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Typographic 
Conventions

This document uses the typographic conventions shown below.

Visual Cue Meaning

Bold Type with Initial 
Capital Letters 

Command names, dialog box titles, checkbox options, and dialog box options are 
shown in bold, initial capital letters. Example: Save As dialog box. 

bold type External timing parameters, directory names, project names, disk drive names, 
filenames, filename extensions, and software utility names are shown in bold 
type. Examples: fMAX, \qdesigns directory, d: drive, chiptrip.gdf file.

Italic Type with Initial Capital 
Letters 

Document titles are shown in italic type with initial capital letters. Example: AN 75: 
High-Speed Board Designs.

Italic type Internal timing parameters and variables are shown in italic type. 
Examples: tPIA, n + 1.

Variable names are enclosed in angle brackets (< >) and shown in italic type. 
Example: <file name>, <project name>.pof file. 

Initial Capital Letters Keyboard keys and menu names are shown with initial capital letters. Examples: 
Delete key, the Options menu. 

“Subheading Title” References to sections within a document and titles of on-line help topics are 
shown in quotation marks. Example: “Typographic Conventions.”

Courier type Signal and port names are shown in lowercase Courier type. Examples: data1, 
tdi, input. Active-low signals are denoted by suffix n, e.g., resetn.

Anything that must be typed exactly as it appears is shown in Courier type. For 
example: c:\qdesigns\tutorial\chiptrip.gdf. Also, sections of an 
actual file, such as a Report File, references to parts of files (e.g., the AHDL 
keyword SUBDESIGN), as well as logic function names (e.g., TRI) are shown in 
Courier. 

1., 2., 3., and
a., b., c., etc.

Numbered steps are used in a list of items when the sequence of the items is 
important, such as the steps listed in a procedure. 

■ ● • Bullets are used in a list of items when the sequence of the items is not important. 

v The checkmark indicates a procedure that consists of one step only.

1 The hand points to information that requires special attention. 

r The angled arrow indicates you should press the Enter key.

f The feet direct you to more information on a particular topic. 
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Features

Stratix devices are available in space-saving FineLine BGA® and ball-grid 
array (BGA) packages (see Tables 1–3 through 1–5). All Stratix devices 
support vertical migration within the same package (for example, you 
can migrate between the EP1S10, EP1S20, and EP1S25 devices in the 672-
pin BGA package). Vertical migration means that you can migrate to 
devices whose dedicated pins, configuration pins, and power pins are the 
same for a given package across device densities. For I/O pin migration 
across densities, you must cross-reference the available I/O pins using 
the device pin-outs for all planned densities of a given package type to 
identify which I/O pins are migrational. The Quartus® II software can 
automatically cross reference and place all pins except differential pins 
for migration when given a device migration list. You must use the pin-
outs for each device to verify the differential placement migration. A 
future version of the Quartus II software will support differential pin 
migration.  

Table 1–3. Stratix Package Options & I/O Pin Counts

Device 672-Pin 
BGA

956-Pin 
BGA

484-Pin 
FineLine 

BGA

672-Pin 
FineLine 

BGA

780-Pin 
FineLine 

BGA

1,020-Pin 
FineLine 

BGA

1,508-Pin 
FineLine 

BGA

EP1S10 345 335 345 426

EP1S20 426 361 426 586

EP1S25 473 473 597 706

EP1S30 683 597 726

EP1S40 683 615 773 822

EP1S60 683 773 1,022

EP1S80 683 773 1,203

Note to Table 1–3:
(1) All I/O pin counts include 20 dedicated clock input pins (clk[15..0]p, clk0n, clk2n, clk9n, and clk11n) 

that can be used for data inputs.

Table 1–4. Stratix BGA Package Sizes

Dimension 672 Pin 956 Pin

Pitch (mm) 1.27 1.27

Area (mm2) 1,225 1,600

Length × width (mm × mm) 35 × 35 40 × 40
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asynchronous preset load, synchronous clear, synchronous load, and 
clock enable control for the register. These LAB-wide signals are available 
in all LE modes. The addnsub control signal is allowed in arithmetic 
mode. 

The Quartus II software, in conjunction with parameterized functions 
such as library of parameterized modules (LPM) functions, automatically 
chooses the appropriate mode for common functions such as counters, 
adders, subtractors, and arithmetic functions. If required, you can also 
create special-purpose functions that specify which LE operating mode to 
use for optimal performance.

