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1. Introduction

Introduction The Stratix® family of FPGAs is based on a 1.5-V, 0.13-µm, all-layer copper 
SRAM process, with densities of up to 79,040 logic elements (LEs) and up 
to 7.5 Mbits of RAM. Stratix devices offer up to 22 digital signal 
processing (DSP) blocks with up to 176 (9-bit × 9-bit) embedded 
multipliers, optimized for DSP applications that enable efficient 
implementation of high-performance filters and multipliers. Stratix 
devices support various I/O standards and also offer a complete clock 
management solution with its hierarchical clock structure with up to 
420-MHz performance and up to 12 phase-locked loops (PLLs). 

The following shows the main sections in the Stratix Device Family Data 
Sheet:
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Logic Elements

Dynamic Arithmetic Mode

The dynamic arithmetic mode is ideal for implementing adders, counters, 
accumulators, wide parity functions, and comparators. An LE in dynamic 
arithmetic mode uses four 2-input LUTs configurable as a dynamic 
adder/subtractor. The first two 2-input LUTs compute two summations 
based on a possible carry-in of 1 or 0; the other two LUTs generate carry 
outputs for the two chains of the carry select circuitry. As shown in 
Figure 2–7, the LAB carry-in signal selects either the carry-in0 or 
carry-in1 chain. The selected chain’s logic level in turn determines 
which parallel sum is generated as a combinatorial or registered output. 
For example, when implementing an adder, the sum output is the 
selection of two possible calculated sums: data1 + data2 + carry-in0 
or data1 + data2 + carry-in1. The other two LUTs use the data1 and 
data2 signals to generate two possible carry-out signals—one for a carry 
of 1 and the other for a carry of 0. The carry-in0 signal acts as the carry 
select for the carry-out0 output and carry-in1 acts as the carry select 
for the carry-out1 output. LEs in arithmetic mode can drive out 
registered and unregistered versions of the LUT output.

The dynamic arithmetic mode also offers clock enable, counter enable, 
synchronous up/down control, synchronous clear, synchronous load, 
and dynamic adder/subtractor options. The LAB local interconnect data 
inputs generate the counter enable and synchronous up/down control 
signals. The synchronous clear and synchronous load options are LAB-
wide signals that affect all registers in the LAB. The Quartus II software 
automatically places any registers that are not used by the counter into 
other LABs. The addnsub LAB-wide signal controls whether the LE acts 
as an adder or subtractor.
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Figure 2–8. Carry Select Chain 

Clear & Preset Logic Control

LAB-wide signals control the logic for the register’s clear and preset 
signals. The LE directly supports an asynchronous clear and preset 
function. The register preset is achieved through the asynchronous load 
of a logic high. The direct asynchronous preset does not require a NOT-
gate push-back technique. Stratix devices support simultaneous preset/ 
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TriMatrix Memory

Figure 2–14. Shift Register Memory Configuration

Memory Block Size

TriMatrix memory provides three different memory sizes for efficient 
application support. The large number of M512 blocks are ideal for 
designs with many shallow first-in first-out (FIFO) buffers. M4K blocks 
provide additional resources for channelized functions that do not 
require large amounts of storage. The M-RAM blocks provide a large 
single block of RAM ideal for data packet storage. The different-sized 
blocks allow Stratix devices to efficiently support variable-sized memory 
in designs.

The Quartus II software automatically partitions the user-defined 
memory into the embedded memory blocks using the most efficient size 
combinations. You can also manually assign the memory to a specific 
block size or a mixture of block sizes.
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blocks facing to the left, and another 10 possible from the right adjacent 
LABs for M-RAM blocks facing to the right. For column interfacing, every 
M-RAM column unit connects to the right and left column lines, allowing 
each M-RAM column unit to communicate directly with three columns of 
LABs. Figures 2–21 through 2–23 show the interface between the M-RAM 
block and the logic array.
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Figure 2–22. M-RAM Row Unit Interface to Interconnect
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Table 2–12 shows the input and output data signal connections for the 
column units (B1 to B6 and A1 to A6). It also shows the address and 
control signal input connections to the row units (R1 to R11).

