E·XFL

Altera - EP1S60F1508C6N Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	-
Number of I/O	-
Number of Gates	-
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	1508-BBGA, FCBGA
Supplier Device Package	1508-FBGA (30x30)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=ep1s60f1508c6n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 2–10. LUT Chain & Register Chain Interconnects

The C4 interconnects span four LABs, M512, or M4K blocks up or down from a source LAB. Every LAB has its own set of C4 interconnects to drive either up or down. Figure 2–11 shows the C4 interconnect connections from an LAB in a column. The C4 interconnects can drive and be driven by all types of architecture blocks, including DSP blocks, TriMatrix memory blocks, and vertical IOEs. For LAB interconnection, a primary LAB or its LAB neighbor can drive a given C4 interconnect. C4 interconnects can drive each other to extend their range as well as drive row interconnects for column-to-column connections. In addition to true dual-port memory, the memory blocks support simple dual-port and single-port RAM. Simple dual-port memory supports a simultaneous read and write and can either read old data before the write occurs or just read the don't care bits. Single-port memory supports non-simultaneous reads and writes, but the q [] port will output the data once it has been written to the memory (if the outputs are not registered) or after the next rising edge of the clock (if the outputs are registered). For more information, see Chapter 2, TriMatrix Embedded Memory Blocks in Stratix & Stratix GX Devices of the *Stratix Device Handbook, Volume 2*. Figure 2–13 shows these different RAM memory port configurations for TriMatrix memory.

Simple Dual-Port Memory

Note to Figure 2–13:

 Two single-port memory blocks can be implemented in a single M4K block as long as each of the two independent block sizes is equal to or less than half of the M4K block size.

The memory blocks also enable mixed-width data ports for reading and writing to the RAM ports in dual-port RAM configuration. For example, the memory block can be written in ×1 mode at port A and read out in ×16 mode from port B.

Shift Register Support

You can configure embedded memory blocks to implement shift registers for DSP applications such as pseudo-random number generators, multichannel filtering, auto-correlation, and cross-correlation functions. These and other DSP applications require local data storage, traditionally implemented with standard flip-flops, which can quickly consume many logic cells and routing resources for large shift registers. A more efficient alternative is to use embedded memory as a shift register block, which saves logic cell and routing resources and provides a more efficient implementation with the dedicated circuitry.

The size of a $w \times m \times n$ shift register is determined by the input data width (*w*), the length of the taps (*m*), and the number of taps (*n*). The size of a $w \times m \times n$ shift register must be less than or equal to the maximum number of memory bits in the respective block: 576 bits for the M512 RAM block and 4,608 bits for the M4K RAM block. The total number of shift register outputs (number of taps $n \times$ width w) must be less than the maximum data width of the RAM block (18 for M512 blocks, 36 for M4K blocks). To create larger shift registers, the memory blocks are cascaded together.

Data is written into each address location at the falling edge of the clock and read from the address at the rising edge of the clock. The shift register mode logic automatically controls the positive and negative edge clocking to shift the data in one clock cycle. Figure 2–14 shows the TriMatrix memory block in the shift register mode.

M512 RAM Block

The M512 RAM block is a simple dual-port memory block and is useful for implementing small FIFO buffers, DSP, and clock domain transfer applications. Each block contains 576 RAM bits (including parity bits). M512 RAM blocks can be configured in the following modes:

- Simple dual-port RAM
- Single-port RAM
- FIFO
- ROM
- Shift register

When configured as RAM or ROM, you can use an initialization file to pre-load the memory contents.

The memory address depths and output widths can be configured as $512 \times 1, 256 \times 2, 128 \times 4, 64 \times 8$ (64×9 bits with parity), and 32×16 (32×18 bits with parity). Mixed-width configurations are also possible, allowing different read and write widths. Table 2–4 summarizes the possible M512 RAM block configurations.