Normal Mode

The normal mode is suitable for general logic applications and 
combinatorial functions. In normal mode, four data inputs from the LAB 
local interconnect are inputs to a four-input LUT (see Figure 2–6). The 
Quartus II Compiler automatically selects the carry-in or the data3 
signal as one of the inputs to the LUT. Each LE can use LUT chain 
connections to drive its combinatorial output directly to the next LE in the 
LAB. Asynchronous load data for the register comes from the data3 
input of the LE. LEs in normal mode support packed registers.

Figure 2–6. LE in Normal Mode

Note to Figure 2–6:
(1) This signal is only allowed in normal mode if the LE is at the end of an adder/subtractor chain.
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Logic Elements

Dynamic Arithmetic Mode

The dynamic arithmetic mode is ideal for implementing adders, counters, 
accumulators, wide parity functions, and comparators. An LE in dynamic 
arithmetic mode uses four 2-input LUTs configurable as a dynamic 
adder/subtractor. The first two 2-input LUTs compute two summations 
based on a possible carry-in of 1 or 0; the other two LUTs generate carry 
outputs for the two chains of the carry select circuitry. As shown in 
Figure 2–7, the LAB carry-in signal selects either the carry-in0 or 
carry-in1 chain. The selected chain’s logic level in turn determines 
which parallel sum is generated as a combinatorial or registered output. 
For example, when implementing an adder, the sum output is the 
selection of two possible calculated sums: data1 + data2 + carry-in0 
or data1 + data2 + carry-in1. The other two LUTs use the data1 and 
data2 signals to generate two possible carry-out signals—one for a carry 
of 1 and the other for a carry of 0. The carry-in0 signal acts as the carry 
select for the carry-out0 output and carry-in1 acts as the carry select 
for the carry-out1 output. LEs in arithmetic mode can drive out 
registered and unregistered versions of the LUT output.

The dynamic arithmetic mode also offers clock enable, counter enable, 
synchronous up/down control, synchronous clear, synchronous load, 
and dynamic adder/subtractor options. The LAB local interconnect data 
inputs generate the counter enable and synchronous up/down control 
signals. The synchronous clear and synchronous load options are LAB-
wide signals that affect all registers in the LAB. The Quartus II software 
automatically places any registers that are not used by the counter into 
other LABs. The addnsub LAB-wide signal controls whether the LE acts 
as an adder or subtractor.
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MultiTrack Interconnect

asynchronous load, and clear signals. An asynchronous clear signal takes 
precedence if both signals are asserted simultaneously. Each LAB 
supports up to two clears and one preset signal.

In addition to the clear and preset ports, Stratix devices provide a chip-
wide reset pin (DEV_CLRn) that resets all registers in the device. An 
option set before compilation in the Quartus II software controls this pin. 
This chip-wide reset overrides all other control signals. 

MultiTrack 
Interconnect

In the Stratix architecture, connections between LEs, TriMatrix memory, 
DSP blocks, and device I/O pins are provided by the MultiTrack 
interconnect structure with DirectDriveTM technology. The MultiTrack 
interconnect consists of continuous, performance-optimized routing lines 
of different lengths and speeds used for inter- and intra-design block 
connectivity. The Quartus II Compiler automatically places critical design 
paths on faster interconnects to improve design performance.

DirectDrive technology is a deterministic routing technology that ensures 
identical routing resource usage for any function regardless of placement 
within the device. The MultiTrack interconnect and DirectDrive 
technology simplify the integration stage of block-based designing by 
eliminating the re-optimization cycles that typically follow design 
changes and additions.

The MultiTrack interconnect consists of row and column interconnects 
that span fixed distances. A routing structure with fixed length resources 
for all devices allows predictable and repeatable performance when 
migrating through different device densities. Dedicated row 
interconnects route signals to and from LABs, DSP blocks, and TriMatrix 
memory within the same row. These row resources include:

■ Direct link interconnects between LABs and adjacent blocks.
■ R4 interconnects traversing four blocks to the right or left.
■ R8 interconnects traversing eight blocks to the right or left.
■ R24 row interconnects for high-speed access across the length of the 

device.

