Altera - EP1S40F1020C5 Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	-
Number of I/O	773
Number of Gates	-
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	1020-BBGA
Supplier Device Package	1020-FBGA (33x33)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=ep1s40f1020c5

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Chapter	Date/Version	Changes Made
4	January 2005, 3.2	Updated rise and fall input values.
	September 2004, v3.1	 Updated Note 3 in Table 4–8 on page 4–4. Updated Table 4–10 on page 4–6. Updated Table 4–20 on page 4–12 through Table 4–23 on page 4–13. Added rows V_{IL(AC)} and V_{IH(AC)} to each table. Updated Table 4–26 on page 4–14 through Table 4–29 on page 4–15. Updated Table 4–31 on page 4–16. Updated Table 4–36 on page 4–20. Added signals t_{OUTCO}, T_{XZ}, and T_{ZX} to Figure 4–4 on page 4–33. Added rows t_{M512CLKENSU} and t_{M512CLKENH} to Table 4–40 on page 4–24. Updated Note 2 in Table 4–54 on page 4–35. Added rows t_{MAACLKENSU} and t_{MAMCLKENH} to Table 4–42 on page 4–25. Updated Table 4–46 on page 4–29. Updated Table 4–47 on page 4–29.

Features

The Stratix family offers the following features:

- 10,570 to 79,040 LEs; see Table 1–1
- Up to 7,427,520 RAM bits (928,440 bytes) available without reducing logic resources
- TriMatrix[™] memory consisting of three RAM block sizes to implement true dual-port memory and first-in first-out (FIFO) buffers
- High-speed DSP blocks provide dedicated implementation of multipliers (faster than 300 MHz), multiply-accumulate functions, and finite impulse response (FIR) filters
- Up to 16 global clocks with 22 clocking resources per device region
- Up to 12 PLLs (four enhanced PLLs and eight fast PLLs) per device provide spread spectrum, programmable bandwidth, clock switchover, real-time PLL reconfiguration, and advanced multiplication and phase shifting
- Support for numerous single-ended and differential I/O standards
- High-speed differential I/O support on up to 116 channels with up to 80 channels optimized for 840 megabits per second (Mbps)
- Support for high-speed networking and communications bus standards including RapidIO, UTOPIA IV, CSIX, HyperTransport™ technology, 10G Ethernet XSBI, SPI-4 Phase 2 (POS-PHY Level 4), and SFI-4
- Differential on-chip termination support for LVDS
- Support for high-speed external memory, including zero bus turnaround (ZBT) SRAM, quad data rate (QDR and QDRII) SRAM, double data rate (DDR) SDRAM, DDR fast cycle RAM (FCRAM), and single data rate (SDR) SDRAM
- Support for 66-MHz PCI (64 and 32 bit) in -6 and faster speed-grade devices, support for 33-MHz PCI (64 and 32 bit) in -8 and faster speed-grade devices
- Support for 133-MHz PCI-X 1.0 in -5 speed-grade devices
- Support for 100-MHz PCI-X 1.0 in -6 and faster speed-grade devices
- Support for 66-MHz PCI-X 1.0 in -7 speed-grade devices
- Support for multiple intellectual property megafunctions from Altera MegaCore[®] functions and Altera Megafunction Partners Program (AMPPSM) megafunctions
- Support for remote configuration updates

Figure 2–16. M512 RAM Block LAB Row Interface

M4K RAM Blocks

The M4K RAM block includes support for true dual-port RAM. The M4K RAM block is used to implement buffers for a wide variety of applications such as storing processor code, implementing lookup schemes, and implementing larger memory applications. Each block contains 4,608 RAM bits (including parity bits). M4K RAM blocks can be configured in the following modes:

- True dual-port RAM
- Simple dual-port RAM
- Single-port RAM
- FIFO
- ROM
- Shift register

When configured as RAM or ROM, you can use an initialization file to pre-load the memory contents.

Table 2–11. M-RAM Combined Byte	Table 2–11. M-RAM Combined Byte Selection for ×144 Mode Notes (1), (2)						
byteena[150]	datain ×144						
[0] = 1	[80]						
[1] = 1	[179]						
[2] = 1	[2618]						
[3] = 1	[3527]						
[4] = 1	[4436]						
[5] = 1	[5345]						
[6] = 1	[6254]						
[7] = 1	[7163]						
[8] = 1	[8072]						
[9] = 1	[8981]						
[10] = 1	[9890]						
[11] = 1	[10799]						
[12] = 1	[116108]						
[13] = 1	[125117]						
[14] = 1	[134126]						
[15] = 1	[143135]						

Notes to Tables 2–10 and 2–11:

(1) Any combination of byte enables is possible.

