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2. Stratix Architecture

Functional 
Description

Stratix® devices contain a two-dimensional row- and column-based 
architecture to implement custom logic. A series of column and row 
interconnects of varying length and speed provide signal interconnects 
between logic array blocks (LABs), memory block structures, and DSP 
blocks.

The logic array consists of LABs, with 10 logic elements (LEs) in each 
LAB. An LE is a small unit of logic providing efficient implementation of 
user logic functions. LABs are grouped into rows and columns across the 
device.

M512 RAM blocks are simple dual-port memory blocks with 512 bits plus 
parity (576 bits). These blocks provide dedicated simple dual-port or 
single-port memory up to 18-bits wide at up to 318 MHz. M512 blocks are 
grouped into columns across the device in between certain LABs.

M4K RAM blocks are true dual-port memory blocks with 4K bits plus 
parity (4,608 bits). These blocks provide dedicated true dual-port, simple 
dual-port, or single-port memory up to 36-bits wide at up to 291 MHz. 
These blocks are grouped into columns across the device in between 
certain LABs. 

M-RAM blocks are true dual-port memory blocks with 512K bits plus 
parity (589,824 bits). These blocks provide dedicated true dual-port, 
simple dual-port, or single-port memory up to 144-bits wide at up to 
269 MHz. Several M-RAM blocks are located individually or in pairs 
within the device’s logic array.

Digital signal processing (DSP) blocks can implement up to either eight 
full-precision 9 × 9-bit multipliers, four full-precision 18 × 18-bit 
multipliers, or one full-precision 36 × 36-bit multiplier with add or 
subtract features. These blocks also contain 18-bit input shift registers for 
digital signal processing applications, including FIR and infinite impulse 
response (IIR) filters. DSP blocks are grouped into two columns in each 
device.

Each Stratix device I/O pin is fed by an I/O element (IOE) located at the 
end of LAB rows and columns around the periphery of the device. I/O 
pins support numerous single-ended and differential I/O standards. 
Each IOE contains a bidirectional I/O buffer and six registers for 
registering input, output, and output-enable signals. When used with 

S51002-3.2
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asynchronous preset load, synchronous clear, synchronous load, and 
clock enable control for the register. These LAB-wide signals are available 
in all LE modes. The addnsub control signal is allowed in arithmetic 
mode. 

The Quartus II software, in conjunction with parameterized functions 
such as library of parameterized modules (LPM) functions, automatically 
chooses the appropriate mode for common functions such as counters, 
adders, subtractors, and arithmetic functions. If required, you can also 
create special-purpose functions that specify which LE operating mode to 
use for optimal performance.

Normal Mode

The normal mode is suitable for general logic applications and 
combinatorial functions. In normal mode, four data inputs from the LAB 
local interconnect are inputs to a four-input LUT (see Figure 2–6). The 
Quartus II Compiler automatically selects the carry-in or the data3 
signal as one of the inputs to the LUT. Each LE can use LUT chain 
connections to drive its combinatorial output directly to the next LE in the 
LAB. Asynchronous load data for the register comes from the data3 
input of the LE. LEs in normal mode support packed registers.

Figure 2–6. LE in Normal Mode

Note to Figure 2–6:
(1) This signal is only allowed in normal mode if the LE is at the end of an adder/subtractor chain.
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asynchronous load, and clear signals. An asynchronous clear signal takes 
precedence if both signals are asserted simultaneously. Each LAB 
supports up to two clears and one preset signal.

In addition to the clear and preset ports, Stratix devices provide a chip-
wide reset pin (DEV_CLRn) that resets all registers in the device. An 
option set before compilation in the Quartus II software controls this pin. 
This chip-wide reset overrides all other control signals. 

MultiTrack 
Interconnect

In the Stratix architecture, connections between LEs, TriMatrix memory, 
DSP blocks, and device I/O pins are provided by the MultiTrack 
interconnect structure with DirectDriveTM technology. The MultiTrack 
interconnect consists of continuous, performance-optimized routing lines 
of different lengths and speeds used for inter- and intra-design block 
connectivity. The Quartus II Compiler automatically places critical design 
paths on faster interconnects to improve design performance.