The direct link interconnect allows an LAB, DSP block, or TriMatrix 
memory block to drive into the local interconnect of its left and right 
neighbors and then back into itself. Only one side of a M-RAM block 
interfaces with direct link and row interconnects. This provides fast 
communication between adjacent LABs and/or blocks without using row 
interconnect resources.

The R4 interconnects span four LABs, three LABs and one M512 RAM 
block, two LABs and one M4K RAM block, or two LABs and one DSP 
block to the right or left of a source LAB. These resources are used for fast 
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TriMatrix Memory

1 Violating the setup or hold time on the address registers could 
corrupt the memory contents. This applies to both read and 
write operations.

Memory Modes

TriMatrix memory blocks include input registers that synchronize writes 
and output registers to pipeline designs and improve system 
performance. M4K and M-RAM memory blocks offer a true dual-port 
mode to support any combination of two-port operations: two reads, two 
writes, or one read and one write at two different clock frequencies. 
Figure 2–12 shows true dual-port memory.

Figure 2–12. True Dual-Port Memory Configuration

Configurations 512 × 1
256 × 2
128 × 4
64 × 8
64 × 9
32 × 16
32 × 18

4K × 1
2K × 2
1K × 4
512 × 8
512 × 9
256 × 16
256 × 18
128 × 32
128 × 36

64K × 8
64K × 9
32K × 16
32K × 18
16K × 32
16K × 36
8K × 64
8K × 72
4K × 128
4K × 144

Notes to Table 2–3:
(1) See Table 4–36 for maximum performance information.
(2) The M-RAM block does not support memory initializations. However, the 

M-RAM block can emulate a ROM function using a dual-port RAM bock. The 
Stratix device must write to the dual-port memory once and then disable the 
write-enable ports afterwards.

Table 2–3. TriMatrix Memory Features (Part 2 of 2)

Memory Feature M512 RAM Block 
(32 × 18 Bits)

M4K RAM Block 
(128 × 36 Bits)

M-RAM Block 
(4K × 144 Bits)

dataA[ ]
addressA[ ]
wrenA

   clockA

clockenA

qA[ ]
aclrA

dataB[ ]
addressB[ ]

wrenB

clockB   
clockenB

qB[ ]
aclrB

A B
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M512 RAM blocks can have different clocks on its inputs and outputs. 
The wren, datain, and write address registers are all clocked together 
from one of the two clocks feeding the block. The read address, rden, and 
output registers can be clocked by either of the two clocks driving the 
block. This allows the RAM block to operate in read/write or 
input/output clock modes. Only the output register can be bypassed. The 
eight labclk signals or local interconnect can drive the inclock, 
outclock, wren, rden, inclr, and outclr signals. Because of the 
advanced interconnect between the LAB and M512 RAM blocks, LEs can 
also control the wren and rden signals and the RAM clock, clock enable, 
and asynchronous clear signals. Figure 2–15 shows the M512 RAM block 
control signal generation logic.

The RAM blocks within Stratix devices have local interconnects to allow 
LEs and interconnects to drive into RAM blocks. The M512 RAM block 
local interconnect is driven by the R4, R8, C4, C8, and direct link 
interconnects from adjacent LABs. The M512 RAM blocks can 
communicate with LABs on either the left or right side through these row 
interconnects or with LAB columns on the left or right side with the 
column interconnects. Up to 10 direct link input connections to the M512 
RAM block are possible from the left adjacent LABs and another 
10 possible from the right adjacent LAB. M512 RAM outputs can also 
connect to left and right LABs through 10 direct link interconnects. The 
M512 RAM block has equal opportunity for access and performance to 
and from LABs on either its left or right side. Figure 2–16 shows the M512 
RAM block to logic array interface.
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M4K RAM blocks support byte writes when the write port has a data 
width of 16, 18, 32, or 36 bits. The byte enables allow the input data to be 
masked so the device can write to specific bytes. The unwritten bytes 
retain the previous written value. Table 2–7 summarizes the byte 
selection. 

The M4K RAM blocks allow for different clocks on their inputs and 
outputs. Either of the two clocks feeding the block can clock M4K RAM 
block registers (renwe, address, byte enable, datain, and output 
registers). Only the output register can be bypassed. The eight labclk 
signals or local interconnects can drive the control signals for the A and B 
ports of the M4K RAM block. LEs can also control the clock_a, 
clock_b, renwe_a, renwe_b, clr_a, clr_b, clocken_a, and 
clocken_b signals, as shown in Figure 2–17.

