Altera - EP1S80B956C7 Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Product Status Active Number of LABs/CLBs -	
Number of LABs/CLBs -	
Number of Logic Elements/Cells -	
Total RAM Bits -	
Number of I/O 683	
Number of Gates -	
Voltage - Supply 1.425V ~ 1.575V	
Mounting Type Surface Mount	
Operating Temperature 0°C ~ 85°C (TJ)	
Package / Case 956-BBGA, FCBGA	
Supplier Device Package956-BGA (40x40)	
Purchase URL https://www.e-xfl.com/pro/iter	n?MUrl=&PartUrl=ep1s80b956c7

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Typographic Conventions

This document uses the typographic conventions shown below.

Visual Cue	Meaning
Bold Type with Initial Capital Letters	Command names, dialog box titles, checkbox options, and dialog box options are shown in bold, initial capital letters. Example: Save As dialog box.
bold type	External timing parameters, directory names, project names, disk drive names, filenames, filename extensions, and software utility names are shown in bold type. Examples: f _{MAX} , \qdesigns directory, d: drive, chiptrip.gdf file.
Italic Type with Initial Capital Letters	Document titles are shown in italic type with initial capital letters. Example: AN 75: High-Speed Board Designs.
Italic type	Internal timing parameters and variables are shown in italic type. Examples: $t_{P A}$, $n + 1$.
	Example: <i>stile names, sproject names.</i>
Initial Capital Letters	Keyboard keys and menu names are shown with initial capital letters. Examples: Delete key, the Options menu.
"Subheading Title"	References to sections within a document and titles of on-line help topics are shown in quotation marks. Example: "Typographic Conventions."
Courier type	Signal and port names are shown in lowercase Courier type. Examples: data1, tdi, input. Active-low signals are denoted by suffix n, e.g., resetn.
	Anything that must be typed exactly as it appears is shown in Courier type. For example: c:\qdesigns\tutorial\chiptrip.gdf. Also, sections of an actual file, such as a Report File, references to parts of files (e.g., the AHDL keyword SUBDESIGN), as well as logic function names (e.g., TRI) are shown in Courier.
1., 2., 3., and a., b., c., etc.	Numbered steps are used in a list of items when the sequence of the items is important, such as the steps listed in a procedure.
••	Bullets are used in a list of items when the sequence of the items is not important.
\checkmark	The checkmark indicates a procedure that consists of one step only.
	The hand points to information that requires special attention.
4	The angled arrow indicates you should press the Enter key.
•••	The feet direct you to more information on a particular topic.

Chapter	Date/Version	Changes Made
4		 Updated Table 4–123 on page 4–85 through Table 4–126 on page 4–92. Updated Note 3 in Table 4–123 on page 4–85. Table 4–125 on page 4–88: moved to correct order in chapter, and updated table. Updated Table 4–126 on page 4–92. Updated Table 4–127 on page 4–94. Updated Table 4–128 on page 4–95.
	April 2004, v3.0	 Table 4–129 on page 4–96: updated table and added Note 10. Updated Table 4–131 and Table 4–132 on page 4–100. Updated Table 4–131 and Table 4–132 on page 4–100. Updated Table 4–110 on page 4–74. Updated Table 4–123 on page 4–85. Updated Table 4–124 on page 4–87. through Table 4–126 on page 4–92. Added Note 10 to Table 4–129 on page 4–96. Moved Table 4–127 on page 4–94 to correct order in the chapter. Updated Table 4–131 on page 4–94 to correct order in the chapter. Updated Table 4–131 on page 4–90. Deleted t_{XZ} and t_{ZX} from Figure 4–4. Waveform was added to Figure 4–6. The minimum and maximum duty cycle values in Note 3 of Table 4–8 were moved to a new Table 4–9. Changes were made to values in SSTL-3 Class I and II rows in Table 4–17. Note 1 was added to Table 4–34. Added t_{SU_R} and t_{SU_C} rows in Table 4–38. Changed Table 4–55 title from "EP1S10 Column Pin Fast Regional Clock External I/O Timing Parameters" to "EP1S10 External I/O Timing on Column Pins Using Fast Regional Clock Networks." Changed values in Tables 4–46, 4–48 to 4–51, 4–129, and 4–131. Added t_{ARESET} row in Tables 4–127 to 4–132. Deleted -5 Speed Grade column in Tables 4–117 to 4–119 and 4–122 to 4–123. Fixed differential waveform in Figure 4–1. Added t_{SU} and t_{CO_C} rows and made changes to values in t_{PRE} and t_{CLKHL} rows in Table 4–46. Values changed in the t_{SU} and t_H rows in Table 4–47. Values changed in the t_{MRAMCLKHL} row in Table 4–49. Values changed in the t_{MRAMCLKHL} row in Table 4–49. Values changed in the t_{MRAMCLKHL} row in Table 4–50. Added Table 4–51 to "Internal Timing Parameters" section. The timing information is preliminary in Tables 4–55 through 4–96. Table 4–111 was separated into 3 tables: Tables 4–111 to 4–113.
	November 2003, v2.2	 Opdated Tables 4–127 through 4–129.