Table 2–4	Table 2–4. M512 RAM Block Configurations (Simple Dual-Port RAM)						
Write Port							
neau run	512 × 1	256 × 2	128 × 4	64 × 8	32 × 16	64 × 9	32 × 18
512 × 1	\checkmark	\checkmark	~	\checkmark	~		
256 × 2	~	~	~	\checkmark	~		
128 × 4	\checkmark	~	~		~		
64 × 8	\checkmark	~		\checkmark			
32 × 16	~	~	~		~		
64 × 9						\checkmark	
32 × 18							~

When the M512 RAM block is configured as a shift register block, a shift register of size up to 576 bits is possible.

The M512 RAM block can also be configured to support serializer and deserializer applications. By using the mixed-width support in combination with DDR I/O standards, the block can function as a SERDES to support low-speed serial I/O standards using global or regional clocks. See "I/O Structure" on page 2–104 for details on dedicated SERDES in Stratix devices.

Table 2–9. M-RAM Block Configurations (True Dual-Port)									
Dout A		Port B							
FUILA	64K × 9	32K × 18	16K × 36	8K × 72					
64K × 9	\checkmark	\checkmark	\checkmark	\checkmark					
32K × 18	~	\checkmark	\checkmark	\checkmark					
16K × 36	~	\checkmark	\checkmark	\checkmark					
8K × 72	~	\checkmark	\checkmark	\checkmark					

The read and write operation of the memory is controlled by the WREN signal, which sets the ports into either read or write modes. There is no separate read enable (RE) signal.

Writing into RAM is controlled by both the WREN and byte enable (byteena) signals for each port. The default value for the byteena signal is high, in which case writing is controlled only by the WREN signal. The byte enables are available for the ×18, ×36, and ×72 modes. In the ×144 simple dual-port mode, the two sets of byteena signals (byteena_a and byteena_b) are combined to form the necessary 16 byte enables. Tables 2–10 and 2–11 summarize the byte selection.

Table 2–10. Byte Enable for M-RAM Blocks Notes (1), (2)					
byteena[30]	datain ×18	datain ×36	datain ×72		
[0] = 1	[80]	[80]	[80]		
[1] = 1	[179]	[179]	[179]		
[2] = 1	-	[2618]	[2618]		
[3] = 1	-	[3527]	[3527]		
[4] = 1	-	-	[4436]		
[5] = 1	-	-	[5345]		
[6] = 1	-	-	[6254]		
[7] = 1	-	-	[7163]		

Figure 2–21. Left-Facing M-RAM to Interconnect Interface Notes (1), (2)

Notes to Figure 2–21:

- (1) Only R24 and C16 interconnects cross the M-RAM block boundaries.
- (2) The right-facing M-RAM block has interface blocks on the right side, but none on the left. B1 to B6 and A1 to A6 orientation is clipped across the vertical axis for right-facing M-RAM blocks.

Notes to Figure 2–24

- (1) All registers shown have asynchronous clear ports.
- (2) Violating the setup or hold time on the address registers could corrupt the memory contents. This applies to both read and write operations.

Enhanced PLLs

Stratix devices contain up to four enhanced PLLs with advanced clock management features. Figure 2–52 shows a diagram of the enhanced PLL.

Notes to Figure 2–52:

- (1) External feedback is available in PLLs 5 and 6.
- (2) This single-ended external output is available from the *g*0 counter for PLLs 11 and 12.
- (3) These four counters and external outputs are available in PLLs 5 and 6.
- (4) This connection is only available on EP1S40 and larger Stratix devices. For example, PLLs 5 and 11 are adjacent and PLLs 6 and 12 are adjacent. The EP1S40 device in the 780-pin FineLine BGA package does not support PLLs 11 and 12.

resynchronization or relock period. The clkena signal can also disable clock outputs if the system is not tolerant to frequency overshoot during resynchronization.

The extclkena signals work in the same way as the clkena signals, but they control the external clock output counters (e0, e1, e2, and e3). Upon re-enabling, the PLL does not need a resynchronization or relock period unless the PLL is using external feedback mode. In order to lock in external feedback mode, the external output must drive the board trace back to the FBIN pin.

Fast PLLs

Stratix devices contain up to eight fast PLLs with high-speed serial interfacing ability, along with general-purpose features. Figure 2–58 shows a diagram of the fast PLL.

Each IOE contains its own control signal selection for the following control signals: oe, ce_in, ce_out, aclr/preset, sclr/preset, clk_in, and clk_out. Figure 2–63 illustrates the control signal selection.