The R4, R8, C4, C8, and direct link interconnects from adjacent LABs 
drive the M4K RAM block local interconnect. The M4K RAM blocks can 
communicate with LABs on either the left or right side through these row 
resources or with LAB columns on either the right or left with the column 
resources. Up to 10 direct link input connections to the M4K RAM Block 
are possible from the left adjacent LABs and another 10 possible from the 
right adjacent LAB. M4K RAM block outputs can also connect to left and 
right LABs through 10 direct link interconnects each. Figure 2–18 shows 
the M4K RAM block to logic array interface.

Table 2–7. Byte Enable for M4K Blocks Notes (1), (2)

byteena[3..0] datain ×18 datain ×36

[0] = 1 [8..0] [8..0]

[1] = 1 [17..9] [17..9]

[2] = 1 – [26..18]

[3] = 1 – [35..27]

Notes to Table 2–7:
(1) Any combination of byte enables is possible.
(2) Byte enables can be used in the same manner with 8-bit words, i.e., in × 16 and 

× 32 modes.
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Figure 2–17. M4K RAM Block Control Signals

Figure 2–18. M4K RAM Block LAB Row Interface
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Figure 2–29. DSP Blocks Arranged in Columns
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Digital Signal Processing Block

Input Registers

A bank of optional input registers is located at the input of each multiplier 
and multiplicand inputs to the multiplier. When these registers are 
configured for parallel data inputs, they are driven by regular routing 
resources. You can use a clock signal, asynchronous clear signal, and a 
clock enable signal to independently control each set of A and B inputs for 
each multiplier in the DSP block. You select these control signals from a 
set of four different clock[3..0], aclr[3..0], and ena[3..0] 
signals that drive the entire DSP block.

You can also configure the input registers for a shift register application. 
In this case, the input registers feed the multiplier and drive two 
dedicated shift output lines: shiftoutA and shiftoutB. The shift 
outputs of one multiplier block directly feed the adjacent multiplier block 
in the same DSP block (or the next DSP block) as shown in Figure 2–33, to 
form a shift register chain. This chain can terminate in any block, that is, 
you can create any length of shift register chain up to 224 registers. You 
can use the input shift registers for FIR filter applications. One set of shift 
inputs can provide data for a filter, and the other are coefficients that are 
optionally loaded in serial or parallel. When implementing 9 × 9- and 
18 × 18-bit multipliers, you do not need to implement external shift 
registers in LAB LEs. You implement all the filter circuitry within the DSP 
block and its routing resources, saving LE and general routing resources 
for general logic. External registers are needed for shift register inputs 
when using 36 × 36-bit multipliers.
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Digital Signal Processing Block

Table 2–14 shows the summary of input register modes for the DSP block.

Multiplier

The multiplier supports 9 × 9-, 18 × 18-, or 36 × 36-bit multiplication. Each 
DSP block supports eight possible 9 × 9-bit or smaller multipliers. There 
are four multiplier blocks available for multipliers larger than 9 × 9 bits 
but smaller than 18 × 18 bits. There is one multiplier block available for 
multipliers larger than 18 × 18 bits but smaller than or equal to 36 × 36 
bits. The ability to have several small multipliers is useful in applications 
such as video processing. Large multipliers greater than 18 × 18 bits are 
useful for applications such as the mantissa multiplication of a single-
precision floating-point number.

The multiplier operands can be signed or unsigned numbers, where the 
result is signed if either input is signed as shown in Table 2–15. The 
sign_a and sign_b signals provide dynamic control of each operand’s 
representation: a logic 1 indicates the operand is a signed number, a logic 
0 indicates the operand is an unsigned number. These sign signals affect 
all multipliers and adders within a single DSP block and you can register 
them to match the data path pipeline. The multipliers are full precision 
(that is, 18 bits for the 18-bit multiply, 36-bits for the 36-bit multiply, and 
so on) regardless of whether sign_a or sign_b set the operands as 
signed or unsigned numbers.

Table 2–14. Input Register Modes

Register Input Mode 9 × 9 18 × 18 36 × 36

Parallel input v v v

Shift register input v v

Table 2–15. Multiplier Signed Representation

Data A Data B Result

Unsigned Unsigned Unsigned

Unsigned Signed Signed

Signed Unsigned Signed

Signed Signed Signed
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Enhanced PLLs 11 and 12 support one single-ended output each (see 
Figure 2–56). These outputs do not have their own VCC and GND signals. 
Therefore, to minimize jitter, do not place switching I/O pins next to this 
output pin.

