Altera - EP1S40F1508C6 Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	4125
Number of Logic Elements/Cells	41250
Total RAM Bits	3423744
Number of I/O	822
Number of Gates	-
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	1508-BBGA, FCBGA
Supplier Device Package	1508-FBGA (40x40)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=ep1s40f1508c6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Chapter	Date/Version	Changes Made
2	July 2003, v2.0	 Added reference on page 2-73 to Figures 2-50 and 2-51 for RCLK connections. Updated ranges for EPLL post-scale and pre-scale dividers on page 2-85. Updated PLL Reconfiguration frequency from 25 to 22 MHz on page 2-87. New requirement to assert are set signal each PLL when it has to reacquire lock on either a new clock after loss of lock (page 2-96). Updated max input frequency for CLK [1, 3, 8, 10] from 462 to 500, Table 2-24. Renamed impedance matching to series termination throughout. Updated naming convention for DQS pins on page 2-112 to match pin tables. Added DDR SDRAM Performance Specification on page 2-117. Added termal reference resistor values for terminator technology (page 2-136). Added Terminator Technology Specification on pages 2-137 and 2-138. Updated Tables 2-45 to 2-49 to reflect PLL cross-bank support for high speed differential channels at full speed. Wire bond package performance specification for "high" speed channels was increased to 624 Mbps from 462 Mbps throughout chapter.
3	July 2005, v1.3	 Updated "Operating Modes" section. Updated "Temperature Sensing Diode" section. Updated "IEEE Std. 1149.1 (JTAG) Boundary-Scan Support" section. Updated "Configuration" section.
	January 2005, v1.2	 Updated limits for JTAG chain of devices.
	September 2004, v1.1	 Added new section, "Stratix Automated Single Event Upset (SEU) Detection" on page 3–12. Updated description of "Custom-Built Circuitry" on page 3–13.
	April 2003, v1.0	No new changes in <i>Stratix Device Handbook</i> v2.0.
4	January 2006, v3.4	• Added Table 4–135.
	July 2005, v3.3	 Updated Tables 4–6 and 4–30. Updated Tables 4–103 through 4–108. Updated Tables 4–114 through 4–124. Updated Table 4–129. Added Table 4–130.

Chapter	Date/Version	Changes Made
4	October 2003, v2.1	 Added -8 speed grade information. Updated performance information in Table 4–36. Updated timing information in Tables 4–55 through 4–96. Updated delay information in Tables 4–103 through 4–108. Updated programmable delay information in Tables 4–100 and 4–103.
	July 2003, v2.0	 Updated clock rates in Tables 4–114 through 4–123. Updated speed grade information in the introduction on page 4-1. Corrected figures 4-1 & 4-2 and Table 4-9 to reflect how VID and VOD are specified. Added note 6 to Table 4-32. Updated Stratix Performance Table 4-35. Updated EP1S60 and EP1S80 timing parameters in Tables 4-82 to 4-93. The Stratix timing models are final for all devices. Updated Stratix IOE programmable delay chains in Tables 4-100 to 4-101. Added single-ended I/O standard output pin delay adders for loading in Table 4-102. Added spec for FPLL[107]CLK pins in Tables 4-104 and 4-107. Updated EPLL specification and fast PLL specification in Tables 4-120.
5	September 2004, v2.1	 Updated reference to device pin-outs on page 5–1 to indicate that device pin-outs are no longer included in this manual and are now available on the Altera web site.
	April 2003, v1.0	No new changes in Stratix Device Handbook v2.0.

With the LAB-wide addnsub control signal, a single LE can implement a one-bit adder and subtractor. This saves LE resources and improves performance for logic functions such as DSP correlators and signed multipliers that alternate between addition and subtraction depending on data.

The LAB row clocks [7..0] and LAB local interconnect generate the LABwide control signals. The MultiTrack[™] interconnect's inherent low skew allows clock and control signal distribution in addition to data. Figure 2–4 shows the LAB control signal generation circuit.

Figure 2–4. LAB-Wide Control Signals

Logic Elements

The smallest unit of logic in the Stratix architecture, the LE, is compact and provides advanced features with efficient logic utilization. Each LE contains a four-input LUT, which is a function generator that can implement any function of four variables. In addition, each LE contains a programmable register and carry chain with carry select capability. A single LE also supports dynamic single bit addition or subtraction mode selectable by an LAB-wide control signal. Each LE drives all types of interconnects: local, row, column, LUT chain, register chain, and direct link interconnects. See Figure 2–5.

