

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Active
Number of LABs/CLBs	5712
Number of Logic Elements/Cells	57120
Total RAM Bits	5215104
Number of I/O	683
Number of Gates	-
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	956-BBGA, FCBGA
Supplier Device Package	956-BGA (40x40)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=ep1s60b956i7

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Chapter	Date/Version	Changes Made
4		 Table 4–48 on page 4–30: added rows t_{M512CLKSENSU} and t_{M512CLKENH}, and updated symbol names. Updated power-up current (ICCINT) required to power a Stratix device on page 4–17. Updated Table 4–37 on page 4–22 through Table 4–43 on page 4–27. Table 4–49 on page 4–31: added rows t_{M4KCLKENSU}, t_{M4KCLKENH}, t_{M4KBESU}, and t_{M4KBEH} deleted rows t_{M4KRADDRASU} and t_{M4KRADDRH}, and updated symbol names. Table 4–50 on page 4–31: added rows t_{M4RADDRASU} and t_{M4KRADDRH}, and updated symbol names. Table 4–50 on page 4–34: updated table, deleted "Conditions" column, and added rows t_{X2} and t_{2X}. Table 4–52 on page 4–34: updated table, deleted "Conditions" column, and added rows t_{X2} and t_{2X}. Table 4–52 on page 4–34: updated table, deleted "Conditions" column, and added rows t_{X2} and t_{2X}. Table 4–53 on page 4–34: updated table and added rows t_{XZPLL} and t_{ZXPLL}. Updated Note 2 in Table 4–53 on page 4–35. Deleted Note 2 in Table 4–55 on page 4–36. Deleted Note 2 from Table 4–55 on page 4–36 through Table 4–66 on page 4–56. Added rows t_{XZ}, T_{XX}, T_{XZPLL}, and T_{ZXPLL}. Updated Table 4–55 on page 4–36 through Table 4–66 on page 4–56. Added rows t_{XZ}, T_{XX}, T_{XZPLL}, and T_{ZXPLL}. Added Note 4 to Table 4–57 on page 4–36 through Table 4–84 on page 4–50. Added note 2 from Table 4–67 on page 4–42 through Table 4–84 on page 4–50. Added note 2 from Table 4–67 on page 4–42 through Table 4–84 on page 4–50. Added note 4 to Table 4–101 on page 4–62. Table 4–102 on page 4–64: updated table and added Note 4. Updated Table 4–103 on page 4–64. Updated Table 4–103 on page 4–66 through Table 4–110 on page 4–50. Added Note 4 to Table 4–109 on page 4–66. Added Note 4 to Table 4–109 on page 4–66 through Table 4–110 on page 4–74. Updated Table 4–103 on page 4–66 through Table 4–110 on page 4–74. Updated Table

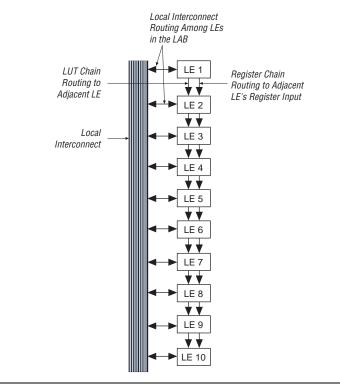
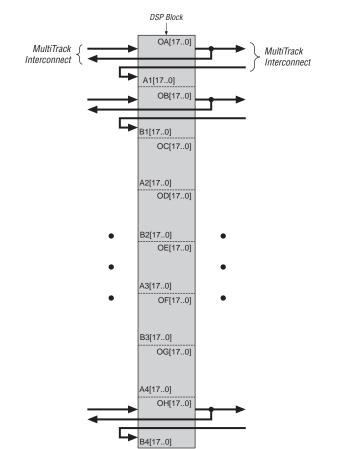


