
## Altera - EP1S60B956C6N Datasheet





Welcome to <u>E-XFL.COM</u>

#### Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

#### **Applications of Embedded - FPGAs**

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

| Details                        |                                                            |
|--------------------------------|------------------------------------------------------------|
| Product Status                 | Active                                                     |
| Number of LABs/CLBs            | -                                                          |
| Number of Logic Elements/Cells | -                                                          |
| Total RAM Bits                 | -                                                          |
| Number of I/O                  | 683                                                        |
| Number of Gates                | -                                                          |
| Voltage - Supply               | 1.425V ~ 1.575V                                            |
| Mounting Type                  | Surface Mount                                              |
| Operating Temperature          | 0°C ~ 85°C (TJ)                                            |
| Package / Case                 | 956-BBGA                                                   |
| Supplier Device Package        | 956-BGA (40x40)                                            |
| Purchase URL                   | https://www.e-xfl.com/pro/item?MUrl=&PartUrl=ep1s60b956c6n |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

| DSP Block Interface                 |       |
|-------------------------------------|-------|
| PLLs & Clock Networks               |       |
| Global & Hierarchical Clocking      |       |
| Enhanced & Fast PLLs                |       |
| Enhanced PLLs                       |       |
| Fast PLLs                           |       |
| I/O Structure                       |       |
| Double-Data Rate I/O Pins           | 2–111 |
| External RAM Interfacing            | 2–115 |
| Programmable Drive Strength         | 2–119 |
| Open-Drain Output                   |       |
| Slew-Rate Control                   |       |
| Bus Hold                            | 2–121 |
| Programmable Pull-Up Resistor       | 2–122 |
| Advanced I/O Standard Support       | 2–122 |
| Differential On-Chip Termination    | 2–127 |
| MultiVolt I/O Interface             |       |
| High-Speed Differential I/O Support | 2–130 |
| Dedicated Circuitry                 |       |
| Byte Alignment                      |       |
| Power Sequencing & Hot Socketing    |       |
|                                     |       |

## **Chapter 3. Configuration & Testing**

| IEEE Std. 1149.1 (JTAG) Boundary-Scan Support 3-         | -1 |
|----------------------------------------------------------|----|
| SignalTap II Embedded Logic Analyzer                     |    |
| Configuration                                            | -5 |
| Operating Modes                                          | -5 |
| Configuring Stratix FPGAs with JRunner 3-                | -7 |
| Configuration Schemes                                    | -7 |
| Partial Reconfiguration                                  | -7 |
| Remote Update Configuration Modes                        | -8 |
| Stratix Automated Single Event Upset (SEU) Detection 3-1 | 12 |
| Custom-Built Circuitry 3–1                               | 13 |
| Software Interface                                       | 13 |
| Temperature Sensing Diode 3-1                            | 13 |

## **Chapter 4. DC & Switching Characteristics**

| Operating Conditions               | 4–1  |
|------------------------------------|------|
| Power Consumption                  |      |
| Timing Model                       |      |
| Preliminary & Final Timing         | 4–19 |
| Performance                        |      |
| Internal Timing Parameters         | 4–22 |
| External Timing Parameters         |      |
| Stratix External I/O Timing        | 4–36 |
| I/O Timing Measurement Methodology | 4–60 |
| External I/O Delay Parameters      | 4–66 |
|                                    |      |

| Chapter | Date/Version | Changes Made                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4       |              | <ul> <li>Table 4–48 on page 4–30: added rows t<sub>M512CLKSENSU</sub> and t<sub>M512CLKENH</sub>, and updated symbol names.</li> <li>Updated power-up current (ICCINT) required to power a Stratix device on page 4–17.</li> <li>Updated Table 4–37 on page 4–22 through Table 4–43 on page 4–27.</li> <li>Table 4–49 on page 4–31: added rows t<sub>M4KCLKENSU</sub>, t<sub>M4KCLKENH</sub>, t<sub>M4KBESU</sub>, and t<sub>M4KBEH</sub> deleted rows t<sub>M4KRADDRASU</sub> and t<sub>M4KRADDRH</sub>, and updated symbol names.</li> <li>Table 4–50 on page 4–31: added rows t<sub>M4RADDRASU</sub> and t<sub>M4KRADDRH</sub>, and updated symbol names.</li> <li>Table 4–50 on page 4–34: updated table, deleted "Conditions" column, and added rows t<sub>X2</sub> and t<sub>2X</sub>.</li> <li>Table 4–52 on page 4–34: updated table, deleted "Conditions" column, and added rows t<sub>X2</sub> and t<sub>2X</sub>.</li> <li>Table 4–52 on page 4–34: updated table, deleted "Conditions" column, and added rows t<sub>X2</sub> and t<sub>2X</sub>.</li> <li>Table 4–53 on page 4–34: updated table and added rows t<sub>XZPLL</sub> and t<sub>ZXPLL</sub>.</li> <li>Updated Note 2 in Table 4–53 on page 4–35.</li> <li>Deleted Note 2 in Table 4–55 on page 4–36.</li> <li>Deleted Note 2 from Table 4–55 on page 4–36 through Table 4–66 on page 4–56. Added rows t<sub>XZ</sub>, T<sub>XX</sub>, T<sub>XZPLL</sub>, and T<sub>ZXPLL</sub>.</li> <li>Updated Table 4–55 on page 4–36 through Table 4–66 on page 4–56. Added rows t<sub>XZ</sub>, T<sub>XX</sub>, T<sub>XZPLL</sub>, and T<sub>ZXPLL</sub>.</li> <li>Added Note 4 to Table 4–101 on page 4–42.</li> <li>Deleted Note 1 from Table 4–67 on page 4–42. through Table 4–84 on page 4–50.</li> <li>Added new section "I/O Timing Measurement Methodology" on page 4–56.</li> <li>Added note 2 from Table 4–67 on page 4–62.</li> <li>Deleted Note 1 to Table 4–101 on page 4–62.</li> <li>Table 4–102 on page 4–64: updated table and added Note 4.</li> <li>Updated Table 4–103 on page 4–64.</li> <li>Updated Table 4–103 on page 4–66 through Table 4–110 on page 4–50.</li> <li>Added Note 4 to Table 4–109 on page 4–66.</li> <li>Added Note 1 to Table 4–109 on page 4–66 through Table 4–110 on page 4–74.</li> <li>Updated Table 4–103 on page 4–66 through Table 4–110 on page 4–74.</li></ul> |