Figure 2–14. Shift Register Memory Configuration

Memory Block Size

TriMatrix memory provides three different memory sizes for efficient application support. The large number of M512 blocks are ideal for designs with many shallow first-in first-out (FIFO) buffers. M4K blocks provide additional resources for channelized functions that do not require large amounts of storage. The M-RAM blocks provide a large single block of RAM ideal for data packet storage. The different-sized blocks allow Stratix devices to efficiently support variable-sized memory in designs.

The Quartus II software automatically partitions the user-defined memory into the embedded memory blocks using the most efficient size combinations. You can also manually assign the memory to a specific block size or a mixture of block sizes.

Table 2–11. M-RAM Combined Byte Selection for ×144 Mode Notes (1), (2)						
byteena[150]	datain ×144					
[0] = 1	[80]					
[1] = 1	[179]					
[2] = 1	[2618]					
[3] = 1	[3527]					
[4] = 1	[4436]					
[5] = 1	[5345]					
[6] = 1	[6254]					
[7] = 1	[7163]					
[8] = 1	[8072]					
[9] = 1	[8981]					
[10] = 1	[9890]					
[11] = 1	[10799]					
[12] = 1	[116108]					
[13] = 1	[125117]					
[14] = 1	[134126]					
[15] = 1	[143135]					

Notes to Tables 2–10 and 2–11:

(1) Any combination of byte enables is possible.

(2) Byte enables can be used in the same manner with 8-bit words, i.e., in $\times 16$, $\times 32$, $\times 64$, and $\times 128$ modes.

Similar to all RAM blocks, M-RAM blocks can have different clocks on their inputs and outputs. All input registers—renwe, datain, address, and byte enable registers—are clocked together from either of the two clocks feeding the block. The output register can be bypassed. The eight labclk signals or local interconnect can drive the control signals for the A and B ports of the M-RAM block. LEs can also control the clock_a, clock_b, renwe_a, renwe_b, clr_a, clr_b, clocken_a, and clocken_b signals as shown in Figure 2–19.

Digital Signal Processing Block

The most commonly used DSP functions are finite impulse response (FIR) filters, complex FIR filters, infinite impulse response (IIR) filters, fast Fourier transform (FFT) functions, direct cosine transform (DCT) functions, and correlators. All of these blocks have the same fundamental building block: the multiplier. Additionally, some applications need specialized operations such as multiply-add and multiply-accumulate operations. Stratix devices provide DSP blocks to meet the arithmetic requirements of these functions.

Each Stratix device has two columns of DSP blocks to efficiently implement DSP functions faster than LE-based implementations. Larger Stratix devices have more DSP blocks per column (see Table 2–13). Each DSP block can be configured to support up to:

- Eight 9 × 9-bit multipliers
- Four 18 × 18-bit multipliers
- One 36 × 36-bit multiplier

As indicated, the Stratix DSP block can support one 36×36 -bit multiplier in a single DSP block. This is true for any matched sign multiplications (either unsigned by unsigned or signed by signed), but the capabilities for dynamic and mixed sign multiplications are handled differently. The following list provides the largest functions that can fit into a single DSP block.

- 36 × 36-bit unsigned by unsigned multiplication
- 36 × 36-bit signed by signed multiplication
- 35 × 36-bit unsigned by signed multiplication
- 36 × 35-bit signed by unsigned multiplication
- 36 × 35-bit signed by dynamic sign multiplication
- 35 × 36-bit dynamic sign by signed multiplication
- 35 × 36-bit unsigned by dynamic sign multiplication
- 36 × 35-bit dynamic sign by unsigned multiplication
- 35 × 35-bit dynamic sign multiplication when the sign controls for each operand are different
- 36 × 36-bit dynamic sign multiplication when the same sign control is used for both operands
- This list only shows functions that can fit into a single DSP block. Multiple DSP blocks can support larger multiplication functions.

Figure 2–29 shows one of the columns with surrounding LAB rows.