(2) Byte enables can be used in the same manner with 8-bit words, i.e., in $\times 16$, $\times 32$, $\times 64$, and $\times 128$ modes.

Similar to all RAM blocks, M-RAM blocks can have different clocks on their inputs and outputs. All input registers—renwe, datain, address, and byte enable registers—are clocked together from either of the two clocks feeding the block. The output register can be bypassed. The eight labclk signals or local interconnect can drive the control signals for the A and B ports of the M-RAM block. LEs can also control the clock_a, clock_b, renwe_a, renwe_b, clr_a, clr_b, clocken_a, and clocken_b signals as shown in Figure 2–19.

Output Selection Multiplexer

The outputs from the various elements of the adder/output block are routed through an output selection multiplexer. Based on the DSP block operational mode and user settings, the multiplexer selects whether the output from the multiplier, the adder/subtractor/accumulator, or summation block feeds to the output.

Output Registers

Optional output registers for the DSP block outputs are controlled by four sets of control signals: clock [3..0], aclr [3..0], and ena [3..0]. Output registers can be used in any mode.

Modes of Operation

The adder, subtractor, and accumulate functions of a DSP block have four modes of operation:

- Simple multiplier
- Multiply-accumulator
- Two-multipliers adder
- Four-multipliers adder
- Each DSP block can only support one mode. Mixed modes in the same DSP block is not supported.

Simple Multiplier Mode

In simple multiplier mode, the DSP block drives the multiplier sub-block result directly to the output with or without an output register. Up to four 18×18 -bit multipliers or eight 9×9 -bit multipliers can drive their results directly out of one DSP block. See Figure 2–35.

provide general purpose clocking with multiplication and phase shifting as well as high-speed outputs for high-speed differential I/O support. Enhanced and fast PLLs work together with the Stratix high-speed I/O and advanced clock architecture to provide significant improvements in system performance and bandwidth.

The Quartus II software enables the PLLs and their features without requiring any external devices. Table 2–18 shows the PLLs available for each Stratix device.

Table 2–18	Table 2–18. Stratix Device PLL Availability											
Dovice				Fas	t PLLs					Enhanced PLLs		
Device	1	2	3	4	7	8	9	10	5(1)	6 (1)	11 (2)	12 <i>(2)</i>
EP1S10	\checkmark	\checkmark	\checkmark	~					\checkmark	~		
EP1S20	\checkmark	\checkmark	\checkmark	\checkmark					\checkmark	\checkmark		
EP1S25	\checkmark	\checkmark	\checkmark	~					\checkmark	~		
EP1S30	\checkmark	\checkmark	\checkmark	\checkmark	🗸 (3)	🗸 (3)	🗸 (3)	🗸 (3)	\checkmark	\checkmark		
EP1S40	~	~	~	~	✓ (3)	✓ (3)	✓ (3)	✓ (3)	~	\checkmark	√ (3)	√ (3)
EP1S60	~	~	~	~	~	\checkmark	~	\checkmark	~	~	<	\checkmark
EP1S80	\checkmark	\checkmark	\checkmark	\checkmark	~	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	~	\checkmark

Notes to Table 2–18:

(1) PLLs 5 and 6 each have eight single-ended outputs or four differential outputs.

(2) PLLs 11 and 12 each have one single-ended output.

(3) EP1S30 and EP1S40 devices do not support these PLLs in the 780-pin FineLine BGA® package.

Figure 2–54. Dynamically Programmable Counters & Delays in Stratix Device Enhanced PLLs

PLL reconfiguration data is shifted into serial registers from the logic array or external devices. The PLL input shift data uses a reference input shift clock. Once the last bit of the serial chain is clocked in, the register chain is synchronously loaded into the PLL configuration bits. The shift circuitry also provides an asynchronous clear for the serial registers.

For more information on PLL reconfiguration, see AN 282: Implementing PLL Reconfiguration in Stratix & Stratix GX Devices.