DirectDrive technology is a deterministic routing technology that ensures 
identical routing resource usage for any function regardless of placement 
within the device. The MultiTrack interconnect and DirectDrive 
technology simplify the integration stage of block-based designing by 
eliminating the re-optimization cycles that typically follow design 
changes and additions.

The MultiTrack interconnect consists of row and column interconnects 
that span fixed distances. A routing structure with fixed length resources 
for all devices allows predictable and repeatable performance when 
migrating through different device densities. Dedicated row 
interconnects route signals to and from LABs, DSP blocks, and TriMatrix 
memory within the same row. These row resources include:

■ Direct link interconnects between LABs and adjacent blocks.
■ R4 interconnects traversing four blocks to the right or left.
■ R8 interconnects traversing eight blocks to the right or left.
■ R24 row interconnects for high-speed access across the length of the 

device.

The direct link interconnect allows an LAB, DSP block, or TriMatrix 
memory block to drive into the local interconnect of its left and right 
neighbors and then back into itself. Only one side of a M-RAM block 
interfaces with direct link and row interconnects. This provides fast 
communication between adjacent LABs and/or blocks without using row 
interconnect resources.

The R4 interconnects span four LABs, three LABs and one M512 RAM 
block, two LABs and one M4K RAM block, or two LABs and one DSP 
block to the right or left of a source LAB. These resources are used for fast 
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can drive other R8 interconnects to extend their range as well as C8 
interconnects for row-to-row connections. One R8 interconnect is faster 
than two R4 interconnects connected together.

R24 row interconnects span 24 LABs and provide the fastest resource for 
long row connections between LABs, TriMatrix memory, DSP blocks, and 
IOEs. The R24 row interconnects can cross M-RAM blocks. R24 row 
interconnects drive to other row or column interconnects at every fourth 
LAB and do not drive directly to LAB local interconnects. R24 row 
interconnects drive LAB local interconnects via R4 and C4 interconnects. 
R24 interconnects can drive R24, R4, C16, and C4 interconnects.

The column interconnect operates similarly to the row interconnect and 
vertically routes signals to and from LABs, TriMatrix memory, DSP 
blocks, and IOEs. Each column of LABs is served by a dedicated column 
interconnect, which vertically routes signals to and from LABs, TriMatrix 
memory and DSP blocks, and horizontal IOEs. These column resources 
include:

■ LUT chain interconnects within an LAB
■ Register chain interconnects within an LAB
■ C4 interconnects traversing a distance of four blocks in up and down 

direction
■ C8 interconnects traversing a distance of eight blocks in up and 

down direction
■ C16 column interconnects for high-speed vertical routing through 

the device

Stratix devices include an enhanced interconnect structure within LABs 
for routing LE output to LE input connections faster using LUT chain 
connections and register chain connections. The LUT chain connection 
allows the combinatorial output of an LE to directly drive the fast input 
of the LE right below it, bypassing the local interconnect. These resources 
can be used as a high-speed connection for wide fan-in functions from 
LE 1 to LE 10 in the same LAB. The register chain connection allows the 
register output of one LE to connect directly to the register input of the 
next LE in the LAB for fast shift registers. The Quartus II Compiler 
automatically takes advantage of these resources to improve utilization 
and performance. Figure 2–10 shows the LUT chain and register chain 
interconnects.
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Figure 2–11. C4 Interconnect Connections Note (1)

Note to Figure 2–11:
(1) Each C4 interconnect can drive either up or down four rows.
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In addition to true dual-port memory, the memory blocks support simple 
dual-port and single-port RAM. Simple dual-port memory supports a 
simultaneous read and write and can either read old data before the write 
occurs or just read the don’t care bits. Single-port memory supports non-
simultaneous reads and writes, but the q[] port will output the data once 
it has been written to the memory (if the outputs are not registered) or 
after the next rising edge of the clock (if the outputs are registered). For 
more information, see Chapter 2, TriMatrix Embedded Memory Blocks in 
Stratix & Stratix GX Devices of the Stratix Device Handbook, Volume 2. 
Figure 2–13 shows these different RAM memory port configurations for 
TriMatrix memory.