Table 2–12. M-RAM Row & Column Interface Unit Signals

Unit Interface Block Input SIgnals Output Signals

R1 addressa[7..0]

R2 addressa[15..8]

R3 byte_enable_a[7..0]
renwe_a

R4 -

R5 -

R6 clock_a
clocken_a
clock_b

clocken_b

R7 -

R8 -

R9 byte_enable_b[7..0]
renwe_b

R10 addressb[15..8]

R11 addressb[7..0]

B1 datain_b[71..60] dataout_b[71..60]

B2 datain_b[59..48] dataout_b[59..48]

B3 datain_b[47..36] dataout_b[47..36]

B4 datain_b[35..24] dataout_b[35..24]

B5 datain_b[23..12] dataout_b[23..12]

B6 datain_b[11..0] dataout_b[11..0]

A1 datain_a[71..60] dataout_a[71..60]

A2 datain_a[59..48] dataout_a[59..48]

A3 datain_a[47..36] dataout_a[47..36]

A4 datain_a[35..24] dataout_a[35..24]

A5 datain_a[23..12] dataout_a[23..12]

A6 datain_a[11..0] dataout_a[11..0]
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Digital Signal Processing Block

Figure 2–34. Adder/Output Blocks Note (1)

Notes to Figure 2–34:
(1) Adder/output block shown in Figure 2–34 is in 18 ×  18-bit mode. In 9 ×  9-bit mode, there are four adder/subtractor 

blocks and two summation blocks.
(2) These signals are either not registered, registered once, or registered twice to match the data path pipeline.
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PLLs & Clock Networks

Figure 2–43. Regional Clocks

Fast Regional Clock Network

In EP1S25, EP1S20, and EP1S10 devices, there are two fast regional clock 
networks, FCLK[1..0], within each quadrant, fed by input pins that can 
connect to fast regional clock networks (see Figure 2–44). In EP1S30 and 
larger devices, there are two fast regional clock networks within each 
half-quadrant (see Figure 2–45). Dual-purpose FCLK pins drive the fast 
clock networks. All devices have eight FCLK pins to drive fast regional 
clock networks. Any I/O pin can drive a clock or control signal onto any 
fast regional clock network with the addition of a delay. This signal is 
driven via the I/O interconnect. The fast regional clock networks can also 
be driven from internal logic elements.
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VCO period from up to eight taps for individual fine step selection. Also, 
each clock output counter can use a unique initial count setting to achieve 
individual coarse shift selection in steps of one VCO period. The 
combination of coarse and fine shifts allows phase shifting for the entire 
input clock period.

The equation to determine the precision of the phase shifting in degrees 
is: 45° ÷ post-scale counter value. Therefore, the maximum step size is 
45° , and smaller steps are possible depending on the multiplication and 
division ratio necessary on the output counter port.

This type of phase shift provides the highest precision since it is the least 
sensitive to process, supply, and temperature variation.

Clock Delay
In addition to the phase shift feature, the ability to fine tune the Δt clock 
delay provides advanced time delay shift control on each of the four PLL 
outputs. There are time delays for each post-scale counter (e, g, or l) from 
the PLL, the n counter, and m counter. Each of these can shift in 250-ps 
increments for a range of 3.0 ns. The m delay shifts all outputs earlier in 
time, while n delay shifts all outputs later in time. Individual delays on 
post-scale counters (e, g, and l) provide positive delay for each output. 
Table 2–21 shows the combined delay for each output for normal or zero 
delay buffer mode where Δte, Δtg, or Δtl is unique for each PLL output.