Figure 2–10. LUT Chain & Register Chain Interconnects

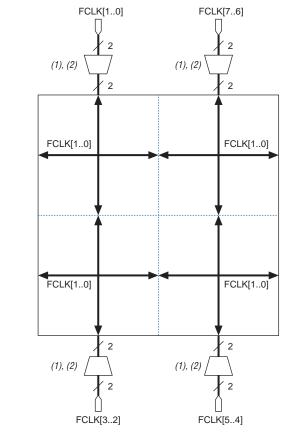
The C4 interconnects span four LABs, M512, or M4K blocks up or down from a source LAB. Every LAB has its own set of C4 interconnects to drive either up or down. Figure 2–11 shows the C4 interconnect connections from an LAB in a column. The C4 interconnects can drive and be driven by all types of architecture blocks, including DSP blocks, TriMatrix memory blocks, and vertical IOEs. For LAB interconnection, a primary LAB or its LAB neighbor can drive a given C4 interconnect. C4 interconnects can drive each other to extend their range as well as drive row interconnects for column-to-column connections.

able 2–11. M-RAM Combined Byte Selection for ×144 Mode Notes (1), (2)	
byteena[150]	datain ×144
[0] = 1	[80]
[1] = 1	[179]
[2] = 1	[2618]
[3] = 1	[3527]
[4] = 1	[4436]
[5] = 1	[5345]
[6] = 1	[6254]
[7] = 1	[7163]
[8] = 1	[8072]
[9] = 1	[8981]
[10] = 1	[9890]
[11] = 1	[10799]
[12] = 1	[116108]
[13] = 1	[125117]
[14] = 1	[134126]
[15] = 1	[143135]

Notes to Tables 2–10 and 2–11:


(1) Any combination of byte enables is possible.

(2) Byte enables can be used in the same manner with 8-bit words, i.e., in $\times 16$, $\times 32$, $\times 64$, and $\times 128$ modes.


Similar to all RAM blocks, M-RAM blocks can have different clocks on their inputs and outputs. All input registers—renwe, datain, address, and byte enable registers—are clocked together from either of the two clocks feeding the block. The output register can be bypassed. The eight labclk signals or local interconnect can drive the control signals for the A and B ports of the M-RAM block. LEs can also control the clock_a, clock_b, renwe_a, renwe_b, clr_a, clr_b, clocken_a, and clocken_b signals as shown in Figure 2–19.

blocks facing to the left, and another 10 possible from the right adjacent LABs for M-RAM blocks facing to the right. For column interfacing, every M-RAM column unit connects to the right and left column lines, allowing each M-RAM column unit to communicate directly with three columns of LABs. Figures 2–21 through 2–23 show the interface between the M-RAM block and the logic array.

The DSP block is divided into eight block units that interface with eight LAB rows on the left and right. Each block unit can be considered half of an 18×18 -bit multiplier sub-block with 18 inputs and 18 outputs. A local interconnect region is associated with each DSP block. Like an LAB, this interconnect region can be fed with 10 direct link interconnects from the LAB to the left or right of the DSP block in the same row. All row and column routing resources can access the DSP block's local interconnect region. The outputs also work similarly to LAB outputs as well. Nine outputs from the DSP block can drive to the left LAB through direct link interconnects and nine can drive to the right LAB through direct link interconnects. All 18 outputs can drive to all types of row and column routing. Outputs can drive right- or left-column routing. Figures 2–40 and 2–41 show the DSP block interfaces to LAB rows.

Figure 2–40. DSP Block Interconnect Interface

Figure 2–44. EP1S25, EP1S20 & EP1S10 Device Fast Clock Pin Connections to Fast Regional Clocks

Notes to Figure 2–44:

- (1) This is a set of two multiplexers.
- (2) In addition to the FCLK pin inputs, there is also an input from the I/O interconnect.

Any of the four external output counters can drive the single-ended or differential clock outputs for PLLs 5 and 6. This means one counter or frequency can drive all output pins available from PLL 5 or PLL 6. Each pair of output pins (four pins total) has dedicated VCC and GND pins to reduce the output clock's overall jitter by providing improved isolation from switching I/O pins.

For PLLs 5 and 6, each pin of a single-ended output pair can either be in phase or 180° out of phase. The clock output pin pairs support the same I/O standards as standard output pins (in the top and bottom banks) as well as LVDS, LVPECL, 3.3-V PCML, HyperTransport technology, differential HSTL, and differential SSTL. Table 2–20 shows which I/O standards the enhanced PLL clock pins support. When in single-ended or differential mode, the two outputs operate off the same power supply. Both outputs use the same standards in single-ended mode to maintain performance. You can also use the external clock output pins as user output pins if external enhanced PLL clocking is not needed.