Figure 2–11. C4 Interconnect Connections Note (1)

Note to Figure 2–11:

(1) Each C4 interconnect can drive either up or down four rows.

M4K RAM blocks support byte writes when the write port has a data width of 16, 18, 32, or 36 bits. The byte enables allow the input data to be masked so the device can write to specific bytes. The unwritten bytes retain the previous written value. Table 2–7 summarizes the byte selection.

Table 2–7. Byte Enable for M4K Blocks Notes (1), (2)						
byteena[30]	datain ×18	datain ×36				
[0] = 1	[80]	[80]				
[1] = 1	[179]	[179]				
[2] = 1	-	[2618]				
[3] = 1	-	[3527]				

Notes to Table 2–7:

(1) Any combination of byte enables is possible.

(2) Byte enables can be used in the same manner with 8-bit words, i.e., in \times 16 and \times 32 modes.

The M4K RAM blocks allow for different clocks on their inputs and outputs. Either of the two clocks feeding the block can clock M4K RAM block registers (renwe, address, byte enable, datain, and output registers). Only the output register can be bypassed. The eight labclk signals or local interconnects can drive the control signals for the A and B ports of the M4K RAM block. LEs can also control the clock_a, clock_b, renwe_a, renwe_b, clr_a, clr_b, clocken_a, and clocken_b signals, as shown in Figure 2–17.

The R4, R8, C4, C8, and direct link interconnects from adjacent LABs drive the M4K RAM block local interconnect. The M4K RAM blocks can communicate with LABs on either the left or right side through these row resources or with LAB columns on either the right or left with the column resources. Up to 10 direct link input connections to the M4K RAM Block are possible from the left adjacent LABs and another 10 possible from the right adjacent LAB. M4K RAM block outputs can also connect to left and right LABs through 10 direct link interconnects each. Figure 2–18 shows the M4K RAM block to logic array interface.

Digital Signal Processing Block

The most commonly used DSP functions are finite impulse response (FIR) filters, complex FIR filters, infinite impulse response (IIR) filters, fast Fourier transform (FFT) functions, direct cosine transform (DCT) functions, and correlators. All of these blocks have the same fundamental building block: the multiplier. Additionally, some applications need specialized operations such as multiply-add and multiply-accumulate operations. Stratix devices provide DSP blocks to meet the arithmetic requirements of these functions.

Each Stratix device has two columns of DSP blocks to efficiently implement DSP functions faster than LE-based implementations. Larger Stratix devices have more DSP blocks per column (see Table 2–13). Each DSP block can be configured to support up to:

- Eight 9 × 9-bit multipliers
- Four 18 × 18-bit multipliers
- One 36 × 36-bit multiplier

As indicated, the Stratix DSP block can support one 36×36 -bit multiplier in a single DSP block. This is true for any matched sign multiplications (either unsigned by unsigned or signed by signed), but the capabilities for dynamic and mixed sign multiplications are handled differently. The following list provides the largest functions that can fit into a single DSP block.