Output Selection Multiplexer

The outputs from the various elements of the adder/output block are routed through an output selection multiplexer. Based on the DSP block operational mode and user settings, the multiplexer selects whether the output from the multiplier, the adder/subtractor/accumulator, or summation block feeds to the output.

Output Registers

Optional output registers for the DSP block outputs are controlled by four sets of control signals: clock [3..0], aclr [3..0], and ena [3..0]. Output registers can be used in any mode.

Modes of Operation

The adder, subtractor, and accumulate functions of a DSP block have four modes of operation:

- Simple multiplier
- Multiply-accumulator
- Two-multipliers adder
- Four-multipliers adder
- Each DSP block can only support one mode. Mixed modes in the same DSP block is not supported.

Simple Multiplier Mode

In simple multiplier mode, the DSP block drives the multiplier sub-block result directly to the output with or without an output register. Up to four 18×18 -bit multipliers or eight 9×9 -bit multipliers can drive their results directly out of one DSP block. See Figure 2–35.

Figure 2–50 shows the global and regional clocking from the PLL outputs and the CLK pins.

Notes to Figure 2–50:

- (1) PLLs 1 to 4 and 7 to 10 are fast PLLs. PLLs 5, 6, 11, and 12 are enhanced PLLs.
- (2) The global or regional clocks in a fast PLL's quadrant can drive the fast PLL input. A pin or other PLL must drive the global or regional source. The source cannot be driven by internally generated logic before driving the fast PLL.

Figure 2–51 shows the global and regional clocking from enhanced PLL outputs and top CLK pins.

Figure 2–61. Column I/O Block Connection to the Interconnect

Notes to Figure 2–61:

- (1) The 16 control signals are composed of four output enables io_boe[3..0], four clock enables io_bce[3..0], four clocks io_bclk[3..0], and four clear signals io_bclr[3..0].
- (2) The 42 data and control signals consist of 12 data out lines; six lines each for DDR applications io_dataouta[5..0] and io_dataoutb[5..0], six output enables io_coe[5..0], six input clock enables io_cce_in[5..0], six output clock enables io_cce_out[5..0], six clocks io_cclk[5..0], and six clear signals io_cclr[5..0].

Figure 2–68. Output Timing Diagram in DDR Mode

The Stratix IOE operates in bidirectional DDR mode by combining the DDR input and DDR output configurations. Stratix device I/O pins transfer data on a DDR bidirectional bus to support DDR SDRAM. The negative-edge-clocked OE register holds the OE signal inactive until the falling edge of the clock. This is done to meet DDR SDRAM timing requirements.

External RAM Interfacing

Stratix devices support DDR SDRAM at up to 200 MHz (400-Mbps data rate) through dedicated phase-shift circuitry, QDR and QDRII SRAM interfaces up to 167 MHz, and ZBT SRAM interfaces up to 200 MHz. Stratix devices also provide preliminary support for reduced latency DRAM II (RLDRAM II) at rates up to 200 MHz through the dedicated phase-shift circuitry.

In addition to the required signals for external memory interfacing, Stratix devices offer the optional clock enable signal. By default the Quartus II software sets the clock enable signal high, which tells the output register to update with new values. The output registers hold their own values if the design sets the clock enable signal low. See Figure 2–64.

To find out more about the DDR SDRAM specification, see the JEDEC web site (**www.jedec.org**). For information on memory controller megafunctions for Stratix devices, see the Altera web site (**www.altera.com**). See *AN 342: Interfacing DDR SDRAM with Stratix & Stratix GX Devices* for more information on DDR SDRAM interface in Stratix. Also see *AN 349: QDR SRAM Controller Reference Design for Stratix & Stratix GX Devices* and *AN 329: ZBT SRAM Controller Reference Design for Stratix & Stratix & Stratix & Stratix GX Devices*.

Figure 2–71. LVDS Input Differential On-Chip Termination

I/O banks on the left and right side of the device support LVDS receiver (far-end) differential termination.

Table 2–33 shows the Stratix device differential termination support.

Table 2–33. Differential Termination Supported by I/O Banks									
Differential Termination SupportI/O Standard SupportTop & Bottom Banks (3, 4, 7 & 8)Left & Right Banks (1, 2, 5 & 6)									
Differential termination (1), (2)	LVDS		\checkmark						

Notes to Table 2–33:

(1) Clock pin CLK0, CLK2, CLK1, CLK1, and pins FPLL [7..10] CLK do not support differential termination.

