
Altera - EP1S60B956C6 Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Active
Number of LABs/CLBs	5712
Number of Logic Elements/Cells	57120
Total RAM Bits	5215104
Number of I/O	683
Number of Gates	-
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	956-BBGA, FCBGA
Supplier Device Package	956-BGA (40x40)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=ep1s60b956c6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Copyright © 2006 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device designations, and all other words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the property of their respective holders. Altera products are protected under numerous U.S. and foreign patents and pending applications, maskwork rights, and copyrights. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make

changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera Corporation. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

About This Handbook

This handbook provides comprehensive information about the Altera® Stratix family of devices.

How to Find You can find more information in the following ways: Information The Adobe Acrobat Find feature, which searches the text of a PDF document. Click the binoculars toolbar icon to open the Find dialog box. Acrobat bookmarks, which serve as an additional table of contents in PDF documents. Thumbnail icons, which provide miniature previews of each page, provide a link to the pages. Numerous links, shown in green text, which allow you to jump to related information.

How to Contact Altera

For the most up-to-date information about Altera products, go to the Altera world-wide web site at www.altera.com. For technical support on this product, go to www.altera.com/mysupport. For additional information about Altera products, consult the sources shown below.

Information Type	USA & Canada	All Other Locations
Technical support	www.altera.com/mysupport/	www.altera.com/mysupport/
	(800) 800-EPLD (3753) (7:00 a.m. to 5:00 p.m. Pacific Time)	+1 408-544-8767 7:00 a.m. to 5:00 p.m. (GMT -8:00) Pacific Time
Product literature	www.altera.com	www.altera.com
Altera literature services	literature@altera.com	literature@altera.com
Non-technical customer service	(800) 767-3753	+ 1 408-544-7000 7:00 a.m. to 5:00 p.m. (GMT -8:00) Pacific Time
FTP site	ftp.altera.com	ftp.altera.com

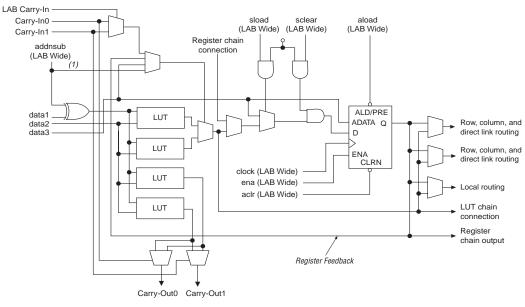


Figure 2–7. LE in Dynamic Arithmetic Mode

Note to Figure 2–7:(1) The addnsub signal is tied to the carry input for the first LE of a carry chain only.

Carry-Select Chain

The carry-select chain provides a very fast carry-select function between LEs in arithmetic mode. The carry-select chain uses the redundant carry calculation to increase the speed of carry functions. The LE is configured to calculate outputs for a possible carry-in of 1 and carry-in of 0 in parallel. The carry-in0 and carry-in1 signals from a lower-order bit feed forward into the higher-order bit via the parallel carry chain and feed into both the LUT and the next portion of the carry chain. Carry-select chains can begin in any LE within an LAB.

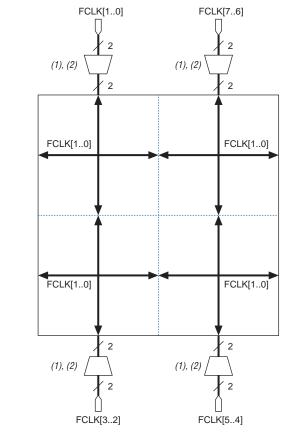
The speed advantage of the carry-select chain is in the parallel precomputation of carry chains. Since the LAB carry-in selects the precomputed carry chain, not every LE is in the critical path. Only the propagation delay between LAB carry-in generation (LE 5 and LE 10) are now part of the critical path. This feature allows the Stratix architecture to implement high-speed counters, adders, multipliers, parity functions, and comparators of arbitrary width.