Programmable Bandwidth

You have advanced control of the PLL bandwidth using the programmable control of the PLL loop characteristics, including loop filter and charge pump. The PLL's bandwidth is a measure of its ability to track the input clock and jitter. A high-bandwidth PLL can quickly lock onto a reference clock and react to any changes in the clock. It also will allow a wide band of input jitter spectrum to pass to the output. A lowbandwidth PLL will take longer to lock, but it will attenuate all highfrequency jitter components. The Quartus II software can adjust PLL characteristics to achieve the desired bandwidth. The programmable

Figure 2–55. External Clock Outputs for PLLs 5 & 6

Notes to Figure 2-55:

- (1) The design can use each external clock output pin as a general-purpose output pin from the logic array. These pins are multiplexed with IOE outputs.
- (2) Two single-ended outputs are possible per output counter—either two outputs of the same frequency and phase or one shifted 180°.
- (3) EP1S10, EP1S20, and EP1S25 devices in 672-pin BGA and 484- and 672-pin FineLine BGA packages only have two pairs of external clocks (i.e., pll_out0p, pll_out0n, pll_out1p, and pll_out1n).
- (4) Differential SSTL and HSTL outputs are implemented using two single-ended output buffers, which are programmed to have opposite polarity.

VCO period from up to eight taps for individual fine step selection. Also, each clock output counter can use a unique initial count setting to achieve individual coarse shift selection in steps of one VCO period. The combination of coarse and fine shifts allows phase shifting for the entire input clock period.

The equation to determine the precision of the phase shifting in degrees is: $45^{\circ} \div \text{post-scale}$ counter value. Therefore, the maximum step size is 45° , and smaller steps are possible depending on the multiplication and division ratio necessary on the output counter port.

This type of phase shift provides the highest precision since it is the least sensitive to process, supply, and temperature variation.

Clock Delay

In addition to the phase shift feature, the ability to fine tune the Δt clock delay provides advanced time delay shift control on each of the four PLL outputs. There are time delays for each post-scale counter (*e*, *g*, or *l*) from the PLL, the *n* counter, and *m* counter. Each of these can shift in 250-ps increments for a range of 3.0 ns. The *m* delay shifts all outputs earlier in time, while *n* delay shifts all outputs later in time. Individual delays on post-scale counters (*e*, *g*, and *l*) provide positive delay for each output. Table 2–21 shows the combined delay for each output for normal or zero delay buffer mode where Δt_e , Δt_e , or Δt_l is unique for each PLL output.

The t_{OUTPUT} for a single output can range from –3 ns to +6 ns. The total delay shift difference between any two PLL outputs, however, must be less than ± 3 ns. For example, shifts on two outputs of –1 and +2 ns is allowed, but not –1 and +2.5 ns because these shifts would result in a difference of 3.5 ns. If the design uses external feedback, the Δt_e delay will remove delay from outputs, represented by a negative sign (see Table 2–21). This effect occurs because the Δt_e delay is then part of the feedback loop.

Table 2–21. Output Clock Delay for Enhanced PLLs						
Normal or Zero Delay Buffer Mode	External Feedback Mode					
$ \begin{split} \Delta \mathbf{t}_{e\mathrm{OUTPUT}} &= \Delta \mathbf{t}_n - \Delta \mathbf{t}_m + \Delta \mathbf{t}_e \\ \Delta \mathbf{t}_{g\mathrm{OUTPUT}} &= \Delta \mathbf{t}_n - \Delta \mathbf{t}_m + \Delta \mathbf{t}_g \\ \Delta \mathbf{t}_{\mathrm{OUTPUT}} &= \Delta \mathbf{t}_n - \Delta \mathbf{t}_m + \Delta \mathbf{t}_l \end{split} $	$\begin{array}{l} \Delta t_{eOUTPUT} = \Delta t_n - \Delta t_m - \Delta t_e \ (1) \\ \Delta t_{gOUTPUT} = \Delta t_n - \Delta t_m + \Delta t_g \\ \Delta t_{OUTPUT} = \Delta t_n - \Delta t_m + \Delta t_l \end{array}$					

Note to Table 2–21:

(1) Δt_e removes delay from outputs in external feedback mode.