(2) Differential termination is only supported for LVDS because of a 3.3-V V_{CCIO}.

Table 2–34 shows the termination support for different pin types.

Table 2–34. Differential Termination Support Across Pin Types							
Pin Type	R _D						
Top and bottom I/O banks (3, 4, 7, and 8)							
DIFFIO_RX[]	~						
CLK[0,2,9,11],CLK[4-7],CLK[12-15]							
CLK[1,3,8,10]	~						
FCLK							
FPLL[710]CLK							

The differential on-chip resistance at the receiver input buffer is 118 $\Omega\pm 20$ %.

configuration, the device resets registers, enables I/O pins, and begins to operate as a logic device. The I/O pins are tri-stated during power-up, and before and during configuration. Together, the configuration and initialization processes are called command mode. Normal device operation is called user mode.

SRAM configuration elements allow Stratix devices to be reconfigured incircuit by loading new configuration data into the device. With real-time reconfiguration, the device is forced into command mode with a device pin. The configuration process loads different configuration data, reinitializes the device, and resumes user-mode operation. You can perform in-field upgrades by distributing new configuration files either within the system or remotely.

PORSEL is a dedicated input pin used to select POR delay times of 2 ms or 100 ms during power-up. When the PORSEL pin is connected to ground, the POR time is 100 ms; when the PORSEL pin is connected to $V_{\rm CC}$, the POR time is 2 ms.

The nIO_PULLUP pin enables a built-in weak pull-up resistor to pull all user I/O pins to V_{CCIO} before and during device configuration. If nIO_PULLUP is connected to V_{CC} during configuration, the weak pull-ups on all user I/O pins are disabled. If connected to ground, the pull-ups are enabled during configuration. The nIO_PULLUP pin can be pulled to 1.5, 1.8, 2.5, or 3.3 V for a logic level high.

VCCSEL is a dedicated input that is used to choose whether all dedicated configuration and JTAG input pins can accept 1.5 V/1.8 V or 2.5 V/3.3 V during configuration. A logic low sets 3.3 V/2.5 V, and a logic high sets 1.8 V/1.5 V. VCCSEL affects the following pins: TDI, TMS, TCK, TRST, MSEL0, MSEL1, MSEL2, nCONFIG, nCE, DCLK, PLL_ENA, CONF_DONE, nSTATUS. The VCCSEL pin can be pulled to 1.5, 1.8, 2.5, or 3.3 V for a logic level high.

The VCCSEL signal does not control the dual-purpose configuration pins such as the DATA [7..0] and PPA pins (nWS, nRS, CS, nCS, and RDYnBSY). During configuration, these dual-purpose pins will drive out voltage levels corresponding to the $V_{\rm CCIO}$ supply voltage that powers the I/O bank containing the pin. After configuration, the dual-purpose pins use I/O standards specified in the user design.

TDO and nCEO drive out at the same voltages as the V_{CCIO} supply that powers the I/O bank containing the pin. Users must select the V_{CCIO} supply for bank containing TDO accordingly. For example, when using the ByteBlasterTM MV cable, the V_{CCIO} for the bank containing TDO must be powered up at 3.3 V.

Table 4–10.	Table 4–10. 3.3-V LVDS I/O Specifications (Part 2 of 2)											
Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Unit						
V _{ICM}	Input common mode voltage (6)	LVDS 0.3 V ≤V _{ID} ≤1.0 V <i>W</i> = 1 through 10	100		1,100	mV						
		LVDS 0.3 V \leq V _{ID} \leq 1.0 V W = 1 through 10	1,600		1,800	mV						
		LVDS 0.2 V ≤V _{ID} ≤1.0 V <i>W</i> = 1	1,100		1,600	mV						
		LVDS 0.1 V \leq V _{ID} \leq 1.0 V W = 2 through 10	1,100		1,600	mV						
V _{OD} (1)	Output differential voltage (single-ended)	R _L = 100 Ω	250	375	550	mV						
ΔV_{OD}	Change in V _{OD} between high and low	R _L = 100 Ω			50	mV						
V _{OCM}	Output common mode voltage	R _L = 100 Ω	1,125	1,200	1,375	mV						
ΔV_{OCM}	Change in V _{OCM} between high and low	R _L = 100 Ω			50	mV						
RL	Receiver differential input discrete resistor (external to Stratix devices)		90	100	110	Ω						