The tOUTPUT for a single output can range from –3 ns to +6 ns. The total 
delay shift difference between any two PLL outputs, however, must be 
less than ±3 ns. For example, shifts on two outputs of –1 and +2 ns is 
allowed, but not –1 and +2.5 ns because these shifts would result in a 
difference of 3.5 ns. If the design uses external feedback, the Δte delay will 
remove delay from outputs, represented by a negative sign (see 
Table 2–21). This effect occurs because the Δte delay is then part of the 
feedback loop.

Table 2–21. Output Clock Delay for Enhanced PLLs

Normal or Zero Delay Buffer Mode External Feedback Mode

ΔteOUTPUT = Δtn − Δtm + Δte
ΔtgOUTPUT = Δtn − Δtm + Δtg
ΔtlOUTPUT = Δtn − Δtm + Δtl

ΔteOUTPUT = Δtn − Δtm − Δte (1)
ΔtgOUTPUT = Δtn − Δtm + Δtg
ΔtlOUTPUT = Δtn − Δtm + Δtl

Note to Table 2–21:
(1) Δte removes delay from outputs in external feedback mode.
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I/O Structure

Figure 2–67. Stratix IOE in DDR Output I/O Configuration Notes (1), (2)

Notes to Figure 2–67:
(1) All input signals to the IOE can be inverted at the IOE.
(2) The tristate is by default active high. It can, however, be designed to be active low.
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However, there is additional resistance present between the device ball 
and the input of the receiver buffer, as shown in Figure 2–72. This 
resistance is because of package trace resistance (which can be calculated 
as the resistance from the package ball to the pad) and the parasitic layout 
metal routing resistance (which is shown between the pad and the 
intersection of the on-chip termination and input buffer).

Figure 2–72. Differential Resistance of LVDS Differential Pin Pair (RD)

Table 2–35 defines the specification for internal termination resistance for 
commercial devices. 

MultiVolt I/O Interface

The Stratix architecture supports the MultiVolt I/O interface feature, 
which allows Stratix devices in all packages to interface with systems of 
different supply voltages. 

The Stratix VCCINT pins must always be connected to a 1.5-V power 
supply. With a 1.5-V VCCINT level, input pins are 1.5-V, 1.8-V, 2.5-V, and 
3.3-V tolerant. The VCCIO pins can be connected to either a 1.5-V, 1.8-V, 
2.5-V, or 3.3-V power supply, depending on the output requirements. 

LVDS
Input Buffer

Differential On-Chip
Termination Resistor

9.3 Ω

9.3 Ω

0.3 Ω

0.3 Ω

RD

PadPackage Ball

Table 2–35. Differential On-Chip Termination 

Symbol Description Conditions 
Resistance

Unit
Min Typ Max

RD  (2) Internal differential termination for LVDS Commercial (1), (3) 110 135 165 W

Industrial (2), (3) 100 135 170 W

Notes to Table 2–35:
(1) Data measured over minimum conditions (Tj  = 0 C, VC C I O +5%) and maximum conditions (Tj = 85 C, 

VC C I O = –5%).
(2) Data measured over minimum conditions (Tj = –40 C, VCCIO +5%) and maximum conditions (Tj = 100 C, 

VCCIO = –5%).
(3) LVDS data rate is supported for 840 Mbps using internal differential termination. 
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1,020-pin 
FineLine 
BGA

Transmitter 
(4)

80 (12) 
(7)

840 12 
(2)

10 
(4)

10 
(4)

12 
(2)

20 20 20 20

840 (5), (8) 22 
(6)

22 
(6)

22 
(6)

22 
(6)

20 20 20 20

Receiver 80 (10) 
(7)

840 20 20 20 20 12 
(8)

10 
(10)

10 
(10)

12 (8)

840 (5), (8) 40 40 40 40 12 
(8)

10 
(10)

10 
(10)

12 (8)

1,508-pin 
FineLine 
BGA

Transmitter 
(4)

80 (36) 
(7)

840 12 
(8)

10 
(10)

10 
(10)

12 
(8)

20 20 20 20

840 (5),(8) 22 
(18)

22 
(18)

22 
(18)