- 36 × 36-bit unsigned by unsigned multiplication
- 36 × 36-bit signed by signed multiplication
- 35 × 36-bit unsigned by signed multiplication
- 36 × 35-bit signed by unsigned multiplication
- 36 × 35-bit signed by dynamic sign multiplication
- 35 × 36-bit dynamic sign by signed multiplication
- 35 × 36-bit unsigned by dynamic sign multiplication
- 36 × 35-bit dynamic sign by unsigned multiplication
- 35 × 35-bit dynamic sign multiplication when the sign controls for each operand are different
- 36 × 36-bit dynamic sign multiplication when the same sign control is used for both operands
- This list only shows functions that can fit into a single DSP block. Multiple DSP blocks can support larger multiplication functions.

Figure 2–29 shows one of the columns with surrounding LAB rows.

single DSP block can implement two sums or differences from two 18×18 -bit multipliers each or four sums or differences from two 9×9 -bit multipliers each.

You can use the two-multipliers adder mode for complex multiplications, which are written as:

$$(a + jb) \times (c + jd) = [(a \times c) - (b \times d)] + j \times [(a \times d) + (b \times c)]$$

The two-multipliers adder mode allows a single DSP block to calculate the real part $[(a \times c) - (b \times d)]$ using one subtractor and the imaginary part $[(a \times d) + (b \times c)]$ using one adder, for data widths up to 18 bits. Two complex multiplications are possible for data widths up to 9 bits using four adder/subtractor/accumulator blocks. Figure 2–38 shows an 18-bit two-multipliers adder.

Four-Multipliers Adder Mode

In the four-multipliers adder mode, the DSP block adds the results of two first -stage adder/subtractor blocks. One sum of four 18×18 -bit multipliers or two different sums of two sets of four 9×9 -bit multipliers can be implemented in a single DSP block. The product width for each multiplier must be the same size. The four-multipliers adder mode is useful for FIR filter applications. Figure 2–39 shows the four multipliers adder mode.

Figure 2–39. Four-Multipliers Adder Mode

Notes to Figure 2–39:

- (1) These signals are not registered or registered once to match the data path pipeline.
- (2) These signals are not registered, registered once, or registered twice for latency to match the data path pipeline.

Table 2–19 shows the enhanced PLL and fast PLL features in Stratix devices.

Table 2–19. Stratix PLL Features						
Feature	Enhanced PLL	Fast PLL				
Clock multiplication and division	$m/(n \times \text{ post-scale counter})$ (1)	m/(post-scale counter) (2)				
Phase shift	Down to 156.25-ps increments (3), (4)	Down to 125-ps increments (3), (4)				
Delay shift	250-ps increments for ±3 ns					
Clock switchover	\checkmark					
PLL reconfiguration	\checkmark					
Programmable bandwidth	\checkmark					
Spread spectrum clocking	\checkmark					
Programmable duty cycle	\checkmark	\checkmark				
Number of internal clock outputs	6	3 (5)				
Number of external clock outputs	Four differential/eight singled-ended or one single-ended (6)	(7)				
Number of feedback clock inputs	2 (8)					

Notes to Table 2–19:

- (1) For enhanced PLLs, *m*, *n*, range from 1 to 512 and post-scale counters *g*, *l*, *e* range from 1 to 1024 with 50% duty cycle. With a non-50% duty cycle the post-scale counters *g*, *l*, *e* range from 1 to 512.
- (2) For fast PLLs, *m* and post-scale counters range from 1 to 32.
- (3) The smallest phase shift is determined by the voltage controlled oscillator (VCO) period divided by 8.
- (4) For degree increments, Stratix devices can shift all output frequencies in increments of at least 45°. Smaller degree increments are possible depending on the frequency and divide parameters.
- (5) PLLs 7, 8, 9, and 10 have two output ports per PLL. PLLs 1, 2, 3, and 4 have three output ports per PLL.
- (6) Every Stratix device has two enhanced PLLs (PLLs 5 and 6) with either eight single-ended outputs or four differential outputs each. Two additional enhanced PLLs (PLLs 11 and 12) in EP1S80, EP1S60, and EP1S40 devices each have one single-ended output. Devices in the 780 pin FineLine BGA packages do not support PLLs 11 and 12.
- (7) Fast PLLs can drive to any I/O pin as an external clock. For high-speed differential I/O pins, the device uses a data channel to generate txclkout.
- (8) Every Stratix device has two enhanced PLLs with one single-ended or differential external feedback input per PLL.