When using the IOE for DDR outputs, the two output registers are configured to clock two data paths from LEs on rising clock edges. These output registers are multiplexed by the clock to drive the output pin at a ×2 rate. One output register clocks the first bit out on the clock high time, while the other output register clocks the second bit out on the clock low time. Figure 2–67 shows the IOE configured for DDR output. Figure 2–68 shows the DDR output timing diagram.

Figure 2–68. Output Timing Diagram in DDR Mode

The Stratix IOE operates in bidirectional DDR mode by combining the DDR input and DDR output configurations. Stratix device I/O pins transfer data on a DDR bidirectional bus to support DDR SDRAM. The negative-edge-clocked OE register holds the OE signal inactive until the falling edge of the clock. This is done to meet DDR SDRAM timing requirements.

External RAM Interfacing

Stratix devices support DDR SDRAM at up to 200 MHz (400-Mbps data rate) through dedicated phase-shift circuitry, QDR and QDRII SRAM interfaces up to 167 MHz, and ZBT SRAM interfaces up to 200 MHz. Stratix devices also provide preliminary support for reduced latency DRAM II (RLDRAM II) at rates up to 200 MHz through the dedicated phase-shift circuitry.

In addition to the required signals for external memory interfacing, Stratix devices offer the optional clock enable signal. By default the Quartus II software sets the clock enable signal high, which tells the output register to update with new values. The output registers hold their own values if the design sets the clock enable signal low. See Figure 2–64.

To find out more about the DDR SDRAM specification, see the JEDEC web site (**www.jedec.org**). For information on memory controller megafunctions for Stratix devices, see the Altera web site (**www.altera.com**). See *AN 342: Interfacing DDR SDRAM with Stratix & Stratix GX Devices* for more information on DDR SDRAM interface in Stratix. Also see *AN 349: QDR SRAM Controller Reference Design for Stratix & Stratix GX Devices* and *AN 329: ZBT SRAM Controller Reference Design for Stratix & Stratix & Stratix & Stratix GX Devices*.

Tables 2–25 and 2–26 show the performance specification for DDR SDRAM, RLDRAM II, QDR SRAM, QDRII SRAM, and ZBT SRAM interfaces in EP1S10 through EP1S40 devices and in EP1S60 and EP1S80 devices. The DDR SDRAM and QDR SRAM numbers in Table 2–25 have been verified with hardware characterization with third-party DDR SDRAM and QDR SRAM devices over temperature and voltage extremes.

Table 2–25. External RAM Support in EP1S10 through EP1S40 Devices											
		Maximum Clock Rate (MHz)									
DDR Memory Type	l/O Standard	-5 Speed Grade	-6 Speed Grade		ade -7 Speed Grade			-8 Speed Grade			
		Flip-Chip	Flip-Chip	Wire- Bond	Flip- Chip	Wire- Bond	Flip- Chip	Wire- Bond			
DDR SDRAM (1), (2)	SSTL-2	200	167	133	133	100	100	100			
DDR SDRAM - side banks (2), (3), (4)	SSTL-2	150	133	110	133	100	100	100			
RLDRAM II (4)	1.8-V HSTL	200	(5)	(5)	(5)	(5)	(5)	(5)			
QDR SRAM (6)	1.5-V HSTL	167	167	133	133	100	100	100			
QDRII SRAM (6)	1.5-V HSTL	200	167	133	133	100	100	100			
ZBT SRAM (7)	LVTTL	200	200	200	167	167	133	133			

Notes to Table 2–25:

 These maximum clock rates apply if the Stratix device uses DQS phase-shift circuitry to interface with DDR SDRAM. DQS phase-shift circuitry is only available in the top and bottom I/O banks (I/O banks 3, 4, 7, and 8).

(2) For more information on DDR SDRAM, see AN 342: Interfacing DDR SDRAM with Stratix & Stratix GX Devices.

(3) DDR SDRAM is supported on the Stratix device side I/O banks (I/O banks 1, 2, 5, and 6) without dedicated DQS phase-shift circuitry. The read DQS signal is ignored in this mode.

- (4) These performance specifications are preliminary.
- (5) This device does not support RLDRAM II.

(6) For more information on QDR or QDRII SRAM, see AN 349: QDR SRAM Controller Reference Design for Stratix & Stratix GX Devices.

(7) For more information on ZBT SRAM, see AN 329: ZBT SRAM Controller Reference Design for Stratix & Stratix GX Devices.