Table 2–20. I/O Standards Supported for Enhanced PLL Pins (Part 1 of 2)					
	Input			Output	
I/O Standard	INCLK	FBIN	PLLENABLE	EXTCLK	
LVTTL	~	\checkmark	\checkmark	\checkmark	
LVCMOS	~	\checkmark	~	\checkmark	
2.5 V	~	\checkmark		\checkmark	
1.8 V	~	\checkmark		\checkmark	
1.5 V	~	\checkmark		\checkmark	
3.3-V PCI	~	\checkmark		\checkmark	
3.3-V PCI-X 1.0	~	\checkmark		\checkmark	
LVPECL	~	\checkmark		\checkmark	
3.3-V PCML	~	\checkmark		\checkmark	
LVDS	~	\checkmark		\checkmark	
HyperTransport technology	 	\checkmark		\checkmark	
Differential HSTL	~			\checkmark	
Differential SSTL				\checkmark	
3.3-V GTL	 	\checkmark		\checkmark	
3.3-V GTL+	 	\checkmark		\checkmark	
1.5-V HSTL Class I	 	\checkmark		\checkmark	

Table 2–22. Fast PLL Port I/O Standards (Part 2 of 2)			
I/O Standard	Input		
	INCLK	PLLENABLE	
SSTL-2 Class II	\checkmark		
SSTL-3 Class I	~		
SSTL-3 Class II	\checkmark		
AGP (1 \times and 2 \times)			
СТТ	~		

Table 2–23 shows the performance on each of the fast PLL clock inputs when using LVDS, LVPECL, 3.3-V PCML, or HyperTransport technology.

Table 2–23. LVDS Performance on Fast PLL Input		
Fast PLL Clock Input Maximum Input Frequency (MHz)		
CLK0, CLK2, CLK9, CLK11, FPLL7CLK, FPLL8CLK, FPLL9CLK, FPLL10CLK	717(1)	
CLK1, CLK3, CLK8, CLK10	645	

Note to Table 2–23:

(1) See the chapter *DC* & *Switching Characteristics* of the *Stratix Device Handbook*, *Volume 1* for more information.

External Clock Outputs

Each fast PLL supports differential or single-ended outputs for sourcesynchronous transmitters or for general-purpose external clocks. There are no dedicated external clock output pins. Any I/O pin can be driven by the fast PLL global or regional outputs as an external output pin. The I/O standards supported by any particular bank determines what standards are possible for an external clock output driven by the fast PLL in that bank.

Phase Shifting

Stratix device fast PLLs have advanced clock shift capability that enables programmable phase shifts. You can enter a phase shift (in degrees or time units) for each PLL clock output port or for all outputs together in one shift. You can perform phase shifting in time units with a resolution range of 125 to 416.66 ps. This resolution is a function of the VCO period, with the finest step being equal to an eighth (×0.125) of the VCO period.

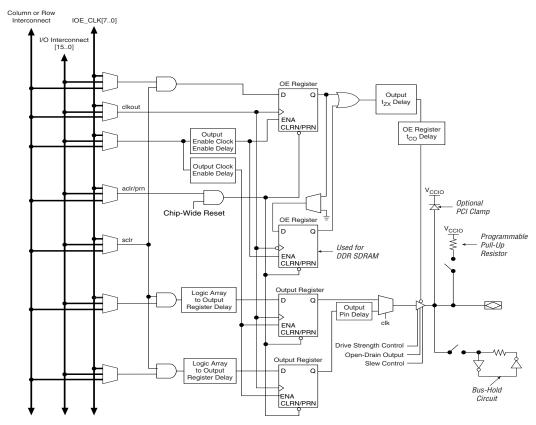


Figure 2–67. Stratix IOE in DDR Output I/O Configuration Notes (1), (2)

Notes to Figure 2–67:

- (1) All input signals to the IOE can be inverted at the IOE.
- (2) The tristate is by default active high. It can, however, be designed to be active low.