External Clock Inputs

Each fast PLL supports single-ended or differential inputs for source synchronous transmitters or for general-purpose use. Source-synchronous receivers support differential clock inputs. The fast PLL inputs are fed by CLK [0..3], CLK [8..11], and FPLL [7..10] CLK pins, as shown in Figure 2–50 on page 2–85.

Table 2–22 shows the I/O standards supported by fast PLL input pins.

Table 2–22. Fast PLL Port I/O Standards (Part 1 of 2)					
1/0 Standard	li	nput			
i/U Standard	INCLK	PLLENABLE			
LVTTL	\checkmark	\checkmark			
LVCMOS	~	\checkmark			
2.5 V	\checkmark				
1.8 V	\checkmark				
1.5 V	\checkmark				
3.3-V PCI					
3.3-V PCI-X 1.0					
LVPECL	\checkmark				
3.3-V PCML	\checkmark				
LVDS	\checkmark				
HyperTransport technology	\checkmark				
Differential HSTL	\checkmark				
Differential SSTL					
3.3-V GTL					
3.3-V GTL+	\checkmark				
1.5-V HSTL Class I	\checkmark				
1.5-V HSTL Class II					
1.8-V HSTL Class I	\checkmark				
1.8-V HSTL Class II					
SSTL-18 Class I	~				
SSTL-18 Class II					
SSTL-2 Class I	~				

3. Configuration & Testing

S51003-1.3

IEEE Std. 1149.1 (JTAG) Boundary-Scan Support

All Stratix[®] devices provide JTAG BST circuitry that complies with the IEEE Std. 1149.1a-1990 specification. JTAG boundary-scan testing can be performed either before or after, but not during configuration. Stratix devices can also use the JTAG port for configuration together with either the Quartus[®] II software or hardware using either Jam Files (.jam) or Jam Byte-Code Files (.jbc).

Stratix devices support IOE I/O standard setting reconfiguration through the JTAG BST chain. The JTAG chain can update the I/O standard for all input and output pins any time before or during user mode through the CONFIG_IO instruction. You can use this ability for JTAG testing before configuration when some of the Stratix pins drive or receive from other devices on the board using voltage-referenced standards. Since the Stratix device may not be configured before JTAG testing, the I/O pins may not be configured for appropriate electrical standards for chip-to-chip communication. Programming those I/O standards via JTAG allows you to fully test the I/O connection to other devices.

The enhanced PLL reconfiguration bits are part of the JTAG chain before configuration and after power-up. After device configuration, the PLL reconfiguration bits are not part of the JTAG chain.

The JTAG pins support 1.5-V/1.8-V or 2.5-V/3.3-V I/O standards. The TDO pin voltage is determined by the V_{CCIO} of the bank where it resides. The VCCSEL pin selects whether the JTAG inputs are 1.5-V, 1.8-V, 2.5-V, or 3.3-V compatible.

Stratix devices also use the JTAG port to monitor the logic operation of the device with the SignalTap[®] II embedded logic analyzer. Stratix devices support the JTAG instructions shown in Table 3–1.

The Quartus II software has an Auto Usercode feature where you can choose to use the checksum value of a programming file as the JTAG user code. If selected, the checksum is automatically loaded to the USERCODE register. In the Settings dialog box in the Assignments menu, click **Device & Pin Options**, then **General**, and then turn on the **Auto Usercode** option.

Figure 3–1 shows the timing requirements for the JTAG signals.

Figure 3–1. Stratix JTAG Waveforms

Table 3–4 shows the JTAG timing parameters and values for Stratix devices.