Table 2–2. Strat	ix De	vice F	Routin	ng Scl	heme												
								Des	stinat	ion							
Source	LUT Chain	Register Chain	Local Interconnect	Direct Link Interconnect	R4 Interconnect	R8 Interconnect	R24 Interconnect	C4 Interconnect	C8 Interconnect	C16 Interconnect	TE	M512 RAM Block	M4K RAM Block	M-RAM Block	DSP Blocks	Column IOE	Row IOE
LUT Chain											\checkmark						
Register Chain											\checkmark						
Local Interconnect											~	~	~	~	~	~	~
Direct Link Interconnect			~														
R4 Interconnect			~		\checkmark		\checkmark	\checkmark		~							
R8 Interconnect			>			\checkmark			>								
R24 Interconnect					~		~	~		>							
C4 Interconnect			\checkmark		\checkmark			\checkmark									
C8 Interconnect			~			\checkmark			~								
C16 Interconnect					~		~	~		~							
LE	\checkmark	\checkmark	\checkmark	~	>	<		<	~								
M512 RAM Block			~	~	~	~		~	~								
M4K RAM Block			\checkmark	\checkmark	>	<		<	~								
M-RAM Block								\checkmark	\checkmark								
DSP Blocks			\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark								
Column IOE				\checkmark				\checkmark	\checkmark	\checkmark							
Row IOE				\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark							

Table 2–2 shows the Stratix device's routing scheme.

M-RAM Block

The largest TriMatrix memory block, the M-RAM block, is useful for applications where a large volume of data must be stored on-chip. Each block contains 589,824 RAM bits (including parity bits). The M-RAM block can be configured in the following modes:


- True dual-port RAM
- Simple dual-port RAM
- Single-port RAM
- FIFO RAM

You cannot use an initialization file to initialize the contents of a M-RAM block. All M-RAM block contents power up to an undefined value. Only synchronous operation is supported in the M-RAM block, so all inputs are registered. Output registers can be bypassed. The memory address and output width can be configured as $64K \times 8$ (or $64K \times 9$ bits), $32K \times 16$ (or $32K \times 18$ bits), $16K \times 32$ (or $16K \times 36$ bits), $8K \times 64$ (or $8K \times 72$ bits), and $4K \times 128$ (or $4K \times 144$ bits). The $4K \times 128$ configuration is unavailable in true dual-port mode because there are a total of 144 data output drivers in the block. Mixed-width configurations are also possible, allowing different read and write widths. Tables 2–8 and 2–9 summarize the possible M-RAM block configurations:

Table 2–8. M	Table 2–8. M-RAM Block Configurations (Simple Dual-Port)									
Read Port Write Port										
Reau Port	64K × 9	32K × 18	16K × 36	8K × 72	4K × 144					
64K × 9	~	\checkmark	\checkmark	\checkmark						
32K × 18	~	\checkmark	\checkmark	~						
16K × 36	~	~	\checkmark	~						
8K × 72	~	~	\checkmark	~						
4K × 144					\checkmark					

Independent Clock Mode

The memory blocks implement independent clock mode for true dualport memory. In this mode, a separate clock is available for each port (ports A and B). Clock A controls all registers on the port A side, while clock B controls all registers on the port B side. Each port, A and B, also supports independent clock enables and asynchronous clear signals for port A and B registers. Figure 2–24 shows a TriMatrix memory block in independent clock mode.

Figure 2–44. EP1S25, EP1S20 & EP1S10 Device Fast Clock Pin Connections to Fast Regional Clocks

Notes to Figure 2–44:

- (1) This is a set of two multiplexers.
- (2) In addition to the FCLK pin inputs, there is also an input from the I/O interconnect.

Control	Signal	s

The fast PLL has the same lock output, pllenable input, and areset input control signals as the enhanced PLL.

If the input clock stops and causes the PLL to lose lock, then the PLL must be reset for correct phase shift operation.

For more information on high-speed differential I/O support, see "High-Speed Differential I/O Support" on page 2–130.

I/O Structure

IOEs provide many features, including:

- Dedicated differential and single-ended I/O buffers
- 3.3-V, 64-bit, 66-MHz PCI compliance
- 3.3-V, 64-bit, 133-MHz PCI-X 1.0 compliance
- Joint Test Action Group (JTAG) boundary-scan test (BST) support
- Differential on-chip termination for LVDS I/O standard
- Programmable pull-up during configuration
- Output drive strength control
- Slew-rate control
- Tri-state buffers
- Bus-hold circuitry
- Programmable pull-up resistors
- Programmable input and output delays
- Open-drain outputs
- DQ and DQS I/O pins
- Double-data rate (DDR) Registers

The IOE in Stratix devices contains a bidirectional I/O buffer, six registers, and a latch for a complete embedded bidirectional single data rate or DDR transfer. Figure 2–59 shows the Stratix IOE structure. The IOE contains two input registers (plus a latch), two output registers, and two output enable registers. The design can use both input registers and the latch to capture DDR input and both output registers to drive DDR outputs. Additionally, the design can use the output enable (OE) register for fast clock-to-output enable timing. The negative edge-clocked OE register is used for DDR SDRAM interfacing. The Quartus II software automatically duplicates a single OE register that controls multiple output or bidirectional pins.