Table 2–26. External RAM Support in EP1S60 & EP1S80 Devices				
	I/O Standard	Maximum Clock Rate (MHz)		
DDR Memory Type		-5 Speed Grade	-6 Speed Grade	-7 Speed Grade
DDR SDRAM (1), (2)	SSTL-2	167	167	133
DDR SDRAM - side banks (2), (3)	SSTL-2	150	133	133
QDR SRAM (4)	1.5-V HSTL	133	133	133
QDRII SRAM (4)	1.5-V HSTL	167	167	133
ZBT SRAM (5)	LVTTL	200	200	167

Table 2–26. External RAM Support in EP1S60 & EP1S80 Devices

Notes to Table 2–26:

 These maximum clock rates apply if the Stratix device uses DQS phase-shift circuitry to interface with DDR SDRAM. DQS phase-shift circuitry is only available in the top and bottom I/O banks (I/O banks 3, 4, 7, and 8).

(2) For more information on DDR SDRAM, see AN 342: Interfacing DDR SDRAM with Stratix & Stratix GX Devices.

(3) DDR SDRAM is supported on the Stratix device side I/O banks (I/O banks 1, 2, 5, and 6) without dedicated DQS phase-shift circuitry. The read DQS signal is ignored in this mode. Numbers are preliminary.

(4) For more information on QDR or QDRII SRAM, see AN 349: QDR SRAM Controller Reference Design for Stratix & Stratix GX Devices.

(5) For more information on ZBT SRAM, see AN 329: ZBT SRAM Controller Reference Design for Stratix & Stratix GX Devices.

In addition to six I/O registers and one input latch in the IOE for interfacing to these high-speed memory interfaces, Stratix devices also have dedicated circuitry for interfacing with DDR SDRAM. In every Stratix device, the I/O banks at the top (I/O banks 3 and 4) and bottom (I/O banks 7 and 8) of the device support DDR SDRAM up to 200 MHz. These pins support DQS signals with DQ bus modes of ×8, ×16, or ×32.

Table 2–27 shows the number of DQ and DQS buses that are supported per device.

Table 2–27. DQS & DQ Bus Mode Support (Part 1 of 2) Note (1)				
Device	Package	Number of ×8 Groups	Number of ×16 Groups	Number of ×32 Groups
EP1S10	672-pin BGA 672-pin FineLine BGA	12 (2)	0	0
	484-pin FineLine BGA 780-pin FineLine BGA	16 <i>(3)</i>	0	4
EP1S20	484-pin FineLine BGA	18(4)	7 (5)	4
	672-pin BGA 672-pin FineLine BGA	16 <i>(3)</i>	7 (5)	4
	780-pin FineLine BGA	20	7 (5)	4

Table 2–27. DQS & DQ Bus Mode Support (Part 2 of 2) Note (1)				
Device	Package	Number of ×8 Groups	Number of ×16 Groups	Number of ×32 Groups
EP1S25	672-pin BGA 672-pin FineLine BGA	16 <i>(3)</i>	8	4
	780-pin FineLine BGA 1,020-pin FineLine BGA	20	8	4
EP1S30	956-pin BGA 780-pin FineLine BGA 1,020-pin FineLine BGA	20	8	4
EP1S40	956-pin BGA 1,020-pin FineLine BGA 1,508-pin FineLine BGA	20	8	4
EP1S60	956-pin BGA 1,020-pin FineLine BGA 1,508-pin FineLine BGA	20	8	4
EP1S80	956-pin BGA 1,508-pin FineLine BGA 1,923-pin FineLine BGA	20	8	4

Notes to Table 2–27:

 See the Selectable I/O Standards in Stratix & Stratix GX Devices chapter in the Stratix Device Handbook, Volume 2 for V_{REF} guidelines.

(2) These packages have six groups in I/O banks 3 and 4 and six groups in I/O banks 7 and 8.

(3) These packages have eight groups in I/O banks 3 and 4 and eight groups in I/O banks 7 and 8.

(4) This package has nine groups in I/O banks 3 and 4 and nine groups in I/O banks 7 and 8.

(5) These packages have three groups in I/O banks 3 and 4 and four groups in I/O banks 7 and 8.

A compensated delay element on each DQS pin automatically aligns input DQS synchronization signals with the data window of their corresponding DQ data signals. The DQS signals drive a local DQS bus in the top and bottom I/O banks. This DQS bus is an additional resource to the I/O clocks and is used to clock DQ input registers with the DQS signal.