Table 3-	Table 3–4. Stratix JTAG Timing Parameters & Values							
Symbol	Parameter	Min	Max	Unit				
t _{JCP}	TCK clock period	100		ns				
t _{JCH}	TCK clock high time	50		ns				
t _{JCL}	TCK clock low time	50		ns				
t _{JPSU}	JTAG port setup time	20		ns				
t _{JPH}	JTAG port hold time	45		ns				
t _{JPCO}	JTAG port clock to output		25	ns				
t _{JPZX}	JTAG port high impedance to valid output		25	ns				
t _{JPXZ}	JTAG port valid output to high impedance		25	ns				
t _{JSSU}	Capture register setup time	20		ns				
t _{JSH}	Capture register hold time	45		ns				
t _{JSCO}	Update register clock to output		35	ns				
t _{JSZX}	Update register high impedance to valid output		35	ns				
t _{JSXZ}	Update register valid output to high impedance		35	ns				

4. DC & Switching Characteristics

S51004-3.4

Operating Conditions

Stratix[®] devices are offered in both commercial and industrial grades. Industrial devices are offered in -6 and -7 speed grades and commercial devices are offered in -5 (fastest), -6, -7, and -8 speed grades. This section specifies the operation conditions for operating junction temperature, V_{CCINT} and V_{CCIO} voltage levels, and input voltage requirements. The voltage specifications in this section are specified at the pins of the device (and not the power supply). If the device operates outside these ranges, then all DC and AC specifications are not guaranteed. Furthermore, the reliability of the device may be affected. The timing parameters in this chapter apply to both commercial and industrial temperature ranges unless otherwise stated.

Tables 4–1 through 4–8 provide information on absolute maximum ratings.

Table 4–1. Stratix Device Absolute Maximum Ratings Notes (1), (2)								
Symbol	Parameter	Conditions	Minimum	Maximum	Unit			
V _{CCINT}	Supply voltage	With respect to ground	-0.5	2.4	V			
V _{CCIO}			-0.5	4.6	V			
VI	DC input voltage (3)		-0.5	4.6	V			
I _{OUT}	DC output current, per pin		-25	40	mA			
T _{STG}	Storage temperature	No bias	-65	150	°C			
TJ	Junction temperature	BGA packages under bias		135	°C			

Table 4–2. Stratix Device Recommended Operating Conditions (Part 1 of 2)								
Symbol	Parameter	Conditions	Minimum	Maximum	Unit			
V _{CCINT}	Supply voltage for internal logic and input buffers	(4)	1.425	1.575	V			

Table 4–49. M4K Block Internal Timing Microparameters									
Sumhal	-	5	-6		-7		-	8	
Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unit
t _{M4KRC}		3,807		4,320		4,967		5,844	ps
t _{M4KWC}		2,556		2,840		3,265		3,842	ps
t _{M4KWERESU}	131		149		171		202		ps
t _{M4KWEREH}	34		38		43		51		ps
t _{M4KCLKENSU}	193		215		247		290		ps
t _{M4KCLKENH}	-63		-70		-81		-95		ps
t _{M4KBESU}	131		149		171		202		ps
t _{M4KBEH}	34		38		43		51		ps
t _{M4KDATAASU}	131		149		171		202		ps
t _{M4KDATAAH}	34		38		43		51		ps
t _{M4KADDRASU}	131		149		171		202		ps
t _{M4KADDRAH}	34		38		43		51		ps
t _{M4KDATABSU}	131		149		171		202		ps
t _{M4KDATABH}	34		38		43		51		ps
t _{M4KADDRBSU}	131		149		171		202		ps
t _{M4KADDRBH}	34		38		43		51		ps
t _{M4KDATACO1}		571		635		729		858	ps
t _{M4KDATACO2}		3,984		4,507		5,182		6,097	ps
t _{M4KCLKHL}	1,000		1,111		1,190		1,400		ps
t _{M4KCLR}	170		189		217		255		ps

Table 4–50. M-RAM Block Internal Timing Microparameters (Part 1 of 2)									
Symbol	-5		-6		-7		-8		1114
Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unit
t _{MRAMRC}		4,364		4,838		5,562		6,544	ps
t _{MRAMWC}		3,654		4,127		4,746		5,583	ps
t _{MRAMWERESU}	25		25		28		33		ps
t _{MRAMWEREH}	18		20		23		27		ps
t _{MRAMCLKENSU}	99		111		127		150		ps
t _{MRAMCLKENH}	-48		-53		-61		-72		ps

Tables 4–67 through 4–72 show the external timing parameters on column and row pins for EP1S25 devices.