| Table 1–1. Stratix Device Features — EP1S10, EP1S20, EP1S25, EP1S30 |         |           |           |           |  |  |  |  |  |
|---------------------------------------------------------------------|---------|-----------|-----------|-----------|--|--|--|--|--|
| Feature                                                             | EP1S10  | EP1S20    | EP1S25    | EP1S30    |  |  |  |  |  |
| LEs                                                                 | 10,570  | 18,460    | 25,660    | 32,470    |  |  |  |  |  |
| M512 RAM blocks (32 $\times$ 18 bits)                               | 94      | 194       | 224       | 295       |  |  |  |  |  |
| M4K RAM blocks (128 $\times$ 36 bits)                               | 60      | 82        | 138       | 171       |  |  |  |  |  |
| M-RAM blocks (4K $\times$ 144 bits)                                 | 1       | 2         | 2         | 4         |  |  |  |  |  |
| Total RAM bits                                                      | 920,448 | 1,669,248 | 1,944,576 | 3,317,184 |  |  |  |  |  |
| DSP blocks                                                          | 6       | 10        | 10        | 12        |  |  |  |  |  |
| Embedded multipliers (1)                                            | 48      | 80        | 80        | 96        |  |  |  |  |  |
| PLLs                                                                | 6       | 6         | 6         | 10        |  |  |  |  |  |
| Maximum user I/O pins                                               | 426     | 586       | 706       | 726       |  |  |  |  |  |

| Table 1–2. Stratix Device Features — EP1S40, EP1S60, EP1S80 |           |           |           |  |  |  |  |  |  |
|-------------------------------------------------------------|-----------|-----------|-----------|--|--|--|--|--|--|
| Feature                                                     | EP1S40    | EP1S60    | EP1S80    |  |  |  |  |  |  |
| LEs                                                         | 41,250    | 57,120    | 79,040    |  |  |  |  |  |  |
| M512 RAM blocks ( $32 \times 18$ bits)                      | 384       | 574       | 767       |  |  |  |  |  |  |
| M4K RAM blocks (128 $\times$ 36 bits)                       | 183       | 292       | 364       |  |  |  |  |  |  |
| M-RAM blocks (4K $\times$ 144 bits)                         | 4         | 6         | 9         |  |  |  |  |  |  |
| Total RAM bits                                              | 3,423,744 | 5,215,104 | 7,427,520 |  |  |  |  |  |  |
| DSP blocks                                                  | 14        | 18        | 22        |  |  |  |  |  |  |
| Embedded multipliers (1)                                    | 112       | 144       | 176       |  |  |  |  |  |  |
| PLLs                                                        | 12        | 12        | 12        |  |  |  |  |  |  |
| Maximum user I/O pins                                       | 822       | 1,022     | 1,238     |  |  |  |  |  |  |

*Note to Tables* 1–1 *and* 1–2:

(1) This parameter lists the total number of  $9 \times 9$ -bit multipliers for each device. For the total number of  $18 \times 18$ -bit multipliers per device, divide the total number of  $9 \times 9$ -bit multipliers by 2. For the total number of  $36 \times 36$ -bit multipliers per device, divide the total number of  $9 \times 9$ -bit multipliers by 8.



## 2. Stratix Architecture

\$51002-3.2

# Functional Description

Stratix<sup>®</sup> devices contain a two-dimensional row- and column-based architecture to implement custom logic. A series of column and row interconnects of varying length and speed provide signal interconnects between logic array blocks (LABs), memory block structures, and DSP blocks.

The logic array consists of LABs, with 10 logic elements (LEs) in each LAB. An LE is a small unit of logic providing efficient implementation of user logic functions. LABs are grouped into rows and columns across the device.

M512 RAM blocks are simple dual-port memory blocks with 512 bits plus parity (576 bits). These blocks provide dedicated simple dual-port or single-port memory up to 18-bits wide at up to 318 MHz. M512 blocks are grouped into columns across the device in between certain LABs.

M4K RAM blocks are true dual-port memory blocks with 4K bits plus parity (4,608 bits). These blocks provide dedicated true dual-port, simple dual-port, or single-port memory up to 36-bits wide at up to 291 MHz. These blocks are grouped into columns across the device in between certain LABs.

M-RAM blocks are true dual-port memory blocks with 512K bits plus parity (589,824 bits). These blocks provide dedicated true dual-port, simple dual-port, or single-port memory up to 144-bits wide at up to 269 MHz. Several M-RAM blocks are located individually or in pairs within the device's logic array.

Digital signal processing (DSP) blocks can implement up to either eight full-precision  $9 \times 9$ -bit multipliers, four full-precision  $18 \times 18$ -bit multipliers, or one full-precision  $36 \times 36$ -bit multiplier with add or subtract features. These blocks also contain 18-bit input shift registers for digital signal processing applications, including FIR and infinite impulse response (IIR) filters. DSP blocks are grouped into two columns in each device.