Table 4–47. DSP Block Internal Timing Microparameters (Part 2 of 2)												
	-5		-6		-7		-8		11			
Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unit			
t _{PIPE2OUTREG2ADD}		2,002		2,203		2,533		2,980	ps			
t _{PIPE2OUTREG4ADD}		2,899		3,189		3,667		4,314	ps			
t _{PD9}		3,709		4,081		4,692		5,520	ps			
t _{PD18}		4,795		5,275		6,065		7,135	ps			
t _{PD36}		7,495		8,245		9,481		11,154	ps			
t _{CLR}	450		500		575		676		ps			
t _{CLKHL}	1,350		1,500		1,724		2,029		ps			

Table 4–48. M512 Block Internal Timing Microparameters												
Qumbal	-	-5		-6		-7		-8				
Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unit			
t _{M512RC}		3,340		3,816		4,387		5,162	ps			
t _{M512WC}		3,138		3,590		4,128		4,860	ps			
t _{M512WERESU}	110		123		141		166		ps			
t _{M512WEREH}	34		38		43		51		ps			
t _{M512CLKENSU}	215		215		247		290		ps			
t _{M512CLKENH}	-70		-70		-81		-95		ps			
t _{M512DATASU}	110		123		141		166		ps			
t _{M512DATAH}	34		38		43		51		ps			
t _{M512WADDRSU}	110		123		141		166		ps			
t _{M512WADDRH}	34		38		43		51		ps			
t _{M512RADDRSU}	110		123		141		166		ps			
t _{M512RADDRH}	34		38		43		51		ps			
t _{M512DATACO1}		424		472		541		637	ps			
t _{M512DATACO2}		3,366		3,846		4,421		5,203	ps			
t _{M512CLKHL}	1,000		1,111		1,190		1,400		ps			
t _{M512CLR}	170		189		217		255		ps			

Stratix External I/O Timing

These timing parameters are for both column IOE and row IOE pins. In EP1S30 devices and above, you can decrease the t_{SU} time by using the FPLLCLK, but may get positive hold time in EP1S60 and EP1S80 devices. You should use the Quartus II software to verify the external devices for any pin.

Tables 4–55 through 4–60 show the external timing parameters on column and row pins for EP1S10 devices.

Table 4–55. EP1S10 External I/O Timing on Column Pins Using Fast Regional Clock Networks Note (1)												
Parameter	-5 Speed Grade		-6 Speed Grade		-7 Speed Grade		-8 Speed Grade					
	Min	Max	Min	Max	Min	Max	Min	Max	Unit			
t _{INSU}	2.238		2.325		2.668		NA		ns			
t _{INH}	0.000		0.000		0.000		NA		ns			
t _{OUTCO}	2.240	4.549	2.240	4.836	2.240	5.218	NA	NA	ns			
t _{xz}	2.180	4.423	2.180	4.704	2.180	5.094	NA	NA	ns			
t _{ZX}	2.180	4.423	2.180	4.704	2.180	5.094	NA	NA	ns			

Table 4–56. EP1S10 External I/O Timing on Column Pins Using Regional Clock Networks Note (1)												
_ .	-5 Spee	d Grade	-6 Spee	-6 Speed Grade		d Grade	-8 Spee					
Parameter	Min	Max	Min	Max	Min	Max			Unit			
t _{INSU}	1.992		2.054		2.359		NA		ns			
t _{INH}	0.000		0.000		0.000		NA		ns			
t _{OUTCO}	2.395	4.795	2.395	5.107	2.395	5.527	NA	NA	ns			
t _{xz}	2.335	4.669	2.335	4.975	2.335	5.403	NA	NA	ns			
t _{ZX}	2.335	4.669	2.335	4.975	2.335	5.403	NA	NA	ns			
t _{INSUPLL}	0.975		0.985		1.097		NA		ns			
t _{INHPLL}	0.000		0.000		0.000		NA	NA	ns			
t _{OUTCOPLL}	1.262	2.636	1.262	2.680	1.262	2.769	NA	NA	ns			
t _{XZPLL}	1.202	2.510	1.202	2.548	1.202	2.645	NA	NA	ns			
t _{ZXPLL}	1.202	2.510	1.202	2.548	1.202	2.645	NA	NA	ns			