Table 4–67. EP1S25 External I/O Timing on Column Pins Using Fast Regional Clock Networks									
Parameter	-5 Speed Grade		-6 Speed Grade		-7 Speed Grade		-8 Speed Grade		l la it
	Min	Max	Min	Max	Min	Max	Min	Max	Unit
t _{INSU}	2.412		2.613		2.968		3.468		ns
t _{INH}	0.000		0.000		0.000		0.000		ns
t _{OUTCO}	2.196	4.475	2.196	4.748	2.196	5.118	2.196	5.603	ns
t _{xz}	2.136	4.349	2.136	4.616	2.136	4.994	2.136	5.488	ns
t _{ZX}	2.136	4.349	2.136	4.616	2.136	4.994	2.136	5.488	ns

Table 4–68. EP1S25 External I/O Timing on Column Pins Using Regional Clock Networks													
Deremeter	-5 Speed Grade		-6 Spee	-6 Speed Grade		d Grade	-8 Spee	Unit					
Farailleler	Min	Max	Min	Max	Min	Max	Min	Max	Unit				
t _{INSU}	1.535		1.661		1.877		2.125		ns				
t _{INH}	0.000		0.000		0.000		0.000		ns				
t _{outco}	2.739	5.396	2.739	5.746	2.739	6.262	2.739	6.946	ns				
t _{xz}	2.679	5.270	2.679	5.614	2.679	6.138	2.679	6.831	ns				
t _{ZX}	2.679	5.270	2.679	5.614	2.679	6.138	2.679	6.831	ns				
t _{INSUPLL}	0.934		0.980		1.092		1.231		ns				
t _{INHPLL}	0.000		0.000		0.000		0.000		ns				
t _{OUTCOPLL}	1.316	2.733	1.316	2.839	1.316	2.921	1.316	3.110	ns				
t ^{XZPLL}	1.256	2.607	1.256	2.707	1.256	2.797	1.256	2.995	ns				
t _{ZXPLL}	1.256	2.607	1.256	2.707	1.256	2.797	1.256	2.995	ns				

Table 4–71. EP1S25 External I/O Timing on Row Pins Using Regional Clock Networks													
Demonstern	-5 Speed Grade		-6 Spee	-6 Speed Grade		d Grade	-8 Spee	Unit					
Farailieler	Min	Max	Min	Max	Min	Max	Min	Max	Unit				
t _{INSU}	1.793		1.927		2.182		2.542		ns				
t _{INH}	0.000		0.000		0.000		0.000		ns				
t _{OUTCO}	2.759	5.457	2.759	5.835	2.759	6.346	2.759	7.024	ns				
t _{xz}	2.786	5.511	2.786	5.891	2.786	6.414	2.786	7.106	ns				
t _{ZX}	2.786	5.511	2.786	5.891	2.786	6.414	2.786	7.106	ns				
t _{INSUPLL}	1.169		1.221		1.373		1.600		ns				
t _{INHPLL}	0.000		0.000		0.000		0.000		ns				
t _{OUTCOPLL}	1.375	2.861	1.375	2.999	1.375	3.082	1.375	3.174	ns				
t _{XZPLL}	1.402	2.915	1.402	3.055	1.402	3.150	1.402	3.256	ns				
t _{ZXPLL}	1.402	2.915	1.402	3.055	1.402	3.150	1.402	3.256	ns				

Table 4–72. EP1S25 External I/O Timing on Row Pins Using Global Clock Networks													
Demonstern	-5 Spee	d Grade	-6 Spee	-6 Speed Grade		d Grade	-8 Spee	l la it					
Parameter	Min	Max	Min	Max	Min	Max	Min	Max	Unit				
t _{INSU}	1.665		1.779		2.012		2.372		ns				
t _{INH}	0.000		0.000		0.000		0.000		ns				
t _{outco}	2.834	5.585	2.834	5.983	2.834	6.516	2.834	7.194	ns				
t _{xz}	2.861	5.639	2.861	6.039	2.861	6.584	2.861	7.276	ns				
t _{ZX}	2.861	5.639	2.861	6.039	2.861	6.584	2.861	7.276	ns				
t _{INSUPLL}	1.538		1.606		1.816		2.121		ns				
t _{INHPLL}	0.000		0.000		0.000		0.000		ns				
t _{OUTCOPLL}	1.164	2.492	1.164	2.614	1.164	2.639	1.164	2.653	ns				
t _{XZPLL}	1.191	2.546	1.191	2.670	1.191	2.707	1.191	2.735	ns				
t _{ZXPLL}	1.191	2.546	1.191	2.670	1.191	2.707	1.191	2.735	ns				

Tables 4–91 through 4–96 show the external timing parameters on column and row pins for EP1S80 devices.