Each Stratix device I/O pin is fed by an I/O element (IOE) located at the end of LAB rows and columns around the periphery of the device. I/O pins support numerous single-ended and differential I/O standards. Each IOE contains a bidirectional I/O buffer and six registers for registering input, output, and output-enable signals. When used with

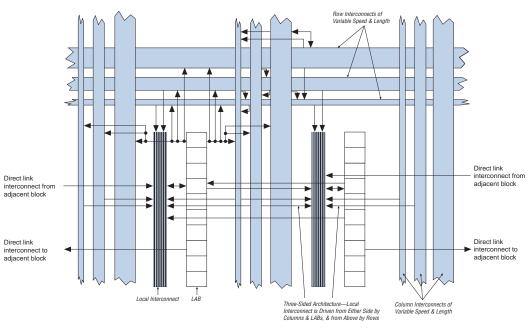
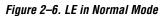
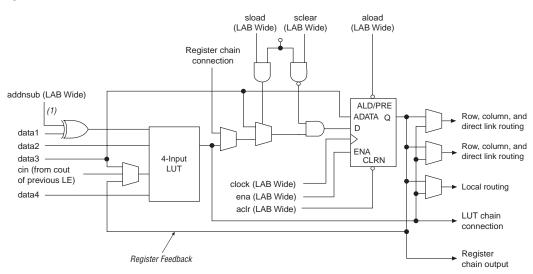



Figure 2–2. Stratix LAB Structure

## **LAB** Interconnects


The LAB local interconnect can drive LEs within the same LAB. The LAB local interconnect is driven by column and row interconnects and LE outputs within the same LAB. Neighboring LABs, M512 RAM blocks, M4K RAM blocks, or DSP blocks from the left and right can also drive an LAB's local interconnect through the direct link connection. The direct link connection feature minimizes the use of row and column interconnects, providing higher performance and flexibility. Each LE can drive 30 other LEs through fast local and direct link interconnects. Figure 2–3 shows the direct link connection.


asynchronous preset load, synchronous clear, synchronous load, and clock enable control for the register. These LAB-wide signals are available in all LE modes. The addnsub control signal is allowed in arithmetic mode.

The Quartus II software, in conjunction with parameterized functions such as library of parameterized modules (LPM) functions, automatically chooses the appropriate mode for common functions such as counters, adders, subtractors, and arithmetic functions. If required, you can also create special-purpose functions that specify which LE operating mode to use for optimal performance.

#### Normal Mode

The normal mode is suitable for general logic applications and combinatorial functions. In normal mode, four data inputs from the LAB local interconnect are inputs to a four-input LUT (see Figure 2–6). The Quartus II Compiler automatically selects the carry-in or the data3 signal as one of the inputs to the LUT. Each LE can use LUT chain connections to drive its combinatorial output directly to the next LE in the LAB. Asynchronous load data for the register comes from the data3 input of the LE. LEs in normal mode support packed registers.





#### Note to Figure 2-6:

(1) This signal is only allowed in normal mode if the LE is at the end of an adder/subtractor chain.

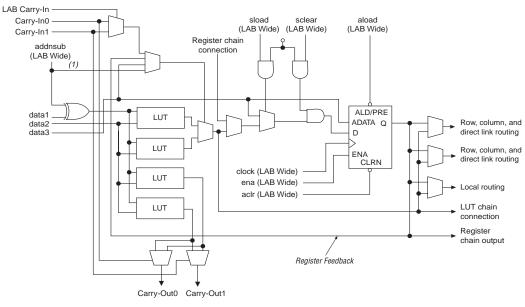



Figure 2–7. LE in Dynamic Arithmetic Mode

*Note to Figure 2–7:*(1) The addnsub signal is tied to the carry input for the first LE of a carry chain only.

## Carry-Select Chain

The carry-select chain provides a very fast carry-select function between LEs in arithmetic mode. The carry-select chain uses the redundant carry calculation to increase the speed of carry functions. The LE is configured to calculate outputs for a possible carry-in of 1 and carry-in of 0 in parallel. The carry-in0 and carry-in1 signals from a lower-order bit feed forward into the higher-order bit via the parallel carry chain and feed into both the LUT and the next portion of the carry chain. Carry-select chains can begin in any LE within an LAB.

The speed advantage of the carry-select chain is in the parallel precomputation of carry chains. Since the LAB carry-in selects the precomputed carry chain, not every LE is in the critical path. Only the propagation delay between LAB carry-in generation (LE 5 and LE 10) are now part of the critical path. This feature allows the Stratix architecture to implement high-speed counters, adders, multipliers, parity functions, and comparators of arbitrary width. can drive other R8 interconnects to extend their range as well as C8 interconnects for row-to-row connections. One R8 interconnect is faster than two R4 interconnects connected together.

R24 row interconnects span 24 LABs and provide the fastest resource for long row connections between LABs, TriMatrix memory, DSP blocks, and IOEs. The R24 row interconnects can cross M-RAM blocks. R24 row interconnects drive to other row or column interconnects at every fourth LAB and do not drive directly to LAB local interconnects. R24 row interconnects drive LAB local interconnects via R4 and C4 interconnects. R24 interconnects can drive R24, R4, C16, and C4 interconnects.

The column interconnect operates similarly to the row interconnect and vertically routes signals to and from LABs, TriMatrix memory, DSP blocks, and IOEs. Each column of LABs is served by a dedicated column interconnect, which vertically routes signals to and from LABs, TriMatrix memory and DSP blocks, and horizontal IOEs. These column resources include:

- LUT chain interconnects within an LAB
- Register chain interconnects within an LAB
- C4 interconnects traversing a distance of four blocks in up and down direction
- C8 interconnects traversing a distance of eight blocks in up and down direction
- C16 column interconnects for high-speed vertical routing through the device

Stratix devices include an enhanced interconnect structure within LABs for routing LE output to LE input connections faster using LUT chain connections and register chain connections. The LUT chain connection allows the combinatorial output of an LE to directly drive the fast input of the LE right below it, bypassing the local interconnect. These resources can be used as a high-speed connection for wide fan-in functions from LE 1 to LE 10 in the same LAB. The register chain connection allows the register output of one LE to connect directly to the register input of the next LE in the LAB for fast shift registers. The Quartus II Compiler automatically takes advantage of these resources to improve utilization and performance. Figure 2–10 shows the LUT chain and register chain interconnects.