22 
(18)

20 20 20 20

Receiver 80 (36) 
(7)

840 20 20 20 20 12 
(8)

10 
(10)

10 
(10)

12 (8)

840 (5),(8) 40 40 40 40 12 
(8)

10 
(10)

10 
(10)

12 (8)

Table 2–41. EP1S80 Differential Channels (Part 1 of 2) Note (1)

Package Transmitter/
Receiver

Total 
Channels

Maximum 
Speed 
(Mbps)

Center Fast PLLs Corner Fast PLLs (2), (3)

PLL1 PLL2 PLL3 PLL4 PLL7 PLL8 PLL9 PLL10

956-pin 
BGA

Transmitter 
(4)

80 (40) 
(7)

840 10 10 10 10 20 20 20 20

840 (5),(8) 20 20 20 20 20 20 20 20

Receiver 80 840 20 20 20 20 10 10 10 10

840 (5),(8) 40 40 40 40 10 10 10 10

1,020-pin 
FineLine 
BGA

Transmitter 
(4)

92 (12) 
(7)

840 10 
(2)

10 
(4)

10 
(4)

10 
(2)

20 20 20 20

840 (5),(8) 20 
(6)

20 
(6)

20 
(6)

20 
(6)

20 20 20 20

Receiver 90 (10) 
(7)

840 20 20 20 20 10 
(2)

10 
(3)

10 (3) 10 (2)

840 (5),(8) 40 40 40 40 10 
(2)

10 
(3)

10 (3) 10 (2)

Table 2–40. EP1S60 Differential Channels (Part 2 of 2) Note (1)

Package Transmitter/
Receiver

Total 
Channels

Maximum 
Speed 
(Mbps)

Center Fast PLLs Corner Fast PLLs (2), (3)

PLL1 PLL2 PLL3 PLL4 PLL7 PLL8 PLL9 PLL10 
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3. Configuration & Testing

IEEE Std. 1149.1 
(JTAG) 
Boundary-Scan 
Support

All Stratix® devices provide JTAG BST circuitry that complies with the 
IEEE Std. 1149.1a-1990 specification. JTAG boundary-scan testing can be 
performed either before or after, but not during configuration. Stratix 
devices can also use the JTAG port for configuration together with either 
the Quartus® II software or hardware using either Jam Files (.jam) or Jam 
Byte-Code Files (.jbc). 

Stratix devices support IOE I/O standard setting reconfiguration through 
the JTAG BST chain. The JTAG chain can update the I/O standard for all 
input and output pins any time before or during user mode through the 
CONFIG_IO instruction. You can use this ability for JTAG testing before 
configuration when some of the Stratix pins drive or receive from other 
devices on the board using voltage-referenced standards. Since the Stratix 
device may not be configured before JTAG testing, the I/O pins may not 
be configured for appropriate electrical standards for chip-to-chip 
communication. Programming those I/O standards via JTAG allows you 
to fully test the I/O connection to other devices.

The enhanced PLL reconfiguration bits are part of the JTAG chain before 
configuration and after power-up. After device configuration, the PLL 
reconfiguration bits are not part of the JTAG chain.

The JTAG pins support 1.5-V/1.8-V or 2.5-V/3.3-V I/O standards. The 
TDO pin voltage is determined by the VCCIO of the bank where it resides. 
The VCCSEL pin selects whether the JTAG inputs are 1.5-V, 1.8-V, 2.5-V, or 
3.3-V compatible. 

Stratix devices also use the JTAG port to monitor the logic operation of the 
device with the SignalTap® II embedded logic analyzer. Stratix devices 
support the JTAG instructions shown in Table 3–1.

The Quartus II software has an Auto Usercode feature where you can 
choose to use the checksum value of a programming file as the JTAG user 
code. If selected, the checksum is automatically loaded to the USERCODE 
register. In the Settings dialog box in the Assignments menu, click Device 
& Pin Options, then General, and then turn on the Auto Usercode 
option.