Table 2–37 shows the number of channels that each fast PLL can clock in EP1S10, EP1S20, and EP1S25 devices. Tables 2–38 through Table 2–41 show this information for EP1S30, EP1S40, EP1S60, and EP1S80 devices.

Table 2–	Table 2–37. EP1S10, EP1S20 & EP1S25 Device Differential Channels (Part 1 of 2) Note (1)									
		Transmitter/	Total	Maximum	Center Fast PLLs					
Device	Package	Receiver	Channels	Speed (Mbps)	PLL 1	PLL 2	PLL 3	PLL 4		
EP1S10	484-pin FineLine BGA	Transmitter (2)	20	840 (4)	5	5	5	5		
				840 (3)	10	10	10	10		
		Receiver	20	840 (4)	5	5	5	5		
				840 (3)	10	10	10	10		
	672-pin FineLine BGA	Transmitter (2)	36	624 (4)	9	9	9	9		
672-pin 780-pin	672-pin BGA			624 <i>(3)</i>	18	18	18	18		
		Receiver	36	624 (4)	9	9	9	9		
				624 <i>(3)</i>	18	18	18	18		
	780-pin FineLine BGA	Transmitter (2)	44	840 (4)	11	11	11	11		
				840 <i>(3)</i>	22	22	22	22		
		Receiver	44	840 (4)	11	11	11	11		
				840 <i>(3)</i>	22	22	22	22		
EP1S20	484-pin FineLine BGA	Transmitter (2)	24	840 (4)	6	6	6	6		
				840 (3)	12	12	12	12		
		Receiver	20	840 (4)	5	5	5	5		
				840 <i>(3)</i>	10	10	10	10		
	672-pin FineLine BGA	Transmitter (2)	48	624 (4)	12	12	12	12		
	672-pin BGA			624 <i>(3)</i>	24	24	24	24		
		Receiver	50	624 (4)	13	12	12	13		
				624 <i>(3)</i>	25	25	25	25		
	780-pin FineLine BGA	Transmitter (2)	66	840 (4)	17	16	16	17		
				840 <i>(3)</i>	33	33	33	33		
		Receiver	66	840 (4)	17	16	16	17		
				840 <i>(3)</i>	33	33	33	33		

Table 4–13.	HyperTransport Technology	Specifications				
Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Unit
V _{CCIO}	I/O supply voltage		2.375	2.5	2.625	V
V _{ID} (peak- to-peak)	Input differential voltage swing (single-ended)		300		900	mV
V _{ICM}	Input common mode voltage		300		900	mV
V _{OD}	Output differential voltage (single-ended)	R _L = 100 Ω	380	485	820	mV
ΔV_{OD}	Change in V _{OD} between high and low	$R_L = 100 \ \Omega$			50	mV
V _{OCM}	Output common mode voltage	$R_L = 100 \ \Omega$	440	650	780	mV
ΔV_{OCM}	Change in V _{OCM} between high and low	$R_L = 100 \Omega$			50	mV
RL	Receiver differential input resistor		90	100	110	Ω

Table 4–14. 3.3-V PCI Specifications									
Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Unit			
V _{CCIO}	Output supply voltage		3.0	3.3	3.6	V			
V _{IH}	High-level input voltage		$0.5 \times V_{CCIO}$		V _{CCIO} + 0.5	V			
V _{IL}	Low-level input voltage		-0.5		$0.3 \times V_{CCIO}$	V			
V _{OH}	High-level output voltage	I _{OUT} = -500 μA	$0.9 \times V_{CCIO}$			V			
V _{OL}	Low-level output voltage	I _{OUT} = 1,500 μA			$0.1 \times V_{CCIO}$	V			

Table 4–25.	Table 4–25. 3.3-V AGP 1× Specifications (Part 2 of 2)									
Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Unit				
V _{OH}	High-level output voltage	$I_{OUT} = -0.5 \text{ mA}$	$0.9\timesV_{CCIO}$		3.6	V				
V _{OL}	Low-level output voltage	$I_{OUT} = 1.5 \text{ mA}$			$0.1\timesV_{CCIO}$	V				