Table 4–91. EP1S80 External I/O Timing on Column Pins Using Fast Regional Clock Networks Note (1)												
Parameter	-5 Speed Grade		-6 Speed Grade		-7 Spee	d Grade	-8 Spee	Unit				
	Min	Max	Min	Max	Min	Max	Min	Max	Unit			
t _{INSU}	2.328		2.528		2.900		NA		ns			
t _{INH}	0.000		0.000		0.000		NA		ns			
t _{OUTCO}	2.422	4.830	2.422	5.169	2.422	5.633	NA	NA	ns			
t _{xz}	2.362	4.704	2.362	5.037	2.362	5.509	NA	NA	ns			
t _{ZX}	2.362	4.704	2.362	5.037	2.362	5.509	NA	NA	ns			

Table 4–92. EP1S80 External I/O Timing on Column Pins Using Regional Clock Networks Note (1)													
Deremeter	-5 Spee	d Grade	-6 Spee	-6 Speed Grade		d Grade	-8 Spee	Unit					
Farailieler	Min	Max	Min	Max	Min	Max	Min	Max	Unit				
t _{INSU}	1.760		1.912		2.194		NA		ns				
t _{INH}	0.000		0.000		0.000		NA		ns				
t _{OUTCO}	2.761	5.398	2.761	5.785	2.761	6.339	NA	NA	ns				
t _{XZ}	2.701	5.272	2.701	5.653	2.701	6.215	NA	NA	ns				
t _{ZX}	2.701	5.272	2.701	5.653	2.701	6.215	NA	NA	ns				
t _{INSUPLL}	0.462		0.606		0.785		NA		ns				
t _{INHPLL}	0.000		0.000		0.000		NA		ns				
t _{OUTCOPLL}	1.661	2.849	1.661	2.859	1.661	2.881	NA	NA	ns				
t _{XZPLL}	1.601	2.723	1.601	2.727	1.601	2.757	NA	NA	ns				
t _{ZXPLL}	1.601	2.723	1.601	2.727	1.601	2.757	NA	NA	ns				

Table 4–93. EP1S80 External I/O Timing on Column Pins Using Global Clock Networks Note (1)													
Deremeter	-5 Speed Grade		-6 Spee	-6 Speed Grade		d Grade	-8 Spee	Unit					
Faraineter	Min	Max	Min	Max	Min	Max	Min	Max	UIII				
t _{INSU}	0.884		0.976		1.118		NA		ns				
t _{INH}	0.000		0.000		0.000		NA		ns				
t _{OUTCO}	3.267	6.274	3.267	6.721	3.267	7.415	NA	NA	ns				
t _{XZ}	3.207	6.148	3.207	6.589	3.207	7.291	NA	NA	ns				
t _{ZX}	3.207	6.148	3.207	6.589	3.207	7.291	NA	NA	ns				
t _{INSUPLL}	0.506		0.656		0.838		NA		ns				
t _{INHPLL}	0.000		0.000		0.000		NA		ns				
t _{OUTCOPLL}	1.635	2.805	1.635	2.809	1.635	2.828	NA	NA	ns				
t _{XZPLL}	1.575	2.679	1.575	2.677	1.575	2.704	NA	NA	ns				
t _{ZXPLL}	1.575	2.679	1.575	2.677	1.575	2.704	NA	NA	ns				

Table 4–94. EP1S80 External I/O Timing on Row Pins Using Fast Regional Clock Networks Note (1)												
Parameter	-5 Speed Grade		-6 Speed Grade		-7 Spee	d Grade	-8 Speed Grade		Unit			
	Min	Max	Min	Max	Min	Max	Min	Max				
t _{INSU}	2.792		2.993		3.386		NA		ns			
t _{INH}	0.000		0.000		0.000		NA		ns			
t _{OUTCO}	2.619	5.235	2.619	5.609	2.619	6.086	NA	NA	ns			
t _{xz}	2.646	5.289	2.646	5.665	2.646	6.154	NA	NA	ns			
t _{ZX}	2.646	5.289	2.646	5.665	2.646	6.154	NA	NA	ns			

Definition of I/O Skew

I/O skew is defined as the absolute value of the worst-case difference in clock-to-out times (t_{CO}) between any two output registers fed by a common clock source.