Programmable Pull-Up Resistor

Each Stratix device I/O pin provides an optional programmable pull-up resistor during user mode. If this feature is enabled for an I/O pin, the pull-up resistor (typically 25 k Ω) weakly holds the output to the V_{CCIO} level of the output pin's bank. Table 2–30 shows which pin types support the weak pull-up resistor feature.

Table 2–30. Programmable We	eak Pull-Up Resistor Support
Pin Type	Programmable Weak Pull-Up Resistor
I/O pins	✓
CLK[150]	
FCLK	~
FPLL[710]CLK	
Configuration pins	
JTAG pins	✓ (1)

Note to Table 2–30:

(1) TDO pins do not support programmable weak pull-up resistors.

Advanced I/O Standard Support

Stratix device IOEs support the following I/O standards:

- LVTTL
- LVCMOS
- 1.5 V
- 1.8 V
- 2.5 V
- 3.3-V PCI
- 3.3-V PCI-X 1.0
- 3.3-V AGP (1× and 2×)
- LVDS
- LVPECL
- **3.3-V PCML**
- HyperTransport
- Differential HSTL (on input/output clocks only)
- Differential SSTL (on output column clock pins only)
- GTL/GTL+
- 1.5-V HSTL Class I and II

Table 2-40.	EP1S60 Diffe	rential Chai	nnels (Part 2	? of 2)	lote (1)						
	Transmitter/	Total Channels	Maximum	C	enter F	ast PLI	_S	Corner Fast PLLs (2), (3)			
Package	Receiver		Speed (Mbps)	PLL1	PLL2	PLL3	PLL4	PLL7	PLL8	PLL9	PLL10
1,020-pin FineLine BGA	Transmitter (4)	80 (12) (7)	840	12 (2)	10 (4)	10 (4)	12 (2)	20	20	20	20
			840 <i>(5), (8)</i>	22 (6)	22 (6)	22 (6)	22 (6)	20	20	20	20
	Receiver	80 (10) (7)	840	20	20	20	20	12 (8)	10 (10)	10 (10)	12 (8)
			840 <i>(5), (8)</i>	40	40	40	40	12 (8)	10 (10)	10 (10)	12 (8)
1,508-pin FineLine BGA	Transmitter (4)	80 (36) (7)	840	12 (8)	10 (10)	10 (10)	12 (8)	20	20	20	20
			840 <i>(5),(8)</i>	22 (18)	22 (18)	22 (18)	22 (18)	20	20	20	20
	Receiver	80 (36) (7)	840	20	20	20	20	12 (8)	10 (10)	10 (10)	12 (8)
			840 <i>(5),(8)</i>	40	40	40	40	12 (8)	10 (10)	10 (10)	12 (8)

Table 2–41.	Table 2–41. EP1S80 Differential Channels (Part 1 of 2) Note (1)												
	Transmitter/	Total	Maximum	C	enter F	ast PLI	.s	Corner Fast PLLs (2), (3)					
Package	Receiver	Channels	Speed (Mbps)	PLL1	PLL2	PLL3	PLL4	PLL7	PLL8	PLL9	PLL10		
956-pin	Transmitter	80 (40)	840	10	10	10	10	20	20	20	20		
BGA (4) Recei	(4)	(7)	840 (5),(8)	20	20	20	20	20	20	20	20		
	Receiver	80	840	20	20	20	20	10	10	10	10		
			840 (5),(8)	40	40	40	40	10	10	10	10		
1,020-pin FineLine BGA	Transmitter (4)	92 (12) (7)	840	10 (2)	10 (4)	10 (4)	10 (2)	20	20	20	20		
			840 (5),(8)	20 (6)	20 (6)	20 (6)	20 (6)	20	20	20	20		
	Receiver	90 (10) (7)	840	20	20	20	20	10 (2)	10 (3)	10 (3)	10 (2)		
			840 (5),(8)	40	40	40	40	10 (2)	10 (3)	10 (3)	10 (2)		