Figure 2–13. Simple Dual-Port & Single-Port Memory Configurations

Note to Figure 2–13:
(1) Two single-port memory blocks can be implemented in a single M4K block as long 

as each of the two independent block sizes is equal to or less than half of the M4K 
block size.

The memory blocks also enable mixed-width data ports for reading and 
writing to the RAM ports in dual-port RAM configuration. For example, 
the memory block can be written in ×1 mode at port A and read out in ×16 
mode from port B.
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Similar to all RAM blocks, M-RAM blocks can have different clocks on 
their inputs and outputs. All input registers—renwe, datain, address, 
and byte enable registers—are clocked together from either of the two 
clocks feeding the block. The output register can be bypassed. The eight 
labclk signals or local interconnect can drive the control signals for the 
A and B ports of the M-RAM block. LEs can also control the clock_a, 
clock_b, renwe_a, renwe_b, clr_a, clr_b, clocken_a, and 
clocken_b signals as shown in Figure 2–19.

Table 2–11. M-RAM Combined Byte Selection for ×144 Mode Notes (1), (2)

byteena[15..0] datain ×144

[0] = 1 [8..0]

[1] = 1 [17..9]

[2] = 1 [26..18]

[3] = 1 [35..27]

[4] = 1 [44..36]

[5] = 1 [53..45]

[6] = 1 [62..54]

[7] = 1 [71..63]

[8] = 1 [80..72]

[9] = 1 [89..81]

[10] = 1 [98..90]

[11] = 1 [107..99]

[12] = 1 [116..108]

[13] = 1 [125..117]

[14] = 1 [134..126]

[15] = 1 [143..135]

Notes to Tables 2–10 and 2–11:
(1) Any combination of byte enables is possible.
(2) Byte enables can be used in the same manner with 8-bit words, i.e., in × 16, × 32, 

× 64, and × 128 modes.
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Figure 2–43. Regional Clocks

Fast Regional Clock Network

In EP1S25, EP1S20, and EP1S10 devices, there are two fast regional clock 
networks, FCLK[1..0], within each quadrant, fed by input pins that can 
connect to fast regional clock networks (see Figure 2–44). In EP1S30 and 
larger devices, there are two fast regional clock networks within each 
half-quadrant (see Figure 2–45). Dual-purpose FCLK pins drive the fast 
clock networks. All devices have eight FCLK pins to drive fast regional 
clock networks. Any I/O pin can drive a clock or control signal onto any 
fast regional clock network with the addition of a delay. This signal is 
driven via the I/O interconnect. The fast regional clock networks can also 
be driven from internal logic elements.
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Figure 2–50 shows the global and regional clocking from the PLL outputs 
and the CLK pins.

Figure 2–50. Global & Regional Clock Connections from Side Pins & Fast PLL Outputs Note (1), (2)

Notes to Figure 2–50:
(1) PLLs 1 to 4 and 7 to 10 are fast PLLs. PLLs 5, 6, 11, and 12 are enhanced PLLs.
(2) The global or regional clocks in a fast PLL’s quadrant can drive the fast PLL input. A pin or other PLL must drive 

the global or regional source. The source cannot be driven by internally generated logic before driving the fast PLL.

Figure 2–51 shows the global and regional clocking from enhanced PLL 
outputs and top CLK pins.
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Figure 2–53. Clock Switchover Circuitry

There are two possible ways to use the clock switchover feature.

■ Use automatic switchover circuitry for switching between inputs of 
the same frequency. For example, in applications that require a 
redundant clock with the same frequency as the primary clock, the 
switchover state machine generates a signal that controls the 
multiplexer select input on the bottom of Figure 2–53. In this case, the 
secondary clock becomes the reference clock for the PLL.