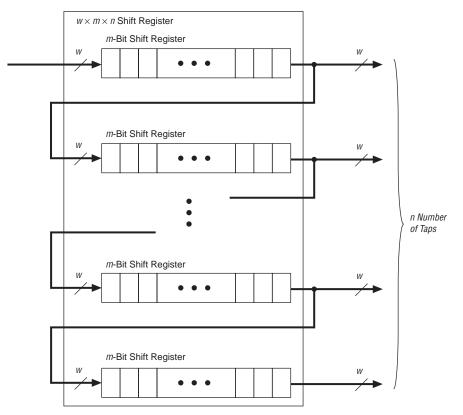



Figure 2–14. Shift Register Memory Configuration

## **Memory Block Size**

TriMatrix memory provides three different memory sizes for efficient application support. The large number of M512 blocks are ideal for designs with many shallow first-in first-out (FIFO) buffers. M4K blocks provide additional resources for channelized functions that do not require large amounts of storage. The M-RAM blocks provide a large single block of RAM ideal for data packet storage. The different-sized blocks allow Stratix devices to efficiently support variable-sized memory in designs.

The Quartus II software automatically partitions the user-defined memory into the embedded memory blocks using the most efficient size combinations. You can also manually assign the memory to a specific block size or a mixture of block sizes.

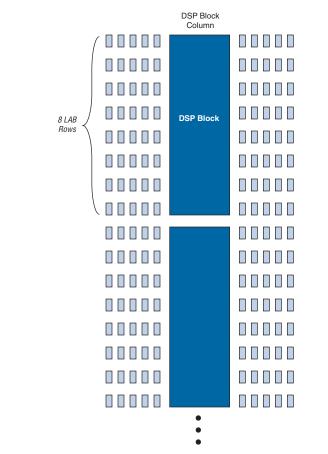



Figure 2–29. DSP Blocks Arranged in Columns

and/or output enable registers. A programmable delay exists to increase the  $t_{ZX}$  delay to the output pin, which is required for ZBT interfaces. Table 2–24 shows the programmable delays for Stratix devices.

| Table 2–24. Stratix Programmable Delay Chain |                                           |  |  |  |  |  |
|----------------------------------------------|-------------------------------------------|--|--|--|--|--|
| Programmable Delays                          | Quartus II Logic Option                   |  |  |  |  |  |
| Input pin to logic array delay               | Decrease input delay to internal cells    |  |  |  |  |  |
| Input pin to input register delay            | Decrease input delay to input register    |  |  |  |  |  |
| Output pin delay                             | Increase delay to output pin              |  |  |  |  |  |
| Output enable register t <sub>CO</sub> delay | Increase delay to output enable pin       |  |  |  |  |  |
| Output t <sub>ZX</sub> delay                 | Increase $t_{ZX}$ delay to output pin     |  |  |  |  |  |
| Output clock enable delay                    | Increase output clock enable delay        |  |  |  |  |  |
| Input clock enable delay                     | Increase input clock enable delay         |  |  |  |  |  |
| Logic array to output register delay         | Decrease input delay to output register   |  |  |  |  |  |
| Output enable clock enable delay             | Increase output enable clock enable delay |  |  |  |  |  |

The IOE registers in Stratix devices share the same source for clear or preset. You can program preset or clear for each individual IOE. You can also program the registers to power up high or low after configuration is complete. If programmed to power up low, an asynchronous clear can control the registers. If programmed to power up high, an asynchronous preset can control the registers. This feature prevents the inadvertent activation of another device's active-low input upon power-up. If one register in an IOE uses a preset or clear signal then all registers in the IOE must use that same signal if they require preset or clear. Additionally a synchronous reset signal is available for the IOE registers.

## Double-Data Rate I/O Pins

Stratix devices have six registers in the IOE, which support DDR interfacing by clocking data on both positive and negative clock edges. The IOEs in Stratix devices support DDR inputs, DDR outputs, and bidirectional DDR modes.

When using the IOE for DDR inputs, the two input registers clock double rate input data on alternating edges. An input latch is also used within the IOE for DDR input acquisition. The latch holds the data that is present during the clock high times. This allows both bits of data to be synchronous with the same clock edge (either rising or falling). Figure 2–65 shows an IOE configured for DDR input. Figure 2–66 shows the DDR input timing diagram.

Table 2–28 shows the possible settings for the I/O standards with drive strength control.

| Table 2–28. Programmable Drive Strength                                                                                                        |                                                   |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|--|--|--|--|--|--|
| I/O Standard                                                                                                                                   | $I_{OH}$ / $I_{OL}$ Current Strength Setting (mA) |  |  |  |  |  |  |
| 3.3-V LVTTL                                                                                                                                    | 24 (1), 16, 12, 8, 4                              |  |  |  |  |  |  |
| 3.3-V LVCMOS                                                                                                                                   | 24 (2), 12 (1), 8, 4, 2                           |  |  |  |  |  |  |
| 2.5-V LVTTL/LVCMOS                                                                                                                             | 16 (1), 12, 8, 2                                  |  |  |  |  |  |  |
| 1.8-V LVTTL/LVCMOS                                                                                                                             | 12 (1), 8, 2                                      |  |  |  |  |  |  |
| 1.5-V LVCMOS                                                                                                                                   | 8 (1), 4, 2                                       |  |  |  |  |  |  |
| GTL/GTL+<br>1.5-V HSTL Class I and II<br>1.8-V HSTL Class I and II<br>SSTL-3 Class I and II<br>SSTL-2 Class I and II<br>SSTL-18 Class I and II | Support max and min strength                      |  |  |  |  |  |  |

Notes to Table 2-28:

(1) This is the Quartus II software default current setting.