Figure 2–56. External Clock Outputs for Enhanced PLLs 11 & 12

Note to Figure 2–56:
(1) For PLL 11, this pin is CLK13n; for PLL 12 this pin is CLK7n.

Stratix devices can drive any enhanced PLL driven through the global 
clock or regional clock network to any general I/O pin as an external 
output clock. The jitter on the output clock is not guaranteed for these 
cases.

1.5-V HSTL Class II v v v

1.8-V HSTL Class I v v v

1.8-V HSTL Class II v v v

SSTL-18 Class I v v v

SSTL-18 Class II v v v

SSTL-2 Class I v v v

SSTL-2 Class II v v v

SSTL-3 Class I v v v

SSTL-3 Class II v v v

AGP (1×  and 2× ) v v v

CTT v v v

Table 2–20. I/O Standards Supported for Enhanced PLL Pins (Part 2 of 2)

I/O Standard
Input Output

INCLK FBIN PLLENABLE EXTCLK

CLK13n, I/O, PLL11_OUT
or CLK6n, I/O, PLL12_OUT (1)

From Internal
Logic or IOE

g0
Counter
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I/O Structure

Figure 2–60. Row I/O Block Connection to the Interconnect

Notes to Figure 2–60:
(1) The 16 control signals are composed of four output enables io_boe[3..0], four clock enables io_bce[3..0], 

four clocks io_clk[3..0], and four clear signals io_bclr[3..0].
(2) The 28 data and control signals consist of eight data out lines: four lines each for DDR applications 

io_dataouta[3..0] and io_dataoutb[3..0], four output enables io_coe[3..0], four input clock enables 
io_cce_in[3..0], four output clock enables io_cce_out[3..0], four clocks io_cclk[3..0], and four clear 
signals io_cclr[3..0].

16

28

R4, R8 & R24
Interconnects

C4, C8 & C16
Interconnects

I/O Block Local 
Interconnect

16 Control Signals
from I/O Interconnect (1)

I/O Interconnect

28 Data & Control 
Signals from 
Logic Array (2)

io_dataouta[3..0]
io_dataoutb[3..0]

io_clk[7:0]

Horizontal I/O
Block Contains
up to Four IOEs

Direct Link
Interconnect

to Adjacent LAB

Direct Link
Interconnect

to Adjacent LAB

LAB Local
Interconnect

LAB Horizontal
I/O Block
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Figure 4–3 shows the TriMatrix memory waveforms for the M512, M4K, 
and M-RAM timing parameters shown in Tables 4–40 through 4–42.

Figure 4–3. Dual-Port RAM Timing Microparameter Waveform

Internal timing parameters are specified on a speed grade basis 
independent of device density. Tables 4–44 through 4–50 show the 
internal timing microparameters for LEs, IOEs, TriMatrix memory 
structures, DSP blocks, and MultiTrack interconnects. 

wrclock

wren
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data-in

reg_data-out

an-1 an a0 a1 a2 a3 a4 a5

din-1 din din4 din5

rdclock

a6

din6

unreg_data-out

rden

rdaddress bn b0 b1 b2 b3

doutn-2 doutn-1 doutn

doutn-1 doutn dout0

tWERESU tWEREH

tDATACO1

tDATACO2

tDATASU

tDATAH

tWEREH tWERESU

tWADDRSU tWADDRH

dout0

tRC

Table 4–43. Routing Delay Internal Timing Microparameter 
Descriptions (Part 1 of 2)

Symbol Parameter

tR4 Delay for an R4 line with average loading; covers a distance of four 
LAB columns.

tR8 Delay for an R8 line with average loading; covers a distance of eight 
LAB columns.