Table 2–41.	Table 2–41. EP1S80 Differential Channels (Part 2 of 2) Note (1)												
	Transmitter/	Total	Maximum	Center Fast PLLs				Corner Fast PLLs (2), (3)					
Package	Receiver	Channels	Speed (Mbps)	PLL1	PLL2	PLL3	PLL4	PLL7	PLL8	PLL9	PLL10		
1,508-pin FineLine BGA	Transmitter (4)	80 (72) (7)	840	10 (10)	10 (10)	10 (10)	10 (10)	20 (8)	20 (8)	20 (8)	20 (8)		
			840 <i>(5),(8)</i>	20 (20)	20 (20)	20 (20)	20 (20)	20 (8)	20 (8)	20 (8)	20 (8)		
	Receiver	80 (56) (7)	840	20	20	20	20	10 (14)	10 (14)	10 (14)	10 (14)		
			840 <i>(5),(8)</i>	40	40	40	40	10 (14)	10 (14)	10 (14)	10 (14)		

Notes to Tables 2–38 *through* 2–41:

- (1) The first row for each transmitter or receiver reports the number of channels driven directly by the PLL. The second row below it shows the maximum channels a PLL can drive if cross bank channels are used from the adjacent center PLL. For example, in the 780-pin FineLine BGA EP1S30 device, PLL 1 can drive a maximum of 18 transmitter channels at 840 Mbps or a maximum of 35 transmitter channels at 840 Mbps. The Quartus II software may also merge transmitter and receiver PLLs when a receiver is driving a transmitter. In this case, one fast PLL can drive both the maximum numbers of receiver and transmitter channels.
- (2) Some of the channels accessible by the center fast PLL and the channels accessible by the corner fast PLL overlap. Therefore, the total number of channels is not the addition of the number of channels accessible by PLLs 1, 2, 3, and 4 with the number of channels accessible by PLLs 7, 8, 9, and 10. For more information on which channels overlap, see the Stratix device pin-outs at **www.altera.com**.
- (3) The corner fast PLLs in this device support a data rate of 840 Mbps for channels labeled "high" speed in the device pin-outs at www.altera.com.
- (4) The numbers of channels listed include the transmitter clock output (tx_outclock) channel. An extra data channel can be used if a DDR clock is needed.
- (5) These channels span across two I/O banks per side of the device. When a center PLL clocks channels in the opposite bank on the same side of the device it is called cross-bank PLL support. Both center PLLs can clock cross-bank channels simultaneously if say PLL_1 is clocking all receiver channels and PLL_2 is clocking all transmitter channels. You cannot have two adjacent PLLs simultaneously clocking cross-bank receiver channels or two adjacent PLLs simultaneously clocking transmitter channels. Cross-bank allows for all receiver channels on one side of the device to be clocked on one clock while all transmitter channels on the device are clocked on the other center PLL. Crossbank PLLs are supported at full-speed, 840 Mbps. For wire-bond devices, the full-speed is 624 Mbps.
- (6) PLLs 7, 8, 9, and 10 are not available in this device.
- (7) The number in parentheses is the number of slow-speed channels, guaranteed to operate at up to 462 Mbps. These channels are independent of the high-speed differential channels. For the location of these channels, see the device pin-outs at www.altera.com.
- (8) See the Stratix device pin-outs at **www.altera.com**. Channels marked "high" speed are 840 MBps and "low" speed channels are 462 MBps.

The high-speed differential I/O circuitry supports the following high speed I/O interconnect standards and applications:

- UTOPIA IV
- SPI-4 Phase 2 (POS-PHY Level 4)
- SFI-4
- 10G Ethernet XSBI

Quanta	Devementer	Oanditiana	Min in	Mawimum	11
Symbol	Parameter	Conditions	Minimum	Maximum	Unit
V _{CCIO}	Supply voltage for output buffers, 3.3-V operation	(4), (5)	3.00 (3.135)	3.60 (3.465)	V
	Supply voltage for output buffers, 2.5-V operation	(4)	2.375 2.625 1.71 1.89	V	
	Supply voltage for output buffers, 1.8-V operation	(4)	1.71		V
	Supply voltage for output buffers, 1.5-V operation	V operation Image for output (4) 1.4	1.6	V	
VI	Input voltage	(3), (6)	-0.5	4.0	V
Vo	Output voltage		0	V _{CCIO}	V
TJ	Operating junction	For commercial use	0	85	°C
	temperature	For industrial use	-40	100	°C