Two separate single phase-shifting reference circuits are located on the top and bottom of the Stratix device. Each circuit is driven by a system reference clock through the CLK pins that is the same frequency as the DQS signal. Clock pins CLK [15..12] p feed the phase-shift circuitry on the top of the device and clock pins CLK [7..4] p feed the phase-shift circuitry on the bottom of the device. The phase-shifting reference circuit on the top of the device controls the compensated delay elements for all 10 DQS pins located at the top of the device. The phase-shifting reference circuit on the bottom of the device controls the compensated delay elements for all 10 DQS pins located on the bottom of the device. All 10 delay elements (DQS signals) on either the top or bottom of the device.

I/O pin has an individual slew-rate control, allowing you to specify the slew rate on a pin-by-pin basis. The slew-rate control affects both the rising and falling edges.

Bus Hold

Each Stratix device I/O pin provides an optional bus-hold feature. The bus-hold circuitry can weakly hold the signal on an I/O pin at its last-driven state. Since the bus-hold feature holds the last-driven state of the pin until the next input signal is present, an external pull-up or pull-down resistor is not needed to hold a signal level when the bus is tri-stated.

Table 2–29 shows bus hold support for different pin types.

Table 2–29. Bus Hold Support	
Pin Type	Bus Hold
I/O pins	\checkmark
CLK[150]	
CLK[0,1,2,3,8,9,10,11]	
FCLK	\checkmark
FPLL[710]CLK	

The bus-hold circuitry also pulls undriven pins away from the input threshold voltage where noise can cause unintended high-frequency switching. You can select this feature individually for each I/O pin. The bus-hold output drives no higher than $V_{\rm CCIO}$ to prevent overdriving signals. If the bus-hold feature is enabled, the programmable pull-up option cannot be used. Disable the bus-hold feature when using opendrain outputs with the GTL+ I/O standard or when the I/O pin has been configured for differential signals.

The bus-hold circuitry uses a resistor with a nominal resistance (R_{BH}) of approximately 7 k Ω to weakly pull the signal level to the last-driven state. See the *DC* & *Switching Characteristics* chapter of the *Stratix Device Handbook, Volume 1* for the specific sustaining current driven through this resistor and overdrive current used to identify the next-driven input level. This information is provided for each V_{CCIO} voltage level.

The bus-hold circuitry is active only after configuration. When going into user mode, the bus-hold circuit captures the value on the pin present at the end of configuration.

Symbol	Parameter
t _{SU}	Input, pipeline, and output register setup time before clock
t _H	Input, pipeline, and output register hold time after clock
t _{co}	Input, pipeline, and output register clock-to-output delay
t _{INREG2PIPE9}	Input Register to DSP Block pipeline register in 9×9 -bit mode
t _{INREG2PIPE18}	Input Register to DSP Block pipeline register in 18×18 -bit mode
t _{PIPE2OUTREG2ADD}	DSP Block Pipeline Register to output register delay in Two- Multipliers Adder mode
t _{PIPE2OUTREG4ADD}	DSP Block Pipeline Register to output register delay in Four- Multipliers Adder mode
t _{PD9}	Combinatorial input to output delay for 9×9
t _{PD18}	Combinatorial input to output delay for 18×18
t _{PD36}	Combinatorial input to output delay for 36×36
t _{CLR}	Minimum clear pulse width
t _{CLKHL}	Register minimum clock high or low time. This is a limit on the min time for the clock on the registers in these blocks. The actual performance is dependent upon the internal point-to-point delays in the blocks and may give slower performance as shown in Table 4–36 on page 4–20 and as reported by the timing analyzer in the Quartus II software.

Altera Corporation January 2006

Table 4–43. Routing Delay Internal Timing Microparameter Descriptions (Part 2 of 2)

Symbol	Parameter
t _{C4}	Delay for a C4 line with average loading; covers a distance of four LAB rows.
t _{C8}	Delay for a C8 line with average loading; covers a distance of eight LAB rows.
t _{C16}	Delay for a C16 line with average loading; covers a distance of 16 LAB rows.
t _{LOCAL}	Local interconnect delay, for connections within a LAB, and for the final routing hop of connections to LABs, DSP blocks, RAM blocks and I/Os.