(2) I/O banks 1, 2, 5, and 6 do not support this setting.

Quartus II software version 4.2 and later will report current strength as "PCI Compliant" for 3.3-V PCI, 3.3-V PCI-X 1.0, and Compact PCI I/O standards.

Stratix devices support series on-chip termination (OCT) using programmable drive strength. For more information, contact your Altera Support Representative.

## **Open-Drain Output**

Stratix devices provide an optional open-drain (equivalent to an opencollector) output for each I/O pin. This open-drain output enables the device to provide system-level control signals (e.g., interrupt and writeenable signals) that can be asserted by any of several devices.

## **Slew-Rate Control**

The output buffer for each Stratix device I/O pin has a programmable output slew-rate control that can be configured for low-noise or highspeed performance. A faster slew rate provides high-speed transitions for high-performance systems. However, these fast transitions may introduce noise transients into the system. A slow slew rate reduces system noise, but adds a nominal delay to rising and falling edges. Each Table 2–37 shows the number of channels that each fast PLL can clock in EP1S10, EP1S20, and EP1S25 devices. Tables 2–38 through Table 2–41 show this information for EP1S30, EP1S40, EP1S60, and EP1S80 devices.

| Table 2- | 37. EP1S10, EP1S20 & I | EP1S25 Device   | Differential | Channels (      | Part 1 of        | <b>2)</b> Note ( | 1)    |       |  |  |
|----------|------------------------|-----------------|--------------|-----------------|------------------|------------------|-------|-------|--|--|
|          |                        | Transmitter/    | Total        | Maximum         | Center Fast PLLs |                  |       |       |  |  |
| Device   | Package                | Receiver        | Channels     | Speed<br>(Mbps) | PLL 1            | PLL 2            | PLL 3 | PLL 4 |  |  |
| EP1S10   | 484-pin FineLine BGA   | Transmitter (2) | 20           | 840 (4)         | 5                | 5                | 5     | 5     |  |  |
|          |                        |                 |              | 840 <i>(3)</i>  | 10               | 10               | 10    | 10    |  |  |
|          |                        | Receiver        | 20           | 840 (4)         | 5                | 5                | 5     | 5     |  |  |
|          |                        |                 |              | 840 <i>(3)</i>  | 10               | 10               | 10    | 10    |  |  |
|          | 672-pin FineLine BGA   | Transmitter (2) | 36           | 624 (4)         | 9                | 9                | 9     | 9     |  |  |
|          | 672-pin BGA            |                 |              | 624 <i>(3)</i>  | 18               | 18               | 18    | 18    |  |  |
|          |                        | Receiver        | 36           | 624 (4)         | 9                | 9                | 9     | 9     |  |  |
|          | 780-pin FineLine BGA   |                 |              | 624 <i>(3)</i>  | 18               | 18               | 18    | 18    |  |  |
|          |                        | Transmitter (2) | 44           | 840 (4)         | 11               | 11               | 11    | 11    |  |  |
|          |                        |                 |              | 840 <i>(3)</i>  | 22               | 22               | 22    | 22    |  |  |
|          |                        | Receiver        | 44           | 840 (4)         | 11               | 11               | 11    | 11    |  |  |
|          |                        |                 |              | 840 (3)         | 22               | 22               | 22    | 22    |  |  |
| EP1S20   | 484-pin FineLine BGA   | Transmitter (2) | 24           | 840 (4)         | 6                | 6                | 6     | 6     |  |  |
|          |                        |                 |              | 840 <i>(3)</i>  | 12               | 12               | 12    | 12    |  |  |
|          |                        | Receiver        | 20           | 840 (4)         | 5                | 5                | 5     | 5     |  |  |
|          |                        |                 |              | 840 <i>(3)</i>  | 10               | 10               | 10    | 10    |  |  |
|          | 672-pin FineLine BGA   | Transmitter (2) | 48           | 624 (4)         | 12               | 12               | 12    | 12    |  |  |
|          | 672-pin BGA            |                 |              | 624 <i>(3)</i>  | 24               | 24               | 24    | 24    |  |  |
|          |                        | Receiver        | 50           | 624 (4)         | 13               | 12               | 12    | 13    |  |  |
|          |                        |                 |              | 624 <i>(3)</i>  | 25               | 25               | 25    | 25    |  |  |
|          | 780-pin FineLine BGA   | Transmitter (2) | 66           | 840 (4)         | 17               | 16               | 16    | 17    |  |  |
|          |                        |                 |              | 840 <i>(3)</i>  | 33               | 33               | 33    | 33    |  |  |
|          |                        | Receiver        | 66           | 840 (4)         | 17               | 16               | 16    | 17    |  |  |
|          |                        |                 |              | 840 <i>(3)</i>  | 33               | 33               | 33    | 33    |  |  |