Table 4–3	. Stratix Device DC O	perating Conditions Note (7	") (Part 1 of 2)			
Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Unit
l _l	Input pin leakage current	$V_{I} = V_{CCIOmax}$ to 0 V (8)	-10		10	μA
I _{OZ}	Tri-stated I/O pin leakage current	$V_{O} = V_{CCIOmax}$ to 0 V (8)	-10		10	μA
I _{CC0}	V _{CC} supply current (standby) (All	V _I = ground, no load, no toggling inputs				mA
	memory blocks in power-down mode)	EP1S10. V_1 = ground, no load, no toggling inputs		37		mA
		EP1S20. V_1 = ground, no load, no toggling inputs		65		mA
		EP1S25. V_1 = ground, no load, no toggling inputs		90		mA
		EP1S30. V_1 = ground, no load, no toggling inputs		114		mA
		EP1S40. V_1 = ground, no load, no toggling inputs		145		mA
	EP1S60. V_1 = ground, no load, no toggling inputs		200		mA	
		EP1S80. V_1 = ground, no load, no toggling inputs		277		mA

4–2

Table 4–3. Stratix Device DC Operating Conditions Note (7) (Part 2 of 2)										
Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Unit				
R _{CONF}	Value of I/O pin pull-	V _{CCIO} = 3.0 V (9)	20		50	kΩ				
	up resistor before and during	V _{CCIO} = 2.375 V <i>(9)</i>	30		80	kΩ				
	configuration	V _{CCIO} = 1.71 V <i>(9)</i>	60		150	kΩ				

Table 4–4. LVTTL Specifications								
Symbol	Parameter	Conditions	Minimum	Maximum	Unit			
V _{CCIO}	Output supply voltage		3.0	3.6	V			
V _{IH}	High-level input voltage		1.7	4.1	V			
V _{IL}	Low-level input voltage		-0.5	0.7	V			
V _{OH}	High-level output voltage	$I_{OH} = -4 \text{ to } -24 \text{ mA} (10)$	2.4		V			
V _{OL}	Low-level output voltage	I _{OL} = 4 to 24 mA <i>(10)</i>		0.45	V			

Table 4–5. LVCMOS Specifications								
Symbol	Parameter	Conditions	Minimum	Maximum	Unit			
V _{CCIO}	Output supply voltage		3.0	3.6	V			
V _{IH}	High-level input voltage		1.7	4.1	V			
V _{IL}	Low-level input voltage		-0.5	0.7	V			
V _{OH}	High-level output voltage	V _{CCIO} = 3.0, I _{OH} = -0.1 mA	V _{CCIO} - 0.2		V			
V _{OL}	Low-level output voltage	V _{CCIO} = 3.0, I _{OL} = 0.1 mA		0.2	V			

Table 4–6. 2.5-V I/O Specifications								
Symbol	Parameter	Conditions	Minimum	Maximum	Unit			
V _{CCIO}	Output supply voltage		2.375	2.625	V			
V _{IH}	High-level input voltage		1.7	4.1	V			
V _{IL}	Low-level input voltage		-0.5	0.7	V			
V _{OH}	High-level output voltage	I _{OH} = -1 mA (10)	2.0		V			
V _{OL}	Low-level output voltage	I _{OL} = 1 mA <i>(10)</i>		0.4	V			

Table 4–13	Table 4–13. HyperTransport Technology Specifications								
Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Unit			
V _{CCIO}	I/O supply voltage		2.375	2.5	2.625	V			
V _{ID} (peak- to-peak)	Input differential voltage swing (single-ended)		300		900	mV			
V _{ICM}	Input common mode voltage		300		900	mV			
V _{OD}	Output differential voltage (single-ended)	R _L = 100 Ω	380	485	820	mV			
ΔV_{OD}	Change in V _{OD} between high and low	R _L = 100 Ω			50	mV			
V _{OCM}	Output common mode voltage	R _L = 100 Ω	440	650	780	mV			
ΔV_{OCM}	Change in V _{OCM} between high and low	R _L = 100 Ω			50	mV			
RL	Receiver differential input resistor		90	100	110	Ω			

Table 4–14. 3.3-V PCI Specifications								
Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Unit		
V _{CCIO}	Output supply voltage		3.0	3.3	3.6	V		
V _{IH}	High-level input voltage		$0.5 \times V_{CCIO}$		V _{CCIO} + 0.5	V		
V _{IL}	Low-level input voltage		-0.5		0.3 imes V _{CCIO}	V		
V _{OH}	High-level output voltage	I _{OUT} = -500 μA	$0.9 \times V_{CCIO}$			V		
V _{OL}	Low-level output voltage	I _{OUT} = 1,500 μA			$0.1 imes V_{CCIO}$	V		

Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Unit
V _{CCIO}	Output supply voltage		2.375	2.5	2.625	V
V _{TT}	Termination voltage		$V_{REF} - 0.04$	V_{REF}	V _{REF} + 0.04	V
V _{REF}	Reference voltage		1.15	1.25	1.35	V
V _{IH(DC)}	High-level DC input voltage		V _{REF} + 0.18		3.0	V
V _{IL(DC)}	Low-level DC input voltage		-0.3		$V_{REF} - 0.18$	V
V _{IH(AC)}	High-level AC input voltage		V _{REF} + 0.35			V
V _{IL(AC)}	Low-level AC input voltage				$V_{REF} - 0.35$	V
V _{OH}	High-level output voltage	I _{OH} = -8.1 mA (3)	V _{TT} + 0.57			V
V _{OL}	Low-level output voltage	I _{OL} = 8.1 mA <i>(3)</i>			V _{TT} – 0.57	V

Table 4–21. SSTL-2 Class II Specifications								
Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Unit		
V _{CCIO}	Output supply voltage		2.375	2.5	2.625	V		
V _{TT}	Termination voltage		$V_{\text{REF}} - 0.04$	V _{REF}	V _{REF} + 0.04	V		
V _{REF}	Reference voltage		1.15	1.25	1.35	V		
V _{IH(DC)}	High-level DC input voltage		V _{REF} + 0.18		$V_{CCIO} + 0.3$	V		
V _{IL(DC)}	Low-level DC input voltage		-0.3		V _{REF} - 0.18	V		
V _{IH(AC)}	High-level AC input voltage		V _{REF} + 0.35			V		
V _{IL(AC)}	Low-level AC input voltage				$V_{REF} - 0.35$	V		
V _{OH}	High-level output voltage	I _{OH} = -16.4 mA (3)	V _{TT} + 0.76			V		
V _{OL}	Low-level output voltage	I _{OL} = 16.4 mA <i>(3)</i>			V _{TT} – 0.76	V		

Table 4–22. SSTL-3 Class I Specifications (Part 1 of 2)									
Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Unit			
V _{CCIO}	Output supply voltage		3.0	3.3	3.6	V			
V _{TT}	Termination voltage		$V_{\text{REF}} - 0.05$	V _{REF}	V _{REF} + 0.05	V			
V _{REF}	Reference voltage		1.3	1.5	1.7	V			
V _{IH(DC)}	High-level DC input voltage		V _{REF} + 0.2		$V_{CCIO} + 0.3$	V			
V _{IL(DC)}	Low-level DC input voltage		-0.3		V _{REF} - 0.2	V			
V _{IH(AC)}	High-level AC input voltage		V _{REF} + 0.4			V			

Table 4–89. l	Table 4–89. EP1S60 External I/O Timing on Row Pins Using Regional Clock Networks Note (1)									
Doromotor	-5 Spee	d Grade	-6 Spee	-6 Speed Grade -7 Sp		d Grade	-8 Spee	d Grade	Unit	
Parameter	Min	Max	Min	Max	Min	Max	Min	Max	Unit	
t _{INSU}	2.775		2.990		3.407		NA		ns	
t _{INH}	0.000		0.000		0.000		NA		ns	
t _{OUTCO}	2.867	5.644	2.867	6.057	2.867	6.600	NA	NA	ns	
t _{XZ}	2.894	5.698	2.894	6.113	2.894	6.668	NA	NA	ns	
t _{ZX}	2.894	5.698	2.894	6.113	2.894	6.668	NA	NA	ns	
t _{INSUPLL}	1.523		1.577		1.791		NA		ns	
t _{INHPLL}	0.000		0.000		0.000		NA		ns	
t _{OUTCOPLL}	1.174	2.507	1.174	2.643	1.174	2.664	NA	NA	ns	
t _{XZPLL}	1.201	2.561	1.201	2.699	1.201	2.732	NA	NA	ns	
t _{ZXPLL}	1.201	2.561	1.201	2.699	1.201	2.732	NA	NA	ns	