Table 4–59. EP1S10 External I/O Timing on Row Pins Using Regional Clock Networks Note (1)												
Deremeter	-5 Spee	d Grade	-6 Spee	-6 Speed Grade		d Grade	-8 Spee					
Parameter	Min	Max	Min	Max	Min	Max	Min	Max	Unit			
t _{INSU}	2.161		2.336		2.685		NA		ns			
t _{INH}	0.000		0.000		0.000		NA		ns			
t _{OUTCO}	2.434	4.889	2.434	5.226	2.434	5.643	NA	NA	ns			
t _{xz}	2.461	4.493	2.461	5.282	2.461	5.711	NA	NA	ns			
t _{ZX}	2.461	4.493	2.461	5.282	2.461	5.711	NA	NA	ns			
t _{INSUPLL}	1.057		1.172		1.315		NA		ns			
t _{INHPLL}	0.000		0.000		0.000		NA		ns			
t _{OUTCOPLL}	1.327	2.773	1.327	2.848	1.327	2.940	NA	NA	ns			
t _{XZPLL}	1.354	2.827	1.354	2.904	1.354	3.008	NA	NA	ns			
t _{ZXPLL}	1.354	2.827	1.354	2.904	1.354	3.008	NA	NA	ns			

Table 4–60. EP1S10 External I/O Timing on Row Pins Using Global Clock Networks Note (1)									
Parameter	-5 Speed Grade		-6 Speed Grade		-7 Speed Grade		-8 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	Min	Max	Unit
t _{INSU}	1.787		1.944		2.232		NA		ns
t _{INH}	0.000		0.000		0.000		NA		ns
t _{OUTCO}	2.647	5.263	2.647	5.618	2.647	6.069	NA	NA	ns
t _{xz}	2.674	5.317	2.674	5.674	2.674	6.164	NA	NA	ns
t _{ZX}	2.674	5.317	2.674	5.674	2.674	6.164	NA	NA	ns
t _{INSUPLL}	1.371		1.1472		1.654		NA		ns
t _{INHPLL}	0.000		0.000		0.000		NA		ns
t _{OUTCOPLL}	1.144	2.459	1.144	2.548	1.144	2.601	NA	NA	ns
t _{XZPLL}	1.171	2.513	1.171	2.604	1.171	2.669	NA	NA	ns
tZXPLL	1.171	2.513	1.171	2.604	1.171	2.669	NA	NA	ns

Note to Tables 4–55 *to* 4–60:

(1) Only EP1S25, EP1S30, and EP1S40 have speed grade of -8.

Definition of I/O Skew

I/O skew is defined as the absolute value of the worst-case difference in clock-to-out times (t_{CO}) between any two output registers fed by a common clock source.

I/O bank skew is made up of the following components:

- Clock network skews: This is the difference between the arrival times of the clock at the clock input port of the two IOE registers.
- Package skews: This is the package trace length differences between (I/O pad A to I/O pin A) and (I/O pad B to I/O pin B).

Figure 4–5 shows an example of two IOE registers located in the same bank, being fed by a common clock source. The clock can come from an input pin or from a PLL output.

Figure 4–5. I/O Skew within an I/O Bank

Table 4–133. Fast PLL Specifications for -8 Speed Grades (Part 2 of 2)				
Symbol	Parameter	Min	Max	Unit
t _{ARESET}	Minimum pulse width on areset signal	10		ns

Notes to Tables 4–131 through 4–133:

(1) See "Maximum Input & Output Clock Rates" on page 4–76.

- (2) PLLs 7, 8, 9, and 10 in the EP1S80 device support up to 717-MHz input and output.
- (3) Use this equation ($f_{OUT} = f_{IN} * ml(n \times \text{post-scale counter})$) in conjunction with the specified f_{INPFD} and f_{VCO} ranges to determine the allowed PLL settings.
- (4) When using the SERDES, high-speed differential I/O mode supports a maximum output frequency of 210 MHz to the global or regional clocks (that is, the maximum data rate 840 Mbps divided by the smallest SERDES J factor of 4).
- (5) Refer to the section "High-Speed I/O Specification" on page 4-87 for more information.
- (6) This parameter is for high-speed differential I/O mode only.
- (7) These counters have a maximum of 32 if programmed for 50/50 duty cycle. Otherwise, they have a maximum of 16.
- (8) High-speed differential I/O mode supports W = 1 to 16 and J = 4, 7, 8, or 10.

