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Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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4 October 2003, v2.1 ● Added -8 speed grade information.
● Updated performance information in Table 4–36.
● Updated timing information in Tables 4–55 through 4–96.
● Updated delay information in Tables 4–103 through 4–108.
● Updated programmable delay information in Tables 4–100 and 

4–103.

July 2003, v2.0 ● Updated clock rates in Tables 4–114 through 4–123.
● Updated speed grade information in the introduction on page 4-1.
● Corrected figures 4-1 & 4-2 and Table 4-9 to reflect how VID and VOD 

are specified.
● Added note 6 to Table 4-32.
● Updated Stratix Performance Table 4-35.
● Updated EP1S60 and EP1S80 timing parameters in Tables 4-82 to 4-

93. The Stratix timing models are final for all devices.
● Updated Stratix IOE programmable delay chains in Tables 4-100 to 4-

101.
● Added single-ended I/O standard output pin delay adders for loading 

in Table 4-102.
● Added spec for FPLL[10..7]CLK pins in Tables 4-104 and 4-107.
● Updated high-speed I/O specification for J=2 in Tables 4-114 and 4-

115. 
● Updated EPLL specification and fast PLL specification in Tables 4-

116 to 4-120.

5 September 2004, v2.1 ● Updated reference to device pin-outs on page 5–1 to indicate that 
device pin-outs are no longer included in this manual and are now 
available on the Altera web site.

April 2003, v1.0 ● No new changes in Stratix Device Handbook v2.0.
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Logic Elements

functions. Another special packing mode allows the register output to 
feed back into the LUT of the same LE so that the register is packed with 
its own fan-out LUT. This provides another mechanism for improved 
fitting. The LE can also drive out registered and unregistered versions of 
the LUT output.

LUT Chain & Register Chain

In addition to the three general routing outputs, the LEs within an LAB 
have LUT chain and register chain outputs. LUT chain connections allow 
LUTs within the same LAB to cascade together for wide input functions. 
Register chain outputs allow registers within the same LAB to cascade 
together. The register chain output allows an LAB to use LUTs for a single 
combinatorial function and the registers to be used for an unrelated shift 
register implementation. These resources speed up connections between 
LABs while saving local interconnect resources. See “MultiTrack 
Interconnect” on page 2–14 for more information on LUT chain and 
register chain connections.

addnsub Signal

The LE’s dynamic adder/subtractor feature saves logic resources by 
using one set of LEs to implement both an adder and a subtractor. This 
feature is controlled by the LAB-wide control signal addnsub. The 
addnsub signal sets the LAB to perform either A + B or A – B. The LUT 
computes addition, and subtraction is computed by adding the two’s 
complement of the intended subtractor. The LAB-wide signal converts to 
two’s complement by inverting the B bits within the LAB and setting 
carry-in = 1 to add one to the least significant bit (LSB). The LSB of an 
adder/subtractor must be placed in the first LE of the LAB, where the 
LAB-wide addnsub signal automatically sets the carry-in to 1. The 
Quartus II Compiler automatically places and uses the adder/subtractor 
feature when using adder/subtractor parameterized functions.

LE Operating Modes

The Stratix LE can operate in one of the following modes:

■ Normal mode
■ Dynamic arithmetic mode

Each mode uses LE resources differently. In each mode, eight available 
inputs to the LE—the four data inputs from the LAB local interconnect; 
carry-in0 and carry-in1 from the previous LE; the LAB carry-in 
from the previous carry-chain LAB; and the register chain connection—
are directed to different destinations to implement the desired logic 
function. LAB-wide signals provide clock, asynchronous clear, 
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MultiTrack Interconnect

can drive other R8 interconnects to extend their range as well as C8 
interconnects for row-to-row connections. One R8 interconnect is faster 
than two R4 interconnects connected together.

R24 row interconnects span 24 LABs and provide the fastest resource for 
long row connections between LABs, TriMatrix memory, DSP blocks, and 
IOEs. The R24 row interconnects can cross M-RAM blocks. R24 row 
interconnects drive to other row or column interconnects at every fourth 
LAB and do not drive directly to LAB local interconnects. R24 row 
interconnects drive LAB local interconnects via R4 and C4 interconnects. 
R24 interconnects can drive R24, R4, C16, and C4 interconnects.