tR24 Delay for an R24 line with average loading; covers a distance of 24 
LAB columns.
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EP1S40 tSU_R 76 80 80 80 ps

tSU_C 376 380 380 380 ps

EP1S60 tSU_R 276 280 280 280 ps

tS U_ C 276 280 280 280 ps

EP1S80 tSU_R 426 430 430 430 ps

tSU_C 76 80 80 80 ps

Table 4–46. IOE Internal Timing Microparameters

Symbol
-5 -6 -7 -8

Unit
Min Max Min Max Min Max Min Max

tH 68  71  82  96  ps

tCO_R  171  179  206  242 ps

tCO_C  171  179  206  242 ps

tPIN2COMBOUT_R  1,234  1,295  1,490  1,753 ps

tPIN2COMBOUT_C  1,087  1,141  1,312  1,544 ps

tCOMBIN2PIN_R  3,894  4,089  4,089  4,089 ps

tCOMBIN2PIN_C  4,299  4,494  4,494  4,494 ps

tCLR 276  289  333  392  ps

tPRE 260  273  313  369  ps

tCLKHL 1,000  1,111  1,190  1,400  ps

Table 4–47. DSP Block Internal Timing Microparameters (Part 1 of 2)

Symbol
-5 -6 -7 -8

Unit
Min Max Min Max Min Max Min Max

tSU 0 0 0 0 ps

tH 67  75  86  101  ps

tCO  142  158  181  214 ps

tINREG2PIPE9  2,613  2,982  3,429  4,035 ps

tINREG2PIPE18  3,390  3,993  4,591  5,402 ps

Table 4–45.  IOE Internal TSU Microparameter by Device Density (Part 2 of 2)

Device Symbol
-5 -6 -7 -8 Unit

Min Max Min Max Min Max Min Max



4–42 Altera Corporation
Stratix Device Handbook, Volume 1 January 2006

Timing Model

Tables 4–67 through 4–72 show the external timing parameters on column 
and row pins for EP1S25 devices.

Table 4–67. EP1S25 External I/O Timing on Column Pins Using Fast Regional Clock Networks

Parameter
-5 Speed Grade -6 Speed Grade -7 Speed Grade -8 Speed Grade

Unit
Min Max Min Max Min Max Min Max

tINSU 2.412  2.613  2.968  3.468  ns

tINH 0.000  0.000  0.000  0.000  ns

tOUTCO 2.196 4.475 2.196 4.748 2.196 5.118 2.196 5.603 ns

tXZ 2.136 4.349 2.136 4.616 2.136 4.994 2.136 5.488 ns

tZX 2.136 4.349 2.136 4.616 2.136 4.994 2.136 5.488 ns

Table 4–68. EP1S25 External I/O Timing on Column Pins Using Regional Clock Networks

Parameter
-5 Speed Grade -6 Speed Grade -7 Speed Grade -8 Speed Grade

Unit
Min Max Min Max Min Max Min Max

tINSU 1.535  1.661  1.877  2.125  ns

tINH 0.000  0.000  0.000  0.000  ns

tOUTCO 2.739 5.396 2.739 5.746 2.739 6.262 2.739 6.946 ns

tXZ 2.679 5.270 2.679 5.614 2.679 6.138 2.679 6.831 ns

tZX 2.679 5.270 2.679 5.614 2.679 6.138 2.679 6.831 ns

tINSUPLL 0.934  0.980  1.092  1.231  ns

tINHPLL 0.000  0.000  0.000  0.000  ns

tOUTCOPLL 1.316 2.733 1.316 2.839 1.316 2.921 1.316 3.110 ns

tXZPLL 1.256 2.607 1.256 2.707 1.256 2.797 1.256 2.995 ns

tZXPLL 1.256 2.607 1.256 2.707 1.256 2.797 1.256 2.995 ns
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Tables 4–91 through 4–96 show the external timing parameters on column 
and row pins for EP1S80 devices.

Table 4–91. EP1S80 External I/O Timing on Column Pins Using Fast Regional Clock Networks Note (1)

Parameter
-5 Speed Grade -6 Speed Grade -7 Speed Grade -8 Speed Grade

Unit
Min Max Min Max Min Max Min Max

tINSU 2.328  2.528  2.900  NA  ns

tINH 0.000  0.000  0.000  NA  ns

tOUTCO 2.422 4.830 2.422 5.169 2.422 5.633 NA NA ns

tXZ 2.362 4.704 2.362 5.037 2.362 5.509 NA NA ns

tZX 2.362 4.704 2.362 5.037 2.362 5.509 NA NA ns

Table 4–92. EP1S80 External I/O Timing on Column Pins Using Regional Clock Networks Note (1)