■ Use the clkswitch input for user- or system-controlled switch 
conditions. This is possible for same-frequency switchover or to 
switch between inputs of different frequencies. For example, if 
inclk0 is 66 MHz and inclk1 is 100 MHz, you must control the 
switchover because the automatic clock-sense circuitry cannot 
monitor primary and secondary clock frequencies with a frequency 
difference of more than ±20%. This feature is useful when clock 
sources can originate from multiple cards on the backplane, 
requiring a system-controlled switchover between frequencies of 
operation. You can use clkswitch together with the lock signal to 
trigger the switch from a clock that is running but becomes unstable 
and cannot be locked onto. 
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bandwidth is tuned by varying the charge pump current, loop filter 
resistor value, high frequency capacitor value, and m counter value. You 
can manually adjust these values if desired. Bandwidth is programmable 
from 200 kHz to 1.5 MHz.

External Clock Outputs

Enhanced PLLs 5 and 6 each support up to eight single-ended clock 
outputs (or four differential pairs). Differential SSTL and HSTL outputs 
are implemented using 2 single-ended output buffers which are 
programmed to have opposite polarity. In Quartus II software, simply 
assign the appropriate differential I/O standard and the software will 
implement the inversion. See Figure 2–55.
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When you span two I/O banks using cross-bank support, you can route 
only two load enable signals total between the PLLs. When you enable 
rx_data_align, you use both rxloadena and txloadena of a PLL. 
That leaves no loadena for the second PLL.

EP1S25 672-pin FineLine BGA
672-pin BGA

Transmitter (2) 56 624 (4) 14 14 14 14

624 (3) 28 28 28 28

Receiver 58 624 (4) 14 15 15 14

624 (3) 29 29 29 29

780-pin FineLine BGA Transmitter (2) 70 840 (4) 18 17 17 18

840 (3) 35 35 35 35

Receiver 66 840 (4) 17 16 16 17

840 (3) 33 33 33 33

1,020-pin FineLine 
BGA

Transmitter (2) 78 840 (4) 19 20 20 19

840 (3) 39 39 39 39

Receiver 78 840 (4) 19 20 20 19

840 (3) 39 39 39 39

Notes to Table 2–37:
(1) The first row for each transmitter or receiver reports the number of channels driven directly by the PLL. The second 

row below it shows the maximum channels a PLL can drive if cross bank channels are used from the adjacent center 
PLL. For example, in the 484-pin FineLine BGA EP1S10 device, PLL 1 can drive a maximum of five channels at 
840 Mbps or a maximum of 10 channels at 840 Mbps. The Quartus II software may also merge receiver and 
transmitter PLLs when a receiver is driving a transmitter. In this case, one fast PLL can drive both the maximum 
numbers of receiver and transmitter channels.

(2) The number of channels listed includes the transmitter clock output (tx_outclock) channel. If the design requires 
a DDR clock, it can use an extra data channel.

(3) These channels span across two I/O banks per side of the device. When a center PLL clocks channels in the opposite 
bank on the same side of the device it is called cross-bank PLL support. Both center PLLs can clock cross-bank 
channels simultaneously if, for example, PLL_1 is clocking all receiver channels and PLL_2 is clocking all 
transmitter channels. You cannot have two adjacent PLLs simultaneously clocking cross-bank receiver channels or 
two adjacent PLLs simultaneously clocking transmitter channels. Cross-bank allows for all receiver channels on 
one side of the device to be clocked on one clock while all transmitter channels on the device are clocked on the 
other center PLL. Crossbank PLLs are supported at full-speed, 840 Mbps. For wire-bond devices, the full-speed is 
624 Mbps.

(4) These values show the channels available for each PLL without crossing another bank.

Table 2–37. EP1S10, EP1S20 & EP1S25 Device Differential Channels (Part 2 of 2) Note (1)

Device Package Transmitter/
Receiver

Total 
Channels

Maximum 
Speed 
(Mbps)

Center Fast PLLs

PLL 1 PLL 2 PLL 3 PLL 4
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IEEE Std. 1149.1 
(JTAG) 
Boundary-Scan 
Support

All Stratix® devices provide JTAG BST circuitry that complies with the 
IEEE Std. 1149.1a-1990 specification. JTAG boundary-scan testing can be 
performed either before or after, but not during configuration. Stratix 
devices can also use the JTAG port for configuration together with either 
the Quartus® II software or hardware using either Jam Files (.jam) or Jam 
Byte-Code Files (.jbc). 