Parameter	-	5	-	6	-	7		8	Unit
	Min	Max	Min	Max	Min	Max	Min	Max	
t _{SU}	10		10		11		13		ps
t _H	100		100		114		135		ps
t _{co}		156		176		202		238	ps
t _{LUT}		366		459		527		621	ps
t _{CLR}	100		100		114		135		ps
t _{PRE}	100		100		114		135		ps
t _{CLKHL}	1000		1111		1190		1400		ps

Table 4–45. IOE Internal TSU Microparameter by Device Density (Part 1 of 2)										
Device		-	-5		-6		-7		-8	
	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	
EP1S10	t _{SU_R}	76		80		80		80		ps
	t _{SU_C}	176		80		80		80		ps
EP1S20	t _{SU_R}	76		80		80		80		ps
	t _{SU_C}	76		80		80		80		ps
EP1S25	t _{SU_R}	276		280		280		280		ps
	t _{su_c}	276		280		280		280		ps
EP1S30	t _{SU_R}	76		80		80		80		ps
	t _{SU_C}	176		180		180		180		ps

Table 4–53. Stratix Regional Clock External I/O Timing Parameters (Part 2 of 2) Notes (1), (2)

Symbol Parameter							
t _{XZPLL}	Synchronous IOE output enable register to output pin disable delay using regional clock fed by Enhanced PLL with default phase setting						
t _{ZXPLL}	Synchronous IOE output enable register to output pin enable delay using regional clock fed by Enhanced PLL with default phase setting						

Notes to Table 4–53:

- (1) These timing parameters are sample-tested only.
- (2) These timing parameters are for column and row IOE pins. You should use the Quartus II software to verify the external timing for any pin.

Table 4–54 shows the external I/O timing parameters when using global clock networks.

Table 4-3 (2)	54. Stratix Global Clock External I/O Timing Parameters Notes (1),
Symbol	Parameter
t _{INSU}	Setup time for input or bidirectional pin using IOE input register with global clock fed by ${\tt CLK}\xspace$ pin
t _{INH}	Hold time for input or bidirectional pin using IOE input register with global clock fed by CLK pin
t _{outco}	Clock-to-output delay output or bidirectional pin using IOE output register with global clock fed by CLK pin
t _{INSUPLL}	Setup time for input or bidirectional pin using IOE input register with global clock fed by Enhanced PLL with default phase setting
t _{INHPLL}	Hold time for input or bidirectional pin using IOE input register with global clock fed by Enhanced PLL with default phase setting
t _{OUTCOPLL}	Clock-to-output delay output or bidirectional pin using IOE output register with global clock Enhanced PLL with default phase setting
t _{XZPLL}	Synchronous IOE output enable register to output pin disable delay using global clock fed by Enhanced PLL with default phase setting
t _{ZXPLL}	Synchronous IOE output enable register to output pin enable delay using global clock fed by Enhanced PLL with default phase setting

Notes to Table 4–54:

- (1) These timing parameters are sample-tested only.
- (2) These timing parameters are for column and row IOE pins. You should use the Quartus II software to verify the external timing for any pin.

Table 4–59. l	Table 4–59. EP1S10 External I/O Timing on Row Pins Using Regional Clock Networks Note (1)										
Parameter	-5 Spee	d Grade	-6 Spee	-6 Speed Grade		-7 Speed Grade		-8 Speed Grade			
	Min	Max	Min	Max	Min	Max	Min	Max	Unit		
t _{INSU}	2.161		2.336		2.685		NA		ns		
t _{INH}	0.000		0.000		0.000		NA		ns		
t _{outco}	2.434	4.889	2.434	5.226	2.434	5.643	NA	NA	ns		
t _{XZ}	2.461	4.493	2.461	5.282	2.461	5.711	NA	NA	ns		
t _{zx}	2.461	4.493	2.461	5.282	2.461	5.711	NA	NA	ns		
t _{INSUPLL}	1.057		1.172		1.315		NA		ns		
t _{INHPLL}	0.000		0.000		0.000		NA		ns		
t _{OUTCOPLL}	1.327	2.773	1.327	2.848	1.327	2.940	NA	NA	ns		
t _{XZPLL}	1.354	2.827	1.354	2.904	1.354	3.008	NA	NA	ns		
t _{ZXPLL}	1.354	2.827	1.354	2.904	1.354	3.008	NA	NA	ns		