| Table 2-40.           | Table 2–40. EP1S60 Differential Channels (Part 2 of 2) Note (1) |                |                     |            |            |            |            |                           |            |            |        |
|-----------------------|-----------------------------------------------------------------|----------------|---------------------|------------|------------|------------|------------|---------------------------|------------|------------|--------|
|                       | Transmitter/                                                    | Total          | Maximum             | C          | enter F    | ast PLI    | _S         | Corner Fast PLLs (2), (3) |            |            |        |
| Package               | Receiver                                                        | Channels       | Speed<br>(Mbps)     | PLL1       | PLL2       | PLL3       | PLL4       | PLL7                      | PLL8       | PLL9       | PLL10  |
| 1,020-pin<br>FineLine | Transmitter (4)                                                 | 80 (12)<br>(7) | 840                 | 12<br>(2)  | 10<br>(4)  | 10<br>(4)  | 12<br>(2)  | 20                        | 20         | 20         | 20     |
| BGA                   |                                                                 |                | 840 <i>(5), (8)</i> | 22<br>(6)  | 22<br>(6)  | 22<br>(6)  | 22<br>(6)  | 20                        | 20         | 20         | 20     |
|                       | Receiver                                                        | 80 (10)<br>(7) | 840                 | 20         | 20         | 20         | 20         | 12<br>(8)                 | 10<br>(10) | 10<br>(10) | 12 (8) |
|                       |                                                                 |                | 840 <i>(5), (8)</i> | 40         | 40         | 40         | 40         | 12<br>(8)                 | 10<br>(10) | 10<br>(10) | 12 (8) |
| 1,508-pin<br>FineLine | Transmitter (4)                                                 | 80 (36)<br>(7) | 840                 | 12<br>(8)  | 10<br>(10) | 10<br>(10) | 12<br>(8)  | 20                        | 20         | 20         | 20     |
| BGA                   |                                                                 |                | 840 <i>(5),(8)</i>  | 22<br>(18) | 22<br>(18) | 22<br>(18) | 22<br>(18) | 20                        | 20         | 20         | 20     |
|                       | Receiver                                                        | 80 (36)<br>(7) | 840                 | 20         | 20         | 20         | 20         | 12<br>(8)                 | 10<br>(10) | 10<br>(10) | 12 (8) |
|                       |                                                                 |                | 840 <i>(5),(8)</i>  | 40         | 40         | 40         | 40         | 12<br>(8)                 | 10<br>(10) | 10<br>(10) | 12 (8) |

| Table 2–41. EP1S80 Differential Channels (Part 1 of 2) Note (1) |              |                |                 |           |           |           |           |           |           |           |         |
|-----------------------------------------------------------------|--------------|----------------|-----------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|---------|
|                                                                 | Transmitter/ | Total          | Maximum         | C         | enter F   | ast PLI   | .s        | Corr      | ner Fast  | t PLLs (2 | 2), (3) |
| Package                                                         | Receiver     | Channels       | Speed<br>(Mbps) | PLL1      | PLL2      | PLL3      | PLL4      | PLL7      | PLL8      | PLL9      | PLL10   |
| 956-pin                                                         | Transmitter  | 80 (40)        | 840             | 10        | 10        | 10        | 10        | 20        | 20        | 20        | 20      |
| BGA                                                             | (4)          | (7)            | 840 (5),(8)     | 20        | 20        | 20        | 20        | 20        | 20        | 20        | 20      |
|                                                                 | Receiver 8   | 80             | 840             | 20        | 20        | 20        | 20        | 10        | 10        | 10        | 10      |
|                                                                 |              |                | 840 (5),(8)     | 40        | 40        | 40        | 40        | 10        | 10        | 10        | 10      |
| 1,020-pin<br>FineLine<br>BGA                                    |              | 92 (12)<br>(7) | 840             | 10<br>(2) | 10<br>(4) | 10<br>(4) | 10<br>(2) | 20        | 20        | 20        | 20      |
|                                                                 |              |                | 840 (5),(8)     | 20<br>(6) | 20<br>(6) | 20<br>(6) | 20<br>(6) | 20        | 20        | 20        | 20      |
|                                                                 | Receiver     | 90 (10)<br>(7) | 840             | 20        | 20        | 20        | 20        | 10<br>(2) | 10<br>(3) | 10 (3)    | 10 (2)  |
|                                                                 |              |                | 840 (5),(8)     | 40        | 40        | 40        | 40        | 10<br>(2) | 10<br>(3) | 10 (3)    | 10 (2)  |

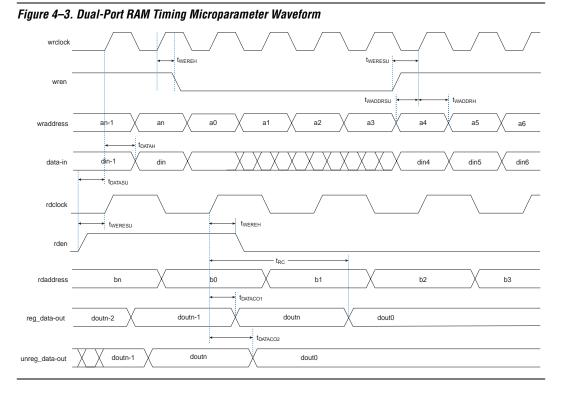



Figure 4–3 shows the TriMatrix memory waveforms for the M512, M4K, and M-RAM timing parameters shown in Tables 4–40 through 4–42.