Table 4–26. 1.5-V HSTL Class I Specifications									
Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Unit			
V _{CCIO}	Output supply voltage		1.4	1.5	1.6	V			
V _{REF}	Input reference voltage		0.68	0.75	0.9	V			
V _{TT}	Termination voltage		0.7	0.75	0.8	V			
V _{IH} (DC)	DC high-level input voltage		V _{REF} + 0.1			V			
V _{IL} (DC)	DC low-level input voltage		-0.3		V _{REF} – 0.1	V			
V _{IH} (AC)	AC high-level input voltage		V _{REF} + 0.2			V			
V _{IL} (AC)	AC low-level input voltage				V _{REF} - 0.2	V			
V _{OH}	High-level output voltage	I _{OH} = -8 mA <i>(3)</i>	$V_{\rm CCIO}-0.4$			V			
V _{OL}	Low-level output voltage	I _{OL} = 8 mA <i>(3)</i>			0.4	V			

Table 4–27. 1.5-V HSTL Class II Specifications									
Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Unit			
V _{CCIO}	Output supply voltage		1.4	1.5	1.6	V			
V _{REF}	Input reference voltage		0.68	0.75	0.9	V			
V _{TT}	Termination voltage		0.7	0.75	0.8	V			
V _{IH} (DC)	DC high-level input voltage		V _{REF} + 0.1			V			
V _{IL} (DC)	DC low-level input voltage		-0.3		$V_{REF} - 0.1$	V			
V _{IH} (AC)	AC high-level input voltage		V _{REF} + 0.2			V			
V _{IL} (AC)	AC low-level input voltage				$V_{REF} - 0.2$	V			
V _{OH}	High-level output voltage	I _{OH} = -16 mA <i>(3)</i>	$V_{CCIO} - 0.4$			V			
V _{OL}	Low-level output voltage	I _{OL} = 16 mA <i>(3)</i>			0.4	V			

Table 4–65. EP1S20 External I/O Timing on Row Pins Using Regional Clock Networks Note (1)									
Parameter	-5 Speed Grade		-6 Speed Grade		-7 Spee	d Grade	-8 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	Min	Max	Unit
t _{INSU}	1.815		1.967		2.258		NA		ns
t _{INH}	0.000		0.000		0.000		NA		ns
t _{OUTCO}	2.633	5.235	2.663	5.595	2.663	6.070	NA	NA	ns
t _{xz}	2.660	5.289	2.660	5.651	2.660	6.138	NA	NA	ns
t _{ZX}	2.660	5.289	2.660	5.651	2.660	6.138	NA	NA	ns
t _{INSUPLL}	1.060		1.112		1.277		NA		ns
t _{INHPLL}	0.000		0.000		0.000		NA		ns
t _{OUTCOPLL}	1.325	2.770	1.325	2.908	1.325	2.978	NA	NA	ns
t _{XZPLL}	1.352	2.824	1.352	2.964	1.352	3.046	NA	NA	ns
t _{ZXPLL}	1.352	2.824	1.352	2.964	1.352	3.046	NA	NA	ns

Table 4–66. EP1S20 External I/O Timing on Row Pins Using Global Clock Networks Note (1)									
Parameter	-5 Speed Grade		-6 Speed Grade		-7 Spee	d Grade	-8 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	Min	Max	Unit
t _{INSU}	1.742		1.887		2.170		NA		ns
t _{INH}	0.000		0.000		0.000		NA		ns
t _{OUTCO}	2.674	5.308	2.674	5.675	2.674	6.158	NA	NA	ns
t _{xz}	2.701	5.362	2.701	5.731	2.701	6.226	NA	NA	ns
t _{ZX}	2.701	5.362	2.701	5.731	2.701	6.226	NA	NA	ns
t _{INSUPLL}	1.353		1.418		1.613		NA		ns
t _{INHPLL}	0.000		0.000		0.000		NA		ns
t _{OUTCOPLL}	1.158	2.447	1.158	2.602	1.158	2.642	NA	NA	ns
t _{XZPLL}	1.185	2.531	1.158	2.602	1.185	2.710	NA	NA	ns
t _{ZXPLL}	1.185	2.531	1.158	2.602	1.185	2.710	NA	NA	ns

Note to Tables 4–61 *to* 4–66:

(1) Only EP1S25, EP1S30, and EP1S40 have a speed grade of -8.