Table 4–60. I	Table 4–60. EP1S10 External I/O Timing on Row Pins Using Global Clock Networks Note (1)										
Parameter	-5 Spee	d Grade	-6 Spee	-6 Speed Grade		d Grade	-8 Spee	ed Grade	Unit		
	Min	Max	Min	Max	Min	Max	Min	Max	Unit		
t _{INSU}	1.787		1.944		2.232		NA		ns		
t _{INH}	0.000		0.000		0.000		NA		ns		
t _{OUTCO}	2.647	5.263	2.647	5.618	2.647	6.069	NA	NA	ns		
t _{xz}	2.674	5.317	2.674	5.674	2.674	6.164	NA	NA	ns		
t _{ZX}	2.674	5.317	2.674	5.674	2.674	6.164	NA	NA	ns		
t _{INSUPLL}	1.371		1.1472		1.654		NA		ns		
t _{INHPLL}	0.000		0.000		0.000		NA		ns		
t _{OUTCOPLL}	1.144	2.459	1.144	2.548	1.144	2.601	NA	NA	ns		
t _{XZPLL}	1.171	2.513	1.171	2.604	1.171	2.669	NA	NA	ns		
t ^{ZXPLL}	1.171	2.513	1.171	2.604	1.171	2.669	NA	NA	ns		

Note to Tables 4–55 *to* 4–60:

(1) Only EP1S25, EP1S30, and EP1S40 have speed grade of -8.

Table 4–65. l	Table 4–65. EP1S20 External I/O Timing on Row Pins Using Regional Clock Networks Note (1)										
Parameter	-5 Spee	d Grade	-6 Spee	d Grade	-7 Spee	d Grade	-8 Spee	d Grade	Unit		
	Min	Max	Min	Max	Min	Max	Min	Max	Unit		
t _{INSU}	1.815		1.967		2.258		NA		ns		
t _{INH}	0.000		0.000		0.000		NA		ns		
t _{outco}	2.633	5.235	2.663	5.595	2.663	6.070	NA	NA	ns		
t _{xz}	2.660	5.289	2.660	5.651	2.660	6.138	NA	NA	ns		
t _{ZX}	2.660	5.289	2.660	5.651	2.660	6.138	NA	NA	ns		
t _{INSUPLL}	1.060		1.112		1.277		NA		ns		
t _{INHPLL}	0.000		0.000		0.000		NA		ns		
t _{OUTCOPLL}	1.325	2.770	1.325	2.908	1.325	2.978	NA	NA	ns		
t _{XZPLL}	1.352	2.824	1.352	2.964	1.352	3.046	NA	NA	ns		
t _{ZXPLL}	1.352	2.824	1.352	2.964	1.352	3.046	NA	NA	ns		

Table 4–66. I	Table 4–66. EP1S20 External I/O Timing on Row Pins Using Global Clock Networks Note (1)										
Parameter	-5 Spee	d Grade	-6 Spee	-6 Speed Grade		d Grade	-8 Spee	ed Grade	Unit		
	Min	Max	Min	Max	Min	Max	Min	Max	Unit		
t _{INSU}	1.742		1.887		2.170		NA		ns		
t _{INH}	0.000		0.000		0.000		NA		ns		
t _{outco}	2.674	5.308	2.674	5.675	2.674	6.158	NA	NA	ns		
t _{XZ}	2.701	5.362	2.701	5.731	2.701	6.226	NA	NA	ns		
t _{zx}	2.701	5.362	2.701	5.731	2.701	6.226	NA	NA	ns		
t _{INSUPLL}	1.353		1.418		1.613		NA		ns		
t _{INHPLL}	0.000		0.000		0.000		NA		ns		
t _{OUTCOPLL}	1.158	2.447	1.158	2.602	1.158	2.642	NA	NA	ns		
t _{XZPLL}	1.185	2.531	1.158	2.602	1.185	2.710	NA	NA	ns		
t _{ZXPLL}	1.185	2.531	1.158	2.602	1.185	2.710	NA	NA	ns		

Note to Tables 4–61 *to* 4–66:

(1) Only EP1S25, EP1S30, and EP1S40 have a speed grade of -8.