Internal timing parameters are specified on a speed grade basis independent of device density. Tables 4–44 through 4–50 show the internal timing microparameters for LEs, IOEs, TriMatrix memory structures, DSP blocks, and MultiTrack interconnects.

| Table 4–43. Routing Delay Internal Timing Microparameter         Descriptions (Part 1 of 2) |                                                                                    |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Symbol                                                                                      | Parameter                                                                          |  |  |  |  |  |  |
| t <sub>R4</sub>                                                                             | Delay for an R4 line with average loading; covers a distance of four LAB columns.  |  |  |  |  |  |  |
| t <sub>R8</sub>                                                                             | Delay for an R8 line with average loading; covers a distance of eight LAB columns. |  |  |  |  |  |  |
| t <sub>R24</sub>                                                                            | Delay for an R24 line with average loading; covers a distance of 24 LAB columns.   |  |  |  |  |  |  |

ſ

| Table 4–63. EP1S20 External I/O Timing on Column Pins Using Global Clock Networks Note (1) |                |       |                |       |         |         |         |      |      |  |  |
|--------------------------------------------------------------------------------------------|----------------|-------|----------------|-------|---------|---------|---------|------|------|--|--|
| D                                                                                          | -5 Speed Grade |       | -6 Speed Grade |       | -7 Spee | d Grade | -8 Spee | 1114 |      |  |  |
| Parameter                                                                                  | Min            | Max   | Min            | Max   | Min     | Max     | Min     | Max  | Unit |  |  |
| t <sub>INSU</sub>                                                                          | 1.351          |       | 1.479          |       | 1.699   |         | NA      |      | ns   |  |  |
| t <sub>INH</sub>                                                                           | 0.000          |       | 0.000          |       | 0.000   |         | NA      |      | ns   |  |  |
| t <sub>outco</sub>                                                                         | 2.732          | 5.380 | 2.732          | 5.728 | 2.732   | 6.240   | NA      | NA   | ns   |  |  |
| t <sub>xz</sub>                                                                            | 2.672          | 5.254 | 2.672          | 5.596 | 2.672   | 6.116   | NA      | NA   | ns   |  |  |
| t <sub>zx</sub>                                                                            | 2.672          | 5.254 | 2.672          | 5.596 | 2.672   | 6.116   | NA      | NA   | ns   |  |  |
| t <sub>INSUPLL</sub>                                                                       | 0.923          |       | 0.971          |       | 1.098   |         | NA      |      | ns   |  |  |
| t <sub>INHPLL</sub>                                                                        | 0.000          |       | 0.000          |       | 0.000   |         | NA      |      | ns   |  |  |
| t <sub>OUTCOPLL</sub>                                                                      | 1.210          | 2.544 | 1.210          | 2.648 | 1.210   | 2.715   | NA      | NA   | ns   |  |  |
| t <sub>XZPLL</sub>                                                                         | 1.150          | 2.418 | 1.150          | 2.516 | 1.150   | 2.591   | NA      | NA   | ns   |  |  |
| t <sub>ZXPLL</sub>                                                                         | 1.150          | 2.418 | 1.150          | 2.516 | 1.150   | 2.591   | NA      | NA   | ns   |  |  |

| Table 4–64. EP1S20 External I/O Timing on Row Pins Using Fast Regional Clock Networks Note (1) |         |         |                |       |                |       |                |     |      |  |  |
|------------------------------------------------------------------------------------------------|---------|---------|----------------|-------|----------------|-------|----------------|-----|------|--|--|
| Demonstern                                                                                     | -5 Spee | d Grade | -6 Speed Grade |       | -7 Speed Grade |       | -8 Speed Grade |     | 11   |  |  |
| Parameter                                                                                      | Min     | Max     | Min            | Max   | Min            | Max   | Min            | Max | Unit |  |  |
| t <sub>INSU</sub>                                                                              | 2.032   |         | 2.207          |       | 2.535          |       | NA             |     | ns   |  |  |
| t <sub>INH</sub>                                                                               | 0.000   |         | 0.000          |       | 0.000          |       | NA             |     | ns   |  |  |
| t <sub>OUTCO</sub>                                                                             | 2.492   | 5.018   | 2.492          | 5.355 | 2.492          | 5.793 | NA             | NA  | ns   |  |  |
| t <sub>XZ</sub>                                                                                | 2.519   | 5.072   | 2.519          | 5.411 | 2.519          | 5.861 | NA             | NA  | ns   |  |  |
| t <sub>ZX</sub>                                                                                | 2.519   | 5.072   | 2.519          | 5.411 | 2.519          | 5.861 | NA             | NA  | ns   |  |  |

| Table 4–123. Stratix Maximum Output Clock Rate (Using I/O Pins) for PLL[1,         2, 3, 4] Pins in Wire-Bond Packages (Part 2 of 2) |          |          |          |      |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|------|--|--|--|--|
| I/O Standard                                                                                                                         | -6 Speed | -7 Speed | -8 Speed | Unit |  |  |  |  |

| I/O Standard                     | Grade | Grade | Grade | Unit |
|----------------------------------|-------|-------|-------|------|
| LVDS (2)                         | 400   | 311   | 311   | MHz  |
| HyperTransport<br>technology (2) | 420   | 400   | 400   | MHz  |

Notes to Tables 4–120 through 4–123:

- (1) Differential SSTL-2 outputs are only available on column clock pins.
- (2) These parameters are only available on row I/O pins.
- (3) SSTL-2 in maximum drive strength condition. See Table 4–101 on page 4–62 for more information on exact loading conditions for each I/O standard.
- (4) SSTL-2 in minimum drive strength with  $\leq 10$  pF output load condition.
- (5) SSTL-2 in minimum drive strength with > 10pF output load condition.
- (6) Differential SSTL-2 outputs are only supported on column clock pins.

| Querrahad         | Conditions                                                                   | -5 Speed Grade |     | -6 Speed Grade |      |     | -7 Speed Grade |      |     | -8 Speed Grade |      |     | 11   |      |
|-------------------|------------------------------------------------------------------------------|----------------|-----|----------------|------|-----|----------------|------|-----|----------------|------|-----|------|------|
| Symbol            | Symbol Conditions                                                            | Min            | Тур | Max            | Min  | Тур | Max            | Min  | Тур | Max            | Min  | Тур | Max  | Unit |
| t <sub>DUTY</sub> | LVDS ( $J = 2$<br>through 10)                                                | 47.5           | 50  | 52.5           | 47.5 | 50  | 52.5           | 47.5 | 50  | 52.5           | 47.5 | 50  | 52.5 | %    |
|                   | LVDS ( <i>J</i> = 1)<br>and LVPECL,<br>PCML,<br>HyperTransport<br>technology | 45             | 50  | 55             | 45   | 50  | 55             | 45   | 50  | 55             | 45   | 50  | 55   | %    |
| t <sub>LOCK</sub> | All                                                                          |                |     | 100            |      |     | 100            |      |     | 100            |      |     | 100  | μs   |

Notes to Table 4–125:

(1) When J = 4, 7, 8, and 10, the SERDES block is used.