Parameter
-5 Speed Grade -6 Speed Grade -7 Speed Grade -8 Speed Grade

Unit
Min Max Min Max Min Max Min Max

tINSU 1.760  1.912  2.194  NA  ns

tINH 0.000  0.000  0.000  NA  ns

tOUTCO 2.761 5.398 2.761 5.785 2.761 6.339 NA NA ns

tXZ 2.701 5.272 2.701 5.653 2.701 6.215 NA NA ns

tZX 2.701 5.272 2.701 5.653 2.701 6.215 NA NA ns

tINSUPLL 0.462  0.606  0.785  NA  ns

tINHPLL 0.000  0.000  0.000  NA  ns

tOUTCOPLL 1.661 2.849 1.661 2.859 1.661 2.881 NA NA ns

tXZPLL 1.601 2.723 1.601 2.727 1.601 2.757 NA NA ns

tZXPLL 1.601 2.723 1.601 2.727 1.601 2.757 NA NA ns
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Table 4–93. EP1S80 External I/O Timing on Column Pins Using Global Clock Networks Note (1)

Parameter
-5 Speed Grade -6 Speed Grade -7 Speed Grade -8 Speed Grade

Unit
Min Max Min Max Min Max Min Max

tINSU 0.884  0.976  1.118  NA  ns

tINH 0.000  0.000  0.000  NA  ns

tOUTCO 3.267 6.274 3.267 6.721 3.267 7.415 NA NA ns

tXZ 3.207 6.148 3.207 6.589 3.207 7.291 NA NA ns

tZX 3.207 6.148 3.207 6.589 3.207 7.291 NA NA ns

tINSUPLL 0.506  0.656  0.838  NA  ns

tINHPLL 0.000  0.000  0.000  NA  ns

tOUTCOPLL 1.635 2.805 1.635 2.809 1.635 2.828 NA NA ns

tXZPLL 1.575 2.679 1.575 2.677 1.575 2.704 NA NA ns

tZXPLL 1.575 2.679 1.575 2.677 1.575 2.704 NA NA ns

Table 4–94. EP1S80 External I/O Timing on Row Pins Using Fast Regional Clock Networks Note (1)

Parameter
-5 Speed Grade -6 Speed Grade -7 Speed Grade -8 Speed Grade

Unit

Min Max Min Max Min Max Min Max

tINSU 2.792  2.993  3.386  NA  ns

tINH 0.000  0.000  0.000  NA  ns

tOUTCO 2.619 5.235 2.619 5.609 2.619 6.086 NA NA ns

tXZ 2.646 5.289 2.646 5.665 2.646 6.154 NA NA ns

tZX 2.646 5.289 2.646 5.665 2.646 6.154 NA NA ns
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Table 4–121. Stratix Maximum Output Clock Rate (Using I/O Pins) for PLL[1, 
2, 3, 4] Pins in Flip-Chip Packages

I/O Standard -5 Speed 
Grade

-6 Speed 
Grade

-7 Speed 
Grade

-8 Speed 
Grade Unit

LVTTL 400 350 300 300 MHz

2.5 V 400 350 300 300 MHz

1.8 V 400 350 300 300 MHz

1.5 V 350 300 300 300 MHz

LVCMOS 400 350 300 300 MHz

GTL 200 167 125 125 MHz

GTL+ 200 167 125 125 MHz

SSTL-3 Class I 167 150 133 133 MHz

SSTL-3 Class II 167 150 133 133 MHz

SSTL-2 Class I 150 133 133 133 MHz

SSTL-2 Class II 150 133 133 133 MHz

SSTL-18 Class I 150 133 133 133 MHz

SSTL-18 Class II 150 133 133 133 MHz

1.5-V HSTL Class I 250 225 200 200 MHz

1.5-V HSTL Class II 225 225 200 200 MHz

1.8-V HSTL Class I 250 225 200 200 MHz

1.8-V HSTL Class II 225 225 200 200 MHz

3.3-V PCI 250 225 200 200 MHz

3.3-V PCI-X 1.0 225 225 200 200 MHz

Compact PCI 400 350 300 300 MHz

AGP 1× 400 350 300 300 MHz

AGP 2× 400 350 300 300 MHz

CTT 300 250 200 200 MHz

LVPECL (2) 717 717 500 500 MHz

PCML (2) 420 420 420 420 MHz

LVDS (2) 717 717 500 500 MHz

HyperTransport 
technology (2)

420 420 420 420 MHz