Stratix devices support IOE I/O standard setting reconfiguration through 
the JTAG BST chain. The JTAG chain can update the I/O standard for all 
input and output pins any time before or during user mode through the 
CONFIG_IO instruction. You can use this ability for JTAG testing before 
configuration when some of the Stratix pins drive or receive from other 
devices on the board using voltage-referenced standards. Since the Stratix 
device may not be configured before JTAG testing, the I/O pins may not 
be configured for appropriate electrical standards for chip-to-chip 
communication. Programming those I/O standards via JTAG allows you 
to fully test the I/O connection to other devices.

The enhanced PLL reconfiguration bits are part of the JTAG chain before 
configuration and after power-up. After device configuration, the PLL 
reconfiguration bits are not part of the JTAG chain.

The JTAG pins support 1.5-V/1.8-V or 2.5-V/3.3-V I/O standards. The 
TDO pin voltage is determined by the VCCIO of the bank where it resides. 
The VCCSEL pin selects whether the JTAG inputs are 1.5-V, 1.8-V, 2.5-V, or 
3.3-V compatible. 

Stratix devices also use the JTAG port to monitor the logic operation of the 
device with the SignalTap® II embedded logic analyzer. Stratix devices 
support the JTAG instructions shown in Table 3–1.

The Quartus II software has an Auto Usercode feature where you can 
choose to use the checksum value of a programming file as the JTAG user 
code. If selected, the checksum is automatically loaded to the USERCODE 
register. In the Settings dialog box in the Assignments menu, click Device 
& Pin Options, then General, and then turn on the Auto Usercode 
option.

S51003-1.3
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Table 4–15. PCI-X 1.0 Specifications

Symbol Parameter Conditions Minimum Typical Maximum Unit

VCCIO Output supply voltage 3.0 3.6 V

VIH High-level input voltage 0.5 ×  
VCCIO

VCCIO + 
0.5

V

VIL Low-level input voltage –0.5 0.35 ×  
VCCIO

V

VIPU Input pull-up voltage 0.7 ×  
VCCIO

V

VOH High-level output voltage IOUT = –500 μA 0.9 ×  
VCCIO

V

VOL Low-level output voltage IOUT = 1,500 μA 0.1 ×  
VCCIO

V

Table 4–16. GTL+ I/O Specifications

Symbol Parameter Conditions Minimum Typical Maximum Unit

VTT Termination voltage 1.35 1.5 1.65 V

VREF Reference voltage 0.88 1.0 1.12 V

VIH High-level input voltage VREF + 0.1 V

VIL Low-level input voltage VREF – 0.1 V

VOL Low-level output voltage IOL = 34 mA (3) 0.65 V

Table 4–17. GTL I/O Specifications

Symbol Parameter Conditions Minimum Typical Maximum Unit

VTT Termination voltage 1.14 1.2 1.26 V

VREF Reference voltage 0.74 0.8 0.86 V

VIH High-level input voltage VREF + 
0.05

V

VIL Low-level input voltage VREF – 
0.05

V

VOL Low-level output voltage IOL = 40 mA (3) 0.4 V
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VIL(AC) Low-level AC input voltage VREF – 0.4 V