Tables 4–109 and 4–110 show the adder delays for the column and row IOE programmable delays. These delays are controlled with the Quartus II software logic options listed in the Parameter column.

Table 4–109. Stratix IOE Programmable Delays on Column Pins Note (1)										
Demonster	0	-5 Speed Grade		-6 Speed Grade		-7 Speed Grade		-8 Speed Grade		11
Parameter	Setting	Min	Max	Min	Max	Min	Max	Min	Max	Unit
Decrease input delay	Off		3,970		4,367		5,022		5,908	ps
to internal cells	Small		3,390		3,729		4,288		5,045	ps
	Medium		2,810		3,091		3,554		4,181	ps
	Large		224		235		270		318	ps
	On		224		235		270		318	ps
Decrease input delay	Off		3,900		4,290		4,933		5,804	ps
to input register	On		0		0		0		0	ps
Decrease input delay	Off		1,240		1,364		1,568		1,845	ps
to output register	On		0		0		0		0	ps
Increase delay to	Off		0		0		0		0	ps
output pin	On		397		417		417		417	ps
Increase delay to	Off		0		0		0		0	ps
output enable pin	On		338		372		427		503	ps
Increase output clock	Off		0		0		0		0	ps
enable delay	Small		540		594		683		804	ps
	Large		1,016		1,118		1,285		1,512	ps
	On		1,016		1,118		1,285		1,512	ps
Increase input clock	Off		0		0		0		0	ps
enable delay	Small		540		594		683		804	ps
	Large		1,016		1,118		1,285		1,512	ps
	On		1,016		1,118		1,285		1,512	ps
Increase output	Off		0		0		0		0	ps
enable clock enable	Small		540		594		683		804	ps
uelay	Large		1,016		1,118		1,285		1,512	ps
	On		1,016		1,118		1,285		1,512	ps
Increase t _{ZX} delay to	Off		0		0		0		0	ps
output pin	On		2,199		2,309		2,309		2,309	ps

Table 4–127. Enhanced PLL Specifications for -5 Speed Grades (Part 2 of 2)								
Symbol	Parameter	Min	Тур	Мах	Unit			
t _{skew}	Clock skew between two external clock outputs driven by the different counters with the same settings		±75		ps			
f _{SS}	Spread spectrum modulation frequency	30		150	kHz			
% spread	Percentage spread for spread spectrum frequency (10)	0.4	0.5	0.6	%			
t _{ARESET}	Minimum pulse width on areset signal	10			ns			
t _{areset_recon} fig	Minimum pulse width on the areset signal when using PLL reconfiguration. Reset the PLL after scandataout goes high.	500			ns			

Table 4–128. Enhanced PLL Specifications for -6 Speed Grades (Part 1 of 2)									
Symbol	Parameter	Min	Тур	Мах	Unit				
f _{IN}	Input clock frequency	3 (1), (2)		650	MHz				
f _{INPFD}	Input frequency to PFD	3		420	MHz				
f _{INDUTY}	Input clock duty cycle	40		60	%				
f _{EINDUTY}	External feedback clock input duty cycle	40		60	%				
t _{INJITTER}	Input clock period jitter			±200 (3)	ps				
t _{EINJITTER}	External feedback clock period jitter			±200 <i>(3)</i>	ps				
t _{FCOMP}	External feedback clock compensation time (4)			6	ns				
f _{OUT}	Output frequency for internal global or regional clock	0.3		450	MHz				
f _{OUT_EXT}	Output frequency for external clock (3)	0.3		500	MHz				
t _{outduty}	Duty cycle for external clock output (when set to 50%)	45		55	%				
t _{JITTER}	Period jitter for external clock output (6)			±100 ps for >200-MHz outclk ±20 mUI for <200-MHz outclk	ps or mUI				
t _{CONFIG5,6}	Time required to reconfigure the scan chains for PLLs 5 and 6			289/f _{SCANCLK}					
t _{CONFIG11,12}	Time required to reconfigure the scan chains for PLLs 11 and 12			193/f _{SCANCLK}					

Table 4–130. Enhanced PLL Specifications for -8 Speed Grade (Part 3 of 3)									
Symbol	Parameter	Min	Тур	Мах	Unit				
t _{LSKEW}	Clock skew between two external clock outputs driven by the same counter		±50		ps				
t _{SKEW}	Clock skew between two external clock outputs driven by the different counters with the same settings		±75		ps				
f _{SS}	Spread spectrum modulation frequency	30		150	kHz				
% spread	Percentage spread for spread spectrum frequency (10)	0.5		0.6	%				
t _{ARESET}	Minimum pulse width on areset signal	10			ns				