Table 4–83. I	Table 4–83. EP1S40 External I/O Timing on Row Pins Using Regional Clock Networks										
Parameter	-5 Spee	d Grade	-6 Spee	-6 Speed Grade		-7 Speed Grade		-8 Speed Grade			
	Min	Max	Min	Max	Min	Max	Min	Max	Unit		
t _{INSU}	2.349		2.526		2.898		2.952		ns		
t _{INH}	0.000		0.000		0.000		0.000		ns		
t _{outco}	2.725	5.381	2.725	5.784	2.725	6.290	2.725	7.426	ns		
t _{XZ}	2.752	5.435	2.752	5.840	2.752	6.358	2.936	7.508	ns		
t _{ZX}	2.752	5.435	2.752	5.840	2.752	6.358	2.936	7.508	ns		
t _{INSUPLL}	1.328		1.322		1.605		1.883		ns		
t _{INHPLL}	0.000		0.000		0.000		0.000		ns		
t _{OUTCOPLL}	1.169	2.502	1.169	2.698	1.169	2.650	1.169	2.691	ns		
t _{XZPLL}	1.196	2.556	1.196	2.754	1.196	2.718	1.196	2.773	ns		
t _{ZXPLL}	1.196	2.556	1.196	2.754	1.196	2.718	1.196	2.773	ns		

Table 4–84. l	Table 4–84. EP1S40 External I/O Timing on Row Pins Using Global Clock Networks										
Parameter	-5 Spee	d Grade	-6 Spee	-6 Speed Grade		-7 Speed Grade		-8 Speed Grade			
	Min	Max	Min	Max	Min	Max	Min	Max	Unit		
t _{INSU}	2.020		2.171		2.491		2.898		ns		
t _{INH}	0.000		0.000		0.000		0.000		ns		
t _{оитсо}	2.912	5.710	2.912	6.139	2.912	6.697	2.931	7.480	ns		
t _{xz}	2.939	5.764	2.939	6.195	2.939	6.765	2.958	7.562	ns		
t _{ZX}	2.939	5.764	2.939	6.195	2.939	6.765	2.958	7.562	ns		
t _{INSUPLL}	1.370		1.368		1.654		1.881		ns		
t _{INHPLL}	0.000		0.000		0.000		0.000		ns		
t _{OUTCOPLL}	1.144	2.460	1.144	2.652	1.144	2.601	1.170	2.693	ns		
t _{XZPLL}	1.171	2.514	1.171	2.708	1.171	2.669	1.197	2.775	ns		
t _{ZXPLL}	1.171	2.514	1.171	2.708	1.171	2.669	1.197	2.775	ns		

Table 4–123. Stratix Ma 2, 3, 4] Pins in Wire-Bo	•			0 Pins) for PLL[1,					
I/O Standard -6 Speed -7 Speed -8 Speed									

I/O Standard	Grade	Grade	Grade	Unit
LVDS (2)	400	311	311	MHz
HyperTransport technology (2)	420	400	400	MHz

Notes to Tables 4–120 through 4–123:

- (1) Differential SSTL-2 outputs are only available on column clock pins.
- (2) These parameters are only available on row I/O pins.
- (3) SSTL-2 in maximum drive strength condition. See Table 4–101 on page 4–62 for more information on exact loading conditions for each I/O standard.
- (4) SSTL-2 in minimum drive strength with ≤ 10 pF output load condition.
- (5) SSTL-2 in minimum drive strength with > 10pF output load condition.
- (6) Differential SSTL-2 outputs are only supported on column clock pins.

Symbol	Conditions	-5 Speed Grade			-6 Speed Grade			-7 Speed Grade			-8 Speed Grade			Unit
		Min	Тур	Max	Unit									
t _{DUTY}	LVDS ($J = 2$ through 10)	47.5	50	52.5	47.5	50	52.5	47.5	50	52.5	47.5	50	52.5	%
	LVDS (<i>J</i> = 1) and LVPECL, PCML, HyperTransport technology	45	50	55	45	50	55	45	50	55	45	50	55	%
t _{LOCK}	All			100			100			100			100	μs

Notes to Table 4–125:

(1) When J = 4, 7, 8, and 10, the SERDES block is used.

(2) When J = 2 or J = 1, the SERDES is bypassed.