DLL Specifications

Table 4–134 reports the jitter for the DLL in the DQS phase shift reference circuit.

Table 4–134. DLL Jitter for DQS Phase Shift Reference Circuit			
Frequency (MHz)	DLL Jitter (ps)		
197 to 200	± 100		
160 to 196	± 300		
100 to 159	± 500		

•••

For more information on DLL jitter, see the *DDR SRAM* section in the *Stratix Architecture* chapter of the *Stratix Device Handbook, Volume* 1.

Table 4–135 lists the Stratix DLL low frequency limit for full phase shift across all PVT conditions. The Stratix DLL can be used below these frequencies, but it will not achieve the full phase shift requested across all

5. Reference & Ordering Information

S51005-2.1

Software	Stratix [®] devices are supported by the Altera [®] Quartus [®] II design software, which provides a comprehensive environment for system-on-a- programmable-chip (SOPC) design. The Quartus II software includes HDL and schematic design entry, compilation and logic synthesis, full simulation and advanced timing analysis, SignalTap [®] II logic analyzer, and device configuration. See the <i>Design Software Selector Guide</i> for more details on the Quartus II software features.
	The Quartus II software supports the Windows XP/2000/NT/98, Sun Solaris, Linux Red Hat v7.1 and HP-UX operating systems. It also supports seamless integration with industry-leading EDA tools through the NativeLink [®] interface.
Device Pin-Outs	Stratix device pin-outs can be found on the Altera web site (www.altera.com).
Ordering Information	Figure 5–1 describes the ordering codes for Stratix devices. For more information on a specific package, see the <i>Package Information for Stratix Devices</i> chapter.

Differential HSTL Specifications 4–15 DSP Block Diagram Configuration for 18 x 18-Bit 2-55 for 9 x 9-Bit 2–56 Block Interconnect Interface 2–71 Block Interface 2–70 Block Signal Sources & Destinations 2–73 Blocks Arranged in Columns 2–53 in Stratix Devices 2-54 Input Register Modes 2-60 Input Registers 2–58 Multiplier 2 - 60Block 2-57 Signed Representation 2–60 Sub-Block 2-57 Sub-Blocks Using Input Shift Register Connections 2–59 Pipeline/Post Multiply Register 2-61

Ε

EP1S10 Devices Column Pin Fast Regional Clock External I/O Timing Parameters 4–36 Global Clock External I/O Timing Parameters 4-37 Regional Clock External I/O Timing Parameters 4–36 Row Pin Fast Regional Clock External I/O Timing Parameters 4-37 Global Clock External I/O Timing Parameters 4-38 Regional Clock External I/O Timing Parameters 4–38 EP1S20 Devices Column Pin Fast Regional Clock External I/O Timing Parameters 4-39 Global Clock External I/O Timing Parameters 4-40 Regional Clock External I/O Timing

Parameters 4-39 Row Pin Fast Regional Clock External I/O Timing Parameters 4–40 Global Clock External I/O Timing Parameters 4-41 Regional Clock External I/O Timing Parameters 4-41 EP1S25 Devices Column Pin Fast Regional Clock External I/O Timing Parameters 4-42 Global Clock External I/O Timing Parameters 4-43 Regional Clock External I/O Timing Parameters 4-42 Row Pin Fast Regional Clock External I/O Timing Parameters 4-43 Global Clock External I/O Timing Parameters 4-44 Regional Clock External I/O Timing Parameters 4–44 **EP1S30** Devices Column Pin Fast Regional Clock External I/O Timing Parameters 4–45 Global Clock External I/O Timing Parameters 4-45 Regional Clock External I/O Timing Parameters 4-45 Row Pin Fast Regional Clock External I/O Timing Parameters 4-46 Global Clock External I/O Timing Parameters 4-47 Regional Clock External I/O Timing Parameters 4-47 **EP1S40** Devices Column Pin Fast Regional Clock External I/O Timing Parameters 4–48 Global Clock External I/O Timing Parameters 4–49 Regional Clock External I/O Timing Parameters 4-48 Row Pin