	-5 Speed Grade		-6 Spee	-6 Speed Grade -7 Speed Gra		d Grade	e -8 Speed Grade		
Parameter	Min	Max	Min	Max	Min	Max	Min	Max	Unit
t _{INSU}	2.232		2.393		2.721		NA		ns
t _{INH}	0.000		0.000		0.000		NA		ns
t _{outco}	3.182	6.187	3.182	6.654	3.182	7.286	NA	NA	ns
t _{XZ}	3.209	6.241	3.209	6.710	3.209	7.354	NA	NA	ns
t _{ZX}	3.209	6.241	3.209	6.710	3.209	7.354	NA	NA	ns
t _{INSUPLL}	1.651		1.612		1.833		NA		ns
t _{INHPLL}	0.000		0.000		0.000		NA		ns
t _{OUTCOPLL}	1.154	2.469	1.154	2.608	1.154	2.622	NA	NA	ns
t _{XZPLL}	1.181	2.523	1.181	2.664	1.181	2.690	NA	NA	ns
t _{ZXPLL}	1.181	2.523	1.181	2.664	1.181	2.690	NA	NA	ns

Note to Tables 4–85 *to* 4–90:

(1) Only EP1S25, EP1S30, and EP1S40 devices have the -8 speed grade.

I/O Standard	-6 Speed Grade	-7 Speed Grade	-8 Speed Grade	Unit
GTL+	250	200	200	MHz
SSTL-3 Class I	300	250	250	MHz
SSTL-3 Class II	300	250	250	MHz
SSTL-2 Class I	300	250	250	MHz
SSTL-2 Class II	300	250	250	MHz
SSTL-18 Class I	300	250	250	MHz
SSTL-18 Class II	300	250	250	MHz
1.5-V HSTL Class I	300	180	180	MHz
1.5-V HSTL Class II	300	180	180	MHz
1.8-V HSTL Class I	300	180	180	MHz
1.8-V HSTL Class II	300	180	180	MHz
3.3-V PCI	422	390	390	MHz
3.3-V PCI-X 1.0	422	390	390	MHz
Compact PCI	422	390	390	MHz
AGP 1×	422	390	390	MHz
AGP 2×	422	390	390	MHz
CTT	250	180	180	MHz
Differential 1.5-V HSTL C1	300	180	180	MHz
LVPECL (1)	422	400	400	MHz
PCML (1)	215	200	200	MHz
LVDS (1)	422	400	400	MHz
HyperTransport technology (1)	422	400	400	MHz

 Table 4–117. Stratix Maximum Input Clock Rate for CLK[7..4] & CLK[15..12]

 Pins in Wire-Bond Packages (Part 2 of 2)

 Table 4–118. Stratix Maximum Input Clock Rate for CLK[0, 2, 9, 11] Pins &

 FPLL[10..7]CLK Pins in Wire-Bond Packages (Part 1 of 2)

I/O Standard	-6 Speed Grade	-7 Speed Grade	-8 Speed Grade	Unit
LVTTL	422	390	390	MHz
2.5 V	422	390	390	MHz
1.8 V	422	390	390	MHz
1.5 V	422	390	390	MHz

PLL Specifications

Tables 4–127 through 4–129 describe the Stratix device enhanced PLL specifications.

Symbol	Parameter	Min	Тур	Max	Unit
f _{IN}	Input clock frequency	3 (1), (2)		684	MHz
f _{INPFD}	Input frequency to PFD	3		420	MHz
f _{INDUTY}	Input clock duty cycle	40		60	%
f _{EINDUTY}	External feedback clock input duty cycle	40		60	%
t _{INJITTER}	Input clock period jitter			±200 <i>(3)</i>	ps
t _{EINJITTER}	External feedback clock period jitter			±200 (3)	ps
t _{FCOMP}	External feedback clock compensation time (4)			6	ns
f _{OUT}	Output frequency for internal global or regional clock	0.3		500	MHz
f _{OUT_EXT}	Output frequency for external clock (3)	0.3		526	MHz
toutduty	Duty cycle for external clock output (when set to 50%)	45		55	%
t _{JITTER}	Period jitter for external clock output (6)			<pre>±100 ps for >200-MHz outclk ±20 mUI for <200-MHz outclk</pre>	ps or mUI
t _{CONFIG5,6}	Time required to reconfigure the scan chains for PLLs 5 and 6			289/f _{SCANCLK}	
t _{CONFIG11,12}	Time required to reconfigure the scan chains for PLLs 11 and 12			193/f _{SCANCLK}	
t _{SCANCLK}	scanclk frequency (5)			22	MHz
t _{DLOCK}	Time required to lock dynamically (after switchover or reconfiguring any non-post-scale counters/delays) (7)			100	μs
t _{LOCK}	Time required to lock from end of device configuration	10		400	μs
f _{VCO}	PLL internal VCO operating range	300		800 (8)	MHz
t _{LSKEW}	Clock skew between two external clock outputs driven by the same counter		±50		ps

Table 4–133. Fast PLL Specifications for -8 Speed Grades (Part 2 of 2)						
Symbol	Parameter	Min	Мах	Unit		
t _{ARESET}	Minimum pulse width on areset signal	10		ns		

Notes to Tables 4–131 through 4–133:

(1) See "Maximum Input & Output Clock Rates" on page 4–76.