S51003-1.3
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Configuration

Figure 3–2. Stratix Device Remote Update

Note to Figure 3–2:
(1) When the Stratix device is configured with the factory configuration, it can handle update data from EPC16, EPC8, 

or EPC4 configuration device pages and point to the next page in the configuration device.
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Configuration Data

Configuration
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DC & Switching Characteristics

VICM Input common mode 
voltage (6)

LVDS
0.3 V ≤ VID ≤ 1.0 V 
W = 1 through 10

100 1,100 mV

LVDS
0.3 V ≤ VID ≤ 1.0 V
W = 1 through 10

1,600 1,800 mV

LVDS
0.2 V ≤ VID ≤ 1.0 V
W = 1

1,100 1,600 mV

LVDS
0.1 V ≤ VID ≤ 1.0 V
W = 2 through 10

1,100 1,600 mV

VOD (1) Output differential voltage 
(single-ended)

RL = 100 Ω 250 375 550 mV

Δ VOD Change in VOD between 
high and low

RL = 100 Ω 50 mV

VOCM Output common mode 
voltage

RL = 100 Ω 1,125 1,200 1,375 mV

Δ VOCM Change in VOCM between 
high and low

RL = 100 Ω 50 mV

RL Receiver differential input 
discrete resistor (external 
to Stratix devices)

90 100 110 Ω

Table 4–10. 3.3-V LVDS I/O Specifications (Part 2 of 2)

Symbol Parameter Conditions Minimum Typical Maximum Unit
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Table 4–39. DSP Block Internal Timing Microparameter Descriptions

Symbol Parameter

tSU Input, pipeline, and output register setup time before clock

tH Input, pipeline, and output register hold time after clock

tCO Input, pipeline, and output register clock-to-output delay

tINREG2PIPE9 Input Register to DSP Block pipeline register in 9 × 9-bit 
mode

tINREG2PIPE18 Input Register to DSP Block pipeline register in 18 × 18-bit 
mode

tPIPE2OUTREG2ADD DSP Block Pipeline Register to output register delay in Two-
Multipliers Adder mode

tPIPE2OUTREG4ADD DSP Block Pipeline Register to output register delay in Four-
Multipliers Adder mode

tPD9 Combinatorial input to output delay for 9 × 9

tPD18 Combinatorial input to output delay for 18 × 18

tPD36 Combinatorial input to output delay for 36 × 36

tCLR Minimum clear pulse width

tCLKHL Register minimum clock high or low time. This is a limit on 
the min time for the clock on the registers in these blocks. 
The actual performance is dependent upon the internal 
point-to-point delays in the blocks and may give slower 
performance as shown in Table 4–36 on page 4–20 and as 
reported by the timing analyzer in the Quartus II software.
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Table 4–63. EP1S20 External I/O Timing on Column Pins Using Global Clock Networks Note (1)

Parameter
-5 Speed Grade -6 Speed Grade -7 Speed Grade -8 Speed Grade

Unit
Min Max Min Max Min Max Min Max

tINSU 1.351  1.479  1.699  NA  ns

tINH 0.000  0.000  0.000  NA  ns

tOUTCO 2.732 5.380 2.732 5.728 2.732 6.240 NA NA ns

tXZ 2.672 5.254 2.672 5.596 2.672 6.116 NA NA ns

tZX 2.672 5.254 2.672 5.596 2.672 6.116 NA NA ns

tINSUPLL 0.923  0.971  1.098  NA  ns

tINHPLL 0.000  0.000  0.000  NA  ns

tOUTCOPLL 1.210 2.544 1.210 2.648 1.210 2.715 NA NA ns

tXZPLL 1.150 2.418 1.150 2.516 1.150 2.591 NA NA ns

tZXPLL 1.150 2.418 1.150 2.516 1.150 2.591 NA NA ns

Table 4–64. EP1S20 External I/O Timing on Row Pins Using Fast Regional Clock Networks Note (1)