(2) When J = 2 or J = 1, the SERDES is bypassed.

Global & Hierarchical Clocking 2-73 Global & Regional Clock Connections from Side Pins & Fast PLL Outputs 2-85 from Top Clock Pins & Enhanced PLL Outputs 2-86 Global Clock External I/O Timing Parameters 4-35 Global Clock Network 2–74 Global Clocking 2-75 Independent Clock Mode 2-44 Input/Output Clock Mode 2 - 46Simple Dual-Port Mode 2–48 True Dual-Port Mode 2-47 Maximum Input & Output Clock Rates 4–76 Maximum Input Clock Rate for CLK (0, 2, 9, 11) Pins in Flip-Chip Packages 4–77 Wire-Bond Packages 4-79 (1, 3, 8, 10) Pins in Flip-Chip Packages 4–78 Wire-Bond Packages 4-80 (7..4) & CLK(15..12) Pins in Flip-Chip Packages 4–76 Wire-Bond Packages 4–78 Maximum Output Clock Rate for PLL (1, 2, 3, 4) Pins in Flip-Chip Packages 4–83 Wire-Bond Packages 4-85 (5, 6, 11, 12) Pins in Flip-Chip

Packages 4-81 Wire-Bond Packages 4–84 Phase & Delay Shifting 2–96 Phase Delay 2-96 PLL Clock Networks 2-73 Read/Write Clock Mode 2 - 49in Simple Dual-Port Mode 2-50 Regional Clock 2–75 External I/O Timing Parameters 4–34 Regional Clock Bus 2–79 Regional Clock Network 2–75 Spread-Spectrum Clocking 2-98 Configuration 3–5 32-Bit IDCODE 3-3 and Testing 3-1 Data Sources for Configuration 3-7 Local Update Mode 3–12 Local Update Transition Diagram 3–12 Operating Modes 3-5 Partial Reconfiguration 3–7 Remote Update 3–8 Remote Update Transition Diagram 3–11 Schemes 3-7 SignalTap II Embedded Logic Analyzer 3–5 Stratix FPGAs with JRunner 3-7 Control Signals 2–104

## D

DC Switching Absolute Maximum Ratings 4–1 Bus Hold Parameters 4–16 Capacitance 4–17 DC & Switching Characteristics 4–1 External Timing Parameters 4–33 Operating Conditions 4–1 Performance 4–20 Power Consumption 4–17 Recommended Operating Conditions 4–1 DDR Double-Data Rate I/O Pins 2–111 Device Features EP1S10, EP1S20, EP1S25, EP1S30, 1–3 EP1S40, EP1S60, EP1S80, 1–3

Fast Regional Clock External I/O Timing Parameters 4-49 Global Clock External I/O Timing Parameters 4–50 Regional Clock External I/O Timing Parameters 4-50 EP1S60 Devices Column Pin Fast Regional Clock External I/O Timing Parameters 4–51 Global Clock External I/O Timing Parameters 4–52 Regional Clock External I/O Timing Parameters 4–51 M-RAM Interface Locations 2–38 Row Pin Fast Regional Clock External I/O Timing Parameters 4–52 Global Clock External I/O Timing Parameters 4-53 Regional Clock External I/O Timing Parameters 4–53 **EP1S80** Devices Column Pin Fast Regional Clock External I/O Timing Parameters 4–54 Global Clock External I/O Timing Parameters 4-55 Regional Clock External I/O Timing Parameters 4-54 Global Clock External I/O Timing Parameters 4–56 Row Pin Fast Regional Clock External I/O Timing Parameters 4-55 Regional Clock External I/O Timing Parameters 4–56

## Η

HSTL Class I Specifications 4–14, 4–15 Class II Specifications 4–14, 4–15 I

I/OStandards 1.5-V 4-14, 4-15 I/O Specifications 4-4 1.8-V I/O Specifications 4–4 2.5-V I/O Specifications 4-3 3.3-V 4-13 LVDS I/O Specifications 4-6 PCI Specifications 4–9 PCML Specifications 4-8 Advanced I/O Standard Support 2–122 Column I/O Block Connection to the Interconnect 2–107 Column Pin Input Delay Adders 4–66 Control Signal Selection per IOE 2–109 CTT I/O Specifications 4–16 Differential LVDS Input On-Chip Termination 2–128 External I/O Delay Parameters 4-66 GTL+ I/O Specifications 4–10 High-Speed Differential I/O Support 2-130 HyperTransport Technology Specifications 4–9 I/O Banks 2-125 I/O Structure 2-104 I/O Support by Bank 2–126 IOE Structure 2–105 LVCMOS Specifications 4–3 LVDS Performance on Fast PLL Input 2–103 LVPECL Specifications 4–8 LVTTL Specifications 4–3 MultiVolt I/O Interface 2–129 MultiVolt I/O Support 2-130 Output Delay Adders for Fast Slew Rate on Column Pins 4-68 Output Delay Adders for Fast Slew Rate on Row Pins 4-69 Output Delay Adders for Slow Slew Rate on Column Pins 4-70 Package Options & I/O Pin Counts 1–4 Receiver Input Waveforms for Differential