I/O bank skew is made up of the following components:

- Clock network skews: This is the difference between the arrival times of the clock at the clock input port of the two IOE registers.
- Package skews: This is the package trace length differences between (I/O pad A to I/O pin A) and (I/O pad B to I/O pin B).

Figure 4–5 shows an example of two IOE registers located in the same bank, being fed by a common clock source. The clock can come from an input pin or from a PLL output.

Figure 4–5. I/O Skew within an I/O Bank

Figure 4–7. Output Delay Timing Reporting Setup Modeled by Quartus II

Notes to Figure 4–7:

- Output pin timing is reported at the output pin of the FPGA device. Additional delays for loading and board trace delay need to be accounted for with IBIS model simulations.
- (2) V_{CCINT} is 1.42-V unless otherwise specified.

Table 4–101. Reporting Methodology For Maximum Timing For Single-Ended Output Pins	(Part 1 of 2)
Notes (1), (2), (3)	

(),(),()								
1/0 Standard		Measurement Point						
i/O Stanuaru	R _{UP} Ω	R _{DN} Ω	Rs Ω	R _T Ω	V _{ccio} (V)	VTT (V)	C _L (pF)	V _{MEAS}
3.3-V LVTTL	-	-	0	-	2.950	2.95	10	1.500
2.5-V LVTTL	-	-	0	-	2.370	2.37	10	1.200
1.8-V LVTTL	-	-	0	-	1.650	1.65	10	0.880
1.5-V LVTTL	-	-	0	-	1.400	1.40	10	0.750
3.3-V LVCMOS	-	-	0	-	2.950	2.95	10	1.500
2.5-V LVCMOS	-	-	0	-	2.370	2.37	10	1.200
1.8-V LVCMOS	-	-	0	-	1.650	1.65	10	0.880
1.5-V LVCMOS	-	-	0	-	1.400	1.40	10	0.750
3.3-V GTL	-	-	0	25	2.950	1.14	30	0.740
2.5-V GTL	-	-	0	25	2.370	1.14	30	0.740
3.3-V GTL+	-	-	0	25	2.950	1.35	30	0.880
2.5-V GTL+	-	-	0	25	2.370	1.35	30	0.880
3.3-V SSTL-3 Class II	-	-	25	25	2.950	1.25	30	1.250

Table 4–104. Stratix I/O Standard Row Pin Input Delay Adders												
Paramotor	-5 Speed Grade		-6 Speed Grade		-7 Spee	d Grade	-8 Spee	d Grade	Unit			
Farameter	Min	Max	Min	Max	Min	Max	Min	Max	Unit			
LVCMOS		0		0		0		0	ps			
3.3-V LVTTL		0		0		0		0	ps			
2.5-V LVTTL		21		22		25		29	ps			
1.8-V LVTTL		181		190		218		257	ps			
1.5-V LVTTL		300		315		362		426	ps			
GTL+		-152		-160		-184		-216	ps			
СТТ		-168		-177		-203		-239	ps			
SSTL-3 Class I		-193		-203		-234		-275	ps			
SSTL-3 Class II		-193		-203		-234		-275	ps			
SSTL-2 Class I		-262		-276		-317		-373	ps			
SSTL-2 Class II		-262		-276		-317		-373	ps			
SSTL-18 Class I		-105		-111		-127		-150	ps			
SSTL-18 Class II		0		0		0		0	ps			
1.5-V HSTL Class I		-151		-159		-183		-215	ps			
1.8-V HSTL Class I		-126		-133		-153		-179	ps			
LVDS		-149		-157		-180		-212	ps			
LVPECL		-149		-157		-180		-212	ps			
3.3-V PCML		-65		-69		-79		-93	ps			
HyperTransport		77		-81		-93		-110	ps			