Figure 2–63. Control Signal Selection per IOE

In normal bidirectional operation, the input register can be used for input data requiring fast setup times. The input register can have its own clock input and clock enable separate from the OE and output registers. The output register can be used for data requiring fast clock-to-output performance. The OE register can be used for fast clock-to-output enable timing. The OE and output register share the same clock source and the same clock enable source from local interconnect in the associated LAB, dedicated I/O clocks, and the column and row interconnects. Figure 2–64 shows the IOE in bidirectional configuration.

However, there is additional resistance present between the device ball and the input of the receiver buffer, as shown in Figure 2–72. This resistance is because of package trace resistance (which can be calculated as the resistance from the package ball to the pad) and the parasitic layout metal routing resistance (which is shown between the pad and the intersection of the on-chip termination and input buffer).

Table 2–35 defines the specification for internal termination resistance for commercial devices.

Table 2–35. Differential On-Chip Termination						
Symbol	Description	Conditions	R	Unit		
Symuol Description		Contractions	Min	Тур	Max	Unit
R _D (2)	Internal differential termination for LVDS	Commercial (1), (3)	110	135	165	W
		Industrial (2), (3)	100	135	170	W

Notes to Table 2–35:

- (1) Data measured over minimum conditions ($T_j = 0 \text{ C}$, $V_{CCIO} +5\%$) and maximum conditions ($T_j = 85 \text{ C}$, $V_{CCIO} = -5\%$).
- (2) Data measured over minimum conditions (T_j = -40 C, V_{CCIO} +5%) and maximum conditions (T_j = 100 C, $V_{CCIO} = -5\%$).
- (3) LVDS data rate is supported for 840 Mbps using internal differential termination.

MultiVolt I/O Interface

The Stratix architecture supports the MultiVolt I/O interface feature, which allows Stratix devices in all packages to interface with systems of different supply voltages.

The Stratix VCCINT pins must always be connected to a 1.5-V power supply. With a 1.5-V V_{CCINT} level, input pins are 1.5-V, 1.8-V, 2.5-V, and 3.3-V tolerant. The VCCIO pins can be connected to either a 1.5-V, 1.8-V, 2.5-V, or 3.3-V power supply, depending on the output requirements.

Table 4–9. Overshoot Input Voltage with Respect to Duty Cycle (Part 2 of 2)			
Vin (V)	Maximum Duty Cycle (%)		
4.3	30		
4.4	17		
4.5	10		

Figures 4–1 and 4–2 show receiver input and transmitter output waveforms, respectively, for all differential I/O standards (LVDS, 3.3-V PCML, LVPECL, and HyperTransport technology).

Figure 4–1. Receiver Input Waveforms for Differential I/O Standards

Figure 4–3 shows the TriMatrix memory waveforms for the M512, M4K, and M-RAM timing parameters shown in Tables 4–40 through 4–42.

Internal timing parameters are specified on a speed grade basis independent of device density. Tables 4–44 through 4–50 show the internal timing microparameters for LEs, IOEs, TriMatrix memory structures, DSP blocks, and MultiTrack interconnects.

Table 4–43. Routing Delay Internal Timing Microparameter Descriptions (Part 1 of 2)					
Symbol	Parameter				
t _{R4}	Delay for an R4 line with average loading; covers a distance of four LAB columns.				
t _{R8}	Delay for an R8 line with average loading; covers a distance of eight LAB columns.				
t _{R24}	Delay for an R24 line with average loading; covers a distance of 24 LAB columns.				