Notes to Tables 4–127 through 4–130:

- (1) The minimum input clock frequency to the PFD ($f_{\rm IN}/N$) must be at least 3 MHz for Stratix device enhanced PLLs.
- (2) Use this equation $(f_{OUT} = f_{IN} * ml(n \times post-scale counter))$ in conjunction with the specified f_{INPFD} and f_{VCO} ranges to determine the allowed PLL settings.
- (3) See "Maximum Input & Output Clock Rates" on page 4–76.
- (4) t_{FCOMP} can also equal 50% of the input clock period multiplied by the pre-scale divider *n* (whichever is less).
- (5) This parameter is timing analyzed by the Quartus II software because the scanclk and scandata ports can be driven by the logic array.
- (6) Actual jitter performance may vary based on the system configuration.
- (7) Total required time to reconfigure and lock is equal to t_{DLOCK} + t_{CONFIG}. If only post-scale counters and delays are changed, then t_{DLOCK} is equal to 0.
- (8) When using the spread-spectrum feature, the minimum VCO frequency is 500 MHz. The maximum VCO frequency is determined by the speed grade selected.
- (9) Lock time is a function of PLL configuration and may be significantly faster depending on bandwidth settings or feedback counter change increment.
- (10) Exact, user-controllable value depends on the PLL settings.
- (11) The LOCK circuit on Stratix PLLs does not work for industrial devices below -20C unless the PFD frequency > 200 MHz. See the Stratix FPGA Errata Sheet for more information on the PLL.

Fast Regional Clock External I/O Timing Parameters 4-49 Global Clock External I/O Timing Parameters 4–50 Regional Clock External I/O Timing Parameters 4-50 EP1S60 Devices Column Pin Fast Regional Clock External I/O Timing Parameters 4–51 Global Clock External I/O Timing Parameters 4–52 Regional Clock External I/O Timing Parameters 4–51 M-RAM Interface Locations 2–38 Row Pin Fast Regional Clock External I/O Timing Parameters 4–52 Global Clock External I/O Timing Parameters 4-53 Regional Clock External I/O Timing Parameters 4–53 **EP1S80** Devices Column Pin Fast Regional Clock External I/O Timing Parameters 4–54 Global Clock External I/O Timing Parameters 4-55 Regional Clock External I/O Timing Parameters 4-54 Global Clock External I/O Timing Parameters 4–56 Row Pin Fast Regional Clock External I/O Timing Parameters 4-55 Regional Clock External I/O Timing Parameters 4–56

Η

HSTL Class I Specifications 4–14, 4–15 Class II Specifications 4–14, 4–15 I

I/OStandards 1.5-V 4-14, 4-15 I/O Specifications 4-4 1.8-V I/O Specifications 4–4 2.5-V I/O Specifications 4-3 3.3-V 4-13 LVDS I/O Specifications 4-6 PCI Specifications 4–9 PCML Specifications 4-8 Advanced I/O Standard Support 2–122 Column I/O Block Connection to the Interconnect 2–107 Column Pin Input Delay Adders 4–66 Control Signal Selection per IOE 2–109 CTT I/O Specifications 4–16 Differential LVDS Input On-Chip Termination 2–128 External I/O Delay Parameters 4-66 GTL+ I/O Specifications 4–10 High-Speed Differential I/O Support 2-130 HyperTransport Technology Specifications 4–9 I/O Banks 2-125 I/O Structure 2-104 I/O Support by Bank 2–126 IOE Structure 2–105 LVCMOS Specifications 4–3 LVDS Performance on Fast PLL Input 2–103 LVPECL Specifications 4–8 LVTTL Specifications 4–3 MultiVolt I/O Interface 2–129 MultiVolt I/O Support 2-130 Output Delay Adders for Fast Slew Rate on Column Pins 4-68 Output Delay Adders for Fast Slew Rate on Row Pins 4-69 Output Delay Adders for Slow Slew Rate on Column Pins 4-70 Package Options & I/O Pin Counts 1–4 Receiver Input Waveforms for Differential