- (2) PLLs 7, 8, 9, and 10 in the EP1S80 device support up to 717-MHz input and output.
- (3) Use this equation ($f_{OUT} = f_{IN} * ml(n \times \text{post-scale counter})$) in conjunction with the specified f_{INPFD} and f_{VCO} ranges to determine the allowed PLL settings.
- (4) When using the SERDES, high-speed differential I/O mode supports a maximum output frequency of 210 MHz to the global or regional clocks (that is, the maximum data rate 840 Mbps divided by the smallest SERDES J factor of 4).
- (5) Refer to the section "High-Speed I/O Specification" on page 4-87 for more information.
- (6) This parameter is for high-speed differential I/O mode only.
- (7) These counters have a maximum of 32 if programmed for 50/50 duty cycle. Otherwise, they have a maximum of 16.
- (8) High-speed differential I/O mode supports W = 1 to 16 and J = 4, 7, 8, or 10.

DLL Specifications

Table 4–134 reports the jitter for the DLL in the DQS phase shift reference circuit.

Table 4–134. DLL Jitter for DQS Phase Shift Reference Circuit				
Frequency (MHz)	DLL Jitter (ps)			
197 to 200	± 100			
160 to 196	± 300			
100 to 159	± 500			

•••

For more information on DLL jitter, see the *DDR SRAM* section in the *Stratix Architecture* chapter of the *Stratix Device Handbook, Volume* 1.

Table 4–135 lists the Stratix DLL low frequency limit for full phase shift across all PVT conditions. The Stratix DLL can be used below these frequencies, but it will not achieve the full phase shift requested across all

Global & Hierarchical Clocking 2-73 Global & Regional Clock Connections from Side Pins & Fast PLL Outputs 2-85 from Top Clock Pins & Enhanced PLL Outputs 2-86 Global Clock External I/O Timing Parameters 4-35 Global Clock Network 2–74 Global Clocking 2-75 Independent Clock Mode 2-44 Input/Output Clock Mode 2 - 46Simple Dual-Port Mode 2–48 True Dual-Port Mode 2-47 Maximum Input & Output Clock Rates 4–76 Maximum Input Clock Rate for CLK (0, 2, 9, 11) Pins in Flip-Chip Packages 4–77 Wire-Bond Packages 4-79 (1, 3, 8, 10) Pins in Flip-Chip Packages 4–78 Wire-Bond Packages 4-80 (7..4) & CLK(15..12) Pins in Flip-Chip Packages 4–76 Wire-Bond Packages 4–78 Maximum Output Clock Rate for PLL (1, 2, 3, 4) Pins in Flip-Chip Packages 4–83 Wire-Bond Packages 4-85 (5, 6, 11, 12) Pins in Flip-Chip

Packages 4-81 Wire-Bond Packages 4–84 Phase & Delay Shifting 2–96 Phase Delay 2-96 PLL Clock Networks 2-73 Read/Write Clock Mode 2 - 49in Simple Dual-Port Mode 2-50 Regional Clock 2–75 External I/O Timing Parameters 4–34 Regional Clock Bus 2–79 Regional Clock Network 2–75 Spread-Spectrum Clocking 2-98 Configuration 3–5 32-Bit IDCODE 3-3 and Testing 3-1 Data Sources for Configuration 3-7 Local Update Mode 3–12 Local Update Transition Diagram 3–12 Operating Modes 3-5 Partial Reconfiguration 3–7 Remote Update 3–8 Remote Update Transition Diagram 3–11 Schemes 3-7 SignalTap II Embedded Logic Analyzer 3–5 Stratix FPGAs with JRunner 3-7 Control Signals 2–104

D

DC Switching Absolute Maximum Ratings 4–1 Bus Hold Parameters 4–16 Capacitance 4–17 DC & Switching Characteristics 4–1 External Timing Parameters 4–33 Operating Conditions 4–1 Performance 4–20 Power Consumption 4–17 Recommended Operating Conditions 4–1 DDR Double-Data Rate I/O Pins 2–111 Device Features EP1S10, EP1S20, EP1S25, EP1S30, 1–3 EP1S40, EP1S60, EP1S80, 1–3