ſ

Table 4–47. DSP Block Internal Timing Microparameters (Part 2 of 2)										
Symbol	-	5	-	6	-	7	-8		11	
	Min	Max	Min	Max	Min	Max	Min	Max	Unit	
t _{PIPE2OUTREG2ADD}		2,002		2,203		2,533		2,980	ps	
t _{PIPE2OUTREG4ADD}		2,899		3,189		3,667		4,314	ps	
t _{PD9}		3,709		4,081		4,692		5,520	ps	
t _{PD18}		4,795		5,275		6,065		7,135	ps	
t _{PD36}		7,495		8,245		9,481		11,154	ps	
t _{CLR}	450		500		575		676		ps	
t _{CLKHL}	1,350		1,500		1,724		2,029		ps	

Table 4–48. M512 Block Internal Timing Microparameters									
Qumbal	-	5		-6 -		7		8	
Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unit
t _{M512RC}		3,340		3,816		4,387		5,162	ps
t _{M512WC}		3,138		3,590		4,128		4,860	ps
t _{M512WERESU}	110		123		141		166		ps
t _{M512WEREH}	34		38		43		51		ps
t _{M512CLKENSU}	215		215		247		290		ps
t _{M512CLKENH}	-70		-70		-81		-95		ps
t _{M512DATASU}	110		123		141		166		ps
t _{M512DATAH}	34		38		43		51		ps
t _{M512WADDRSU}	110		123		141		166		ps
t _{M512WADDRH}	34		38		43		51		ps
t _{M512RADDRSU}	110		123		141		166		ps
t _{M512RADDRH}	34		38		43		51		ps
t _{M512DATACO1}		424		472		541		637	ps
t _{M512DATACO2}		3,366		3,846		4,421		5,203	ps
t _{M512CLKHL}	1,000		1,111		1,190		1,400		ps
t _{M512CLR}	170		189		217		255		ps

Table 4–52 shows the external I/O timing parameters when using fast regional clock networks.

Table 4–52. Stratix Fast Regional Clock External I/O Timing Parameters Notes (1), (2)

Symbol	Parameter
t _{INSU}	Setup time for input or bidirectional pin using IOE input register with fast regional clock fed by FCLK pin
t _{INH}	Hold time for input or bidirectional pin using IOE input register with fast regional clock fed by FCLK pin
t _{outco}	Clock-to-output delay output or bidirectional pin using IOE output register with fast regional clock fed by FCLK pin
t _{XZ}	Synchronous IOE output enable register to output pin disable delay using fast regional clock fed by FCLK pin
t _{ZX}	Synchronous IOE output enable register to output pin enable delay using fast regional clock fed by FCLK pin

Notes to Table 4–52:

- (1) These timing parameters are sample-tested only.
- (2) These timing parameters are for column and row IOE pins. You should use the Quartus II software to verify the external timing for any pin.

Table 4–53 shows the external I/O timing parameters when using regional clock networks.

Table 4–53.	Stratix Regional	Clock External I/O	Timing Parameters	(Part 1
of 2) Notes ((1), (2)			

Symbol	Parameter
t _{INSU}	Setup time for input or bidirectional pin using IOE input register with regional clock fed by CLK pin
t _{INH}	Hold time for input or bidirectional pin using IOE input register with regional clock fed by CLK pin
t _{outco}	Clock-to-output delay output or bidirectional pin using IOE output register with regional clock fed by CLK pin
t _{INSUPLL}	Setup time for input or bidirectional pin using IOE input register with regional clock fed by Enhanced PLL with default phase setting
t _{INHPLL}	Hold time for input or bidirectional pin using IOE input register with regional clock fed by Enhanced PLL with default phase setting
t _{OUTCOPLL}	Clock-to-output delay output or bidirectional pin using IOE output register with regional clock Enhanced PLL with default phase setting

Tables 4–67 through 4–72 show the external timing parameters on column and row pins for EP1S25 devices.

Table 4–67. EP1S25 External I/O Timing on Column Pins Using Fast Regional Clock Networks												
Parameter	-5 Spee	d Grade	-6 Speed Grade		-7 Spee	d Grade	-8 Spee	1114				
	Min	Max	Min	Max	Min	Max	Min	Max	Unit			
t _{INSU}	2.412		2.613		2.968		3.468		ns			
t _{INH}	0.000		0.000		0.000		0.000		ns			
t _{OUTCO}	2.196	4.475	2.196	4.748	2.196	5.118	2.196	5.603	ns			
t _{xz}	2.136	4.349	2.136	4.616	2.136	4.994	2.136	5.488	ns			
t _{ZX}	2.136	4.349	2.136	4.616	2.136	4.994	2.136	5.488	ns			