VOH High-level output voltage IOH = –8 mA (3) VTT + 0.6 V

VOL Low-level output voltage IOL = 8 mA (3) VTT – 0.6 V

Table 4–23. SSTL-3 Class II Specifications

Symbol Parameter Conditions Minimum Typical Maximum Unit

VCCIO Output supply voltage 3.0 3.3 3.6 V

VTT Termination voltage VREF – 0.05 VREF VREF + 0.05 V

VREF Reference voltage 1.3 1.5 1.7 V

VIH(DC) High-level DC input voltage VREF + 0.2 VCCIO + 0.3 V

VIL(DC) Low-level DC input voltage –0.3 VREF – 0.2 V

VIH(AC) High-level AC input voltage VREF + 0.4 V

VIL(AC) Low-level AC input voltage VREF – 0.4 V

VOH High-level output voltage IOH = –16 mA (3) VT T + 0.8 V

VOL Low-level output voltage IOL = 16 mA (3) VTT – 0.8 V

Table 4–24. 3.3-V AGP 2×  Specifications

Symbol Parameter Conditions Minimum Typical Maximum Unit

VCCIO Output supply voltage 3.15 3.3 3.45 V

VREF Reference voltage 0.39 ×  VCCIO 0.41 ×  VCCIO V

VIH High-level input voltage (4) 0.5 ×  VCCIO VCCIO + 0.5 V

VIL Low-level input voltage (4) 0.3 ×  VCCIO V

VOH High-level output voltage IOUT = –0.5 mA 0.9 ×  VCCIO 3.6 V

VOL Low-level output voltage IOUT = 1.5 mA 0.1 ×  VCCIO V

Table 4–25. 3.3-V AGP 1×  Specifications (Part 1 of 2)

Symbol Parameter Conditions Minimum Typical Maximum Unit

VCCIO Output supply voltage 3.15 3.3 3.45 V

VIH High-level input voltage (4) 0.5 ×  VCCIO VCCIO + 0.5 V

VIL Low-level input voltage (4) 0.3 ×  VCCIO V

Table 4–22. SSTL-3 Class I Specifications (Part 2 of 2)

Symbol Parameter Conditions Minimum Typical Maximum Unit
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device. Decoupling capacitors were not used in this measurement. To 
factor in the current for decoupling capacitors, sum up the current for 
each capacitor using the following equation:

I = C (dV/dt)

If the regulator or power supply minimum output current is more than 
the Stratix device requires, then the device may consume more current 
than the maximum current listed in Table 4–34. However, the device does 
not require any more current to successfully power up than what is listed 
in Table 4–34.

The exact amount of current consumed varies according to the process, 
temperature, and power ramp rate. Stratix devices typically require less 
current during power up than shown in Table 4–34. The user-mode 
current during device operation is generally higher than the power-up 
current.

The duration of the ICCINT power-up requirement depends on the VCCINT 
voltage supply rise time. The power-up current consumption drops when 
the VCCINT supply reaches approximately 0.75 V. 

Table 4–34. Stratix Power-Up Current (ICCINT) Requirements Note (1)

Device
Power-Up Current Requirement

Unit
Typical Maximum

EP1S10 250 700 mA

EP1S20 400 1,200 mA

EP1S25 500 1,500 mA

EP1S30 550 1,900 mA

EP1S40 650 2,300 mA

EP1S60 800 2,600 mA

EP1S80 1,000 3,000 mA

Note to Table 4–34:

(1) The maximum test conditions are for 0° C and typical test conditions are for 
40° C.
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Table 4–98 shows the I/O skews when using the same global or regional 
clock to feed IOE registers in I/O banks around each device. These values 
can be used for calculating the timing budget on the output (write) side 
of a memory interface. These values already factor in the package skew.

tLR_HIO Across all HIO banks (1, 2, 5, 6); across four similar 
type I/O banks

tTB_VIO Across all VIO banks (3, 4, 7, 8); across four similar 
type I/O banks

tOVERALL Output timing skew for all I/O pins on the device.

Notes to Table 4–97:
(1) See Figure 4–5 on page 4–57.
(2) See Figure 4–6 on page 4–58.

Table 4–98. Output Skew for Stratix by Device Density

Symbol
Skew (ps) (1)

EP1S10 to EP1S30 EP1S40 EP1S60 & EP1S80

tSB_HIO 90 290 500

tSB_VIO 160 290 500

tSS_HIO 90 460 600

tSS_VIO 180 520 630

tLR_HIO 150 490 600

tTB_VIO 190 580 670

tOVERALL 430 630 880

Note to Table 4–98:
(1) The skew numbers in Table 4–98 account for worst case package skews.

