		-276		-317		-373	ps			
SSTL-18 Class I		-105		-111		-127		-150	ps			
SSTL-18 Class II		0		0		0		0	ps			
1.5-V HSTL Class I		-151		-159		-183		-215	ps			
1.8-V HSTL Class I		-126		-133		-153		-179	ps			
LVDS		-149		-157		-180		-212	ps			
LVPECL		-149		-157		-180		-212	ps			
3.3-V PCML		-65		-69		-79		-93	ps			
HyperTransport		77		-81		-93		-110	ps			

-
- - - - -
<u>ج</u>
6
-
T
ŕ٨
•••
8
—
¥.
œ
0
_
-
6
0
S
-
Ξ.
æ
0
<u> </u>
_
Ξ.
¥.
ци,
<u>_</u>
~
2
3
_

Table 4–125. High-Speed I/O Specifications for Flip-Chip Packages (Part 3 of 4) Notes (1), (2)														
0h.e.l	0	-5 Speed Grade			-6 Speed Grade			-7 Speed Grade			-8 Speed Grade			
Symbol	Conditions	Min	Тур	Max	Unit									
SW	PCML (<i>J</i> = 4, 7, 8, 10)	750			750			800			800			ps
	PCML $(J = 2)$	900			900			1,200			1,200			ps
	PCML $(J = 1)$	1,500			1,500			1,700			1,700			ps
	LVDS and LVPECL $(J = 1)$	500			500			550			550			ps
	LVDS, LVPECL, HyperTransport technology (<i>J</i> = 2 through 10)	440			440			500			500			ps
Input jitter tolerance (peak-to-peak)	All			250			250			250			250	ps
Output jitter (peak-to-peak)	All			160			160			200			200	ps
Output t _{RISE}	LVDS	80	110	120	80	110	120	80	110	120	80	110	120	ps
	HyperTransport technology	110	170	200	110	170	200	120	170	200	120	170	200	ps
	LVPECL	90	130	150	90	130	150	100	135	150	100	135	150	ps
	PCML	80	110	135	80	110	135	80	110	135	80	110	135	ps
Output t _{FALL}	LVDS	80	110	120	80	110	120	80	110	120	80	110	120	ps
	HyperTransport technology	110	170	200	110	170	200	110	170	200	110	170	200	ps
	LVPECL	90	130	160	90	130	160	100	135	160	100	135	160	ps
	PCML	105	140	175	105	140	175	110	145	175	110	145	175	ps

Index

A

Accumulator 2–63 Adder/Output Blocks 2–61 Adder/Subtractor 2 - 63Accumulator 2 - 63AGP 1x Specifications 4–13 AGP 2x Specifications 4–13 Architecture 2–1 36 x 36 Multiply Mode 2–66 addnsub Signal 2–8 Block Diagram 2-2 Bus Hold 2-121 Byte Alignment 2–140 Carry-Select Chain 2–11 Clear & Preset Logic Control 2–13 Combined Resources 2–78 Dedicated Circuitry 2–137 Device Resources 2–3 Device Routing Scheme 2–20 Digital Signal Processing Block 2–52 Direct Link Connection 2–5 Dynamic Arithmetic Mode 2–10 in LE 2-11 Four-Multipliers Adder Mode 2–68 Functional Description 2–1 LAB Interconnects 2–4 Logic Array Blocks 2–3 Structure 2-4 LE Operating Modes 2–8 Logic Elements 2–6 Modes of Operation 2–64 Multiplier Size & Configurations per DSP block 2-70 Multiply-Accumulator Mode 2–67 MultiTrack Interconnect 2–14 Normal Mode 2–9 in LE 2–9

Open-Drain Output 2–120 Power Sequencing & Hot Socketing 2–140 Programmable Drive Strength 2–119 Programmable Pull-Up Resistor 2–122 Simple Multiplier Mode 2–64 Single-Port Mode 2–51 Slew-Rate Control 2–120 Two-Multipliers Adder Mode 2–67 Adder Mode 2–67 Multiply 2–68

C

Class I Specifications 4–11, 4–12 Class II Specifications 4–11, 4–12, 4–13 Clocks Clock Feedback 2–96 Clock Multiplication & Division 2–88, 2–101 Clock Switchover 2 - 88Delay 2–97 EP1S10, EP1S20 & EP1S25 Device I/O Clock Groups 2 - 80EP1S25, EP1S20 & EP1S10 Device Fast Clock Pin Connections to Fast Regional Clocks 2–77 EP1S30 Device Fast Regional Clock Pin Connections to Fast Regional Clocks 2-78 EP1S30, EP1S40, EP1S60, EP1S80 Device I/O Clock Groups 2 - 81External Clock Inputs 2–102 Outputs 2–92, 2–103 Outputs for Enhanced PLLs 11 & 12 2–95 Outputs for PLLs 5 & 6 2–93 Fast Regional Clock External I/O Timing Parameters 4–34 Fast Regional Clock Network 2–76