Parameter
-5 Speed Grade -6 Speed Grade -7 Speed Grade -8 Speed Grade

Unit
Min Max Min Max Min Max Min Max

tINSU 2.032  2.207  2.535  NA  ns

tINH 0.000  0.000  0.000  NA  ns

tOUTCO 2.492 5.018 2.492 5.355 2.492 5.793 NA NA ns

tXZ 2.519 5.072 2.519 5.411 2.519 5.861 NA NA ns

tZX 2.519 5.072 2.519 5.411 2.519 5.861 NA NA ns
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Tables 4–120 through 4–123 show the maximum output clock rate for 
column and row pins in Stratix devices.

SSTL-18 Class I 350 300 300 MHz

SSTL-18 Class II 350 300 300 MHz

1.5-V HSTL Class I 350 300 300 MHz

1.8-V HSTL Class I 350 300 300 MHz

CTT 250 200 200 MHz

Differential 1.5-V HSTL 
C1

350 300 300 MHz

LVPECL (1) 645 622 622 MHz

PCML (1) 275 275 275 MHz

LVDS (1) 645 622 622 MHz

HyperTransport 
technology (1)

500 450 450 MHz

Note to Tables 4–114 through 4–119:
(1) These parameters are only available on row I/O pins.

Table 4–120. Stratix Maximum Output Clock Rate for PLL[5, 6, 11, 12] Pins 
in Flip-Chip Packages (Part 1 of 2)

I/O Standard -5 Speed 
Grade

-6 Speed 
Grade

-7 Speed 
Grade

-8 Speed 
Grade Unit

LVTTL 350 300 250 250 MHz

2.5 V 350 300 300 300 MHz

1.8 V 250 250 250 250 MHz

1.5 V 225 200 200 200 MHz

LVCMOS 350 300 250 250 MHz

GTL 200 167 125 125 MHz

GTL+ 200 167 125 125 MHz

SSTL-3 Class I 200 167 167 133 MHz

SSTL-3 Class II 200 167 167 133 MHz

SSTL-2 Class I (3) 200 200 167 167 MHz

SSTL-2 Class I (4) 200 200 167 167 MHz

SSTL-2 Class I (5) 150 134 134 134 MHz

Table 4–119. Stratix Maximum Input Clock Rate for CLK[1, 3, 8, 10] Pins in 
Wire-Bond Packages (Part 2 of 2)

I/O Standard -6 Speed 
Grade

-7 Speed 
Grade

-8 Speed 
Grade Unit
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High-Speed I/O 
Specification

Table 4–124 provides high-speed timing specifications definitions.

Table 4–124. High-Speed Timing Specifications & Terminology

High-Speed Timing Specification Terminology

tC High-speed receiver/transmitter input and output clock period.

fHSCLK High-speed receiver/transmitter input and output clock frequency.

tRISE Low-to-high transmission time.

tFALL High-to-low transmission time.

Timing unit interval (TUI) The timing budget allowed for skew, propagation delays, and data 
sampling window. (TUI = 1/(Receiver Input Clock Frequency ×  
Multiplication Factor) = tC/w).

fHSDR Maximum LVDS data transfer rate (fHSDR = 1/TUI).

Channel-to-channel skew (TCCS) The timing difference between the fastest and slowest output edges, 
including tCO variation and clock skew. The clock is included in the TCCS 
measurement.

Sampling window (SW) The period of time during which the data must be valid to be captured 
correctly. The setup and hold times determine the ideal strobe position 
within the sampling window.
SW = tSW (max) – tSW (min).

Input jitter (peak-to-peak) Peak-to-peak input jitter on high-speed PLLs.

Output jitter (peak-to-peak) Peak-to-peak output jitter on high-speed PLLs.

tDUTY Duty cycle on high-speed transmitter output clock.

tLOCK Lock time for high-speed transmitter and receiver PLLs.

J Deserialization factor (width of internal data bus).

W PLL multiplication factor.