Table 4–97. Output Pin Timing Skew Definitions (Part 2 of 2)

Symbol Definition
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Tables 4–109 and 4–110 show the adder delays for the column and row 
IOE programmable delays. These delays are controlled with the 
Quartus II software logic options listed in the Parameter column.

Table 4–109. Stratix IOE Programmable Delays on Column Pins  Note (1)

Parameter Setting
-5 Speed Grade -6 Speed Grade -7 Speed Grade -8 Speed Grade

Unit
Min Max Min Max Min Max Min Max

Decrease input delay 
to internal cells

Off 3,970 4,367 5,022 5,908 ps

Small 3,390 3,729 4,288 5,045 ps

Medium 2,810 3,091 3,554 4,181 ps

Large 224 235 270 318 ps

On 224 235 270 318 ps

Decrease input delay 
to input register

Off 3,900 4,290 4,933 5,804 ps

On 0 0 0 0 ps

Decrease input delay 
to output register

Off 1,240 1,364 1,568 1,845 ps

On 0 0 0 0 ps

Increase delay to 
output pin

Off 0 0 0 0 ps

On 397 417 417 417 ps

Increase delay to 
output enable pin

Off 0 0 0 0 ps

On 338 372 427 503 ps

Increase output clock 
enable delay

Off 0 0 0 0 ps

Small 540 594 683 804 ps

Large 1,016 1,118 1,285 1,512 ps

On 1,016 1,118 1,285 1,512 ps

Increase input clock 
enable delay

Off 0 0 0 0 ps

Small 540 594 683 804 ps

Large 1,016 1,118 1,285 1,512 ps

On 1,016 1,118 1,285 1,512 ps

Increase output 
enable clock enable 
delay

Off 0 0 0 0 ps

Small 540 594 683 804 ps

Large 1,016 1,118 1,285 1,512 ps

On 1,016 1,118 1,285 1,512 ps

Increase tZX delay to 
output pin

Off 0 0 0 0 ps

On 2,199 2,309 2,309 2,309 ps



Altera Corporation 4–85
January 2006 Stratix Device Handbook, Volume 1

DC & Switching Characteristics

LVDS (2) 311 275 275 MHz

HyperTransport 
technology (2)

311 275 275 MHz

Table 4–123. Stratix Maximum Output Clock Rate (Using I/O Pins) for PLL[1, 
2, 3, 4] Pins in Wire-Bond Packages (Part 1 of 2)

I/O Standard -6 Speed 
Grade

-7 Speed 
Grade

-8 Speed 
Grade Unit

LVTTL 200 175 175 MHz

2.5 V 200 175 175 MHz

1.8 V 200 175 175 MHz

1.5 V 200 175 175 MHz

LVCMOS 200 175 175 MHz

GTL 125 100 100 MHz

GTL+ 125 100 100 MHz

SSTL-3 Class I 110 90 90 MHz

SSTL-3 Class II 150 133 133 MHz

SSTL-2 Class I 90 80 80 MHz

SSTL-2 Class II 110 100 100 MHz

SSTL-18 Class I 110 100 100 MHz

SSTL-18 Class II 110 100 100 MHz

1.5-V HSTL Class I 225 200 200 MHz

1.5-V HSTL Class II 200 167 167 MHz

1.8-V HSTL Class I 225 200 200 MHz

1.8-V HSTL Class II 200 167 167 MHz

3.3-V PCI 200 175 175 MHz

3.3-V PCI-X 1.0 200 175 175 MHz

Compact PCI 200 175 175 MHz

AGP 1× 200 175 175 MHz

AGP 2× 200 175 175 MHz

CTT 125 100 100 MHz

LVPECL (2) 311 270 270 MHz

PCML (2) 400 311 311 MHz

Table 4–122. Stratix Maximum Output Clock Rate for PLL[5, 6, 11, 12] Pins 
in Wire-Bond Packages (Part 2 of 2)

I/O Standard -6 Speed 
Grade

-7 Speed 
Grade

-8 Speed 
Grade Unit
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