Table 4–68. EP1S25 External I/O Timing on Column Pins Using Regional Clock Networks												
Parameter	-5 Spee	d Grade	-6 Spee	d Grade	-7 Spee	d Grade	-8 Spee	11				
	Min	Max	Min	Max	Min	Max	Min	Max	UIII			
t _{INSU}	1.535		1.661		1.877		2.125		ns			
t _{INH}	0.000		0.000		0.000		0.000		ns			
t _{outco}	2.739	5.396	2.739	5.746	2.739	6.262	2.739	6.946	ns			
t _{xz}	2.679	5.270	2.679	5.614	2.679	6.138	2.679	6.831	ns			
t _{ZX}	2.679	5.270	2.679	5.614	2.679	6.138	2.679	6.831	ns			
t _{INSUPLL}	0.934		0.980		1.092		1.231		ns			
t _{INHPLL}	0.000		0.000		0.000		0.000		ns			
t _{OUTCOPLL}	1.316	2.733	1.316	2.839	1.316	2.921	1.316	3.110	ns			
t ^{XZPLL}	1.256	2.607	1.256	2.707	1.256	2.797	1.256	2.995	ns			
t _{ZXPLL}	1.256	2.607	1.256	2.707	1.256	2.797	1.256	2.995	ns			

Table 4–69. EP1S25 External I/O Timing on Column Pins Using Global Clock Networks												
Parameter	-5 Spee	d Grade	-6 Spee	d Grade	-7 Spee	d Grade	-8 Spee	11				
	Min	Max	Min	Max	Min	Max	Min	Max	Unit			
t _{INSU}	1.371		1.471		1.657		1.916		ns			
t _{INH}	0.000		0.000		0.000		0.000		ns			
t _{OUTCO}	2.809	5.516	2.809	5.890	2.809	6.429	2.809	7.155	ns			
t _{xz}	2.749	5.390	2.749	5.758	2.749	6.305	2.749	7.040	ns			
t _{ZX}	2.749	5.390	2.749	5.758	2.749	6.305	2.749	7.040	ns			
t _{INSUPLL}	1.271		1.327		1.491		1.677		ns			
t _{INHPLL}	0.000		0.000		0.000		0.000		ns			
t _{OUTCOPLL}	1.124	2.396	1.124	2.492	1.124	2.522	1.124	2.602	ns			
t _{XZPLL}	1.064	2.270	1.064	2.360	1.064	2.398	1.064	2.487	ns			
t _{ZXPLL}	1.064	2.270	1.064	2.360	1.064	2.398	1.064	2.487	ns			

Table 4–70. EP1S25 External I/O Timing on Row Pins Using Fast Regional Clock Networks												
Parameter	-5 Spee	d Grade	-6 Spee	d Grade	-7 Spee	d Grade	-8 Spee	Unit				
	Min	Max	Min	Max	Min	Max	Min	Max	Unit			
t _{INSU}	2.429		2.631		2.990		3.503		ns			
t _{INH}	0.000		0.000		0.000		0.000		ns			
t _{OUTCO}	2.376	4.821	2.376	5.131	2.376	5.538	2.376	6.063	ns			
t _{xz}	2.403	4.875	2.403	5.187	2.403	5.606	2.403	6.145	ns			
t _{ZX}	2.403	4.875	2.403	5.187	2.403	5.606	2.403	6.145	ns			

Table 4–125. High-Speed I/O Specifications for Flip-Chip Packages (Part 4 of 4) Notes (1), (2)														
Symbol	Conditions	-5 Speed Grade			-6 Speed Grade			-7 Speed Grade			-8 Speed Grade			Init
		Min	Тур	Max	Unit									
t _{DUTY}	LVDS ($J = 2$ through 10)	47.5	50	52.5	47.5	50	52.5	47.5	50	52.5	47.5	50	52.5	%
	LVDS (J=1) and LVPECL, PCML, HyperTransport technology	45	50	55	45	50	55	45	50	55	45	50	55	%
t _{LOCK}	All			100			100			100			100	μs

Notes to Table 4–125:

(1) When J = 4, 7, 8, and 10, the SERDES block is used.

(2) When J = 2 or J = 1, the SERDES is bypassed.