The column interconnect operates similarly to the row interconnect and 
vertically routes signals to and from LABs, TriMatrix memory, DSP 
blocks, and IOEs. Each column of LABs is served by a dedicated column 
interconnect, which vertically routes signals to and from LABs, TriMatrix 
memory and DSP blocks, and horizontal IOEs. These column resources 
include:

■ LUT chain interconnects within an LAB
■ Register chain interconnects within an LAB
■ C4 interconnects traversing a distance of four blocks in up and down 

direction
■ C8 interconnects traversing a distance of eight blocks in up and 

down direction
■ C16 column interconnects for high-speed vertical routing through 

the device

Stratix devices include an enhanced interconnect structure within LABs 
for routing LE output to LE input connections faster using LUT chain 
connections and register chain connections. The LUT chain connection 
allows the combinatorial output of an LE to directly drive the fast input 
of the LE right below it, bypassing the local interconnect. These resources 
can be used as a high-speed connection for wide fan-in functions from 
LE 1 to LE 10 in the same LAB. The register chain connection allows the 
register output of one LE to connect directly to the register input of the 
next LE in the LAB for fast shift registers. The Quartus II Compiler 
automatically takes advantage of these resources to improve utilization 
and performance. Figure 2–10 shows the LUT chain and register chain 
interconnects.
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Figure 2–11. C4 Interconnect Connections Note (1)

Note to Figure 2–11:
(1) Each C4 interconnect can drive either up or down four rows.

C4 Interconnect
Drives Local and R4
Interconnects
up to Four Rows

Adjacent LAB can
drive onto neighboring
LAB's C4 interconnect

C4 Interconnect
Driving Up

C4 Interconnect
Driving Down

LAB

Row
Interconnect

Local
Interconnect
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C8 interconnects span eight LABs, M512, or M4K blocks up or down from 
a source LAB. Every LAB has its own set of C8 interconnects to drive 
either up or down. C8 interconnect connections between the LABs in a 
column are similar to the C4 connections shown in Figure 2–11 with the 
exception that they connect to eight LABs above and below. The C8 
interconnects can drive and be driven by all types of architecture blocks 
similar to C4 interconnects. C8 interconnects can drive each other to 
extend their range as well as R8 interconnects for column-to-column 
connections. C8 interconnects are faster than two C4 interconnects. 

C16 column interconnects span a length of 16 LABs and provide the 
fastest resource for long column connections between LABs, TriMatrix 
memory blocks, DSP blocks, and IOEs. C16 interconnects can cross M-
RAM blocks and also drive to row and column interconnects at every 
fourth LAB. C16 interconnects drive LAB local interconnects via C4 and 
R4 interconnects and do not drive LAB local interconnects directly.

All embedded blocks communicate with the logic array similar to LAB-
to-LAB interfaces. Each block (i.e., TriMatrix memory and DSP blocks) 
connects to row and column interconnects and has local interconnect 
regions driven by row and column interconnects. These blocks also have 
direct link interconnects for fast connections to and from a neighboring 
LAB. All blocks are fed by the row LAB clocks, labclk[7..0].
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TriMatrix Memory

Figure 2–21. Left-Facing M-RAM to Interconnect Interface Notes (1), (2)

Notes to Figure 2–21:
(1) Only R24 and C16 interconnects cross the M-RAM block boundaries.
(2) The right-facing M-RAM block has interface blocks on the right side, but none on the left. B1 to B6 and A1 to A6 

orientation is clipped across the vertical axis for right-facing M-RAM blocks.
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TriMatrix Memory

Figure 2–27. Read/Write Clock Mode in Simple Dual-Port Mode Notes (1), (2)

Notes to Figure 2–27:
(1) All registers shown except the rden register have asynchronous clear ports.
(2) Violating the setup or hold time on the address registers could corrupt the memory contents. This applies to both 

read and write operations.
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Digital Signal Processing Block

Figure 2–34. Adder/Output Blocks Note (1)

Notes to Figure 2–34:
(1) Adder/output block shown in Figure 2–34 is in 18 ×  18-bit mode. In 9 ×  9-bit mode, there are four adder/subtractor 

blocks and two summation blocks.
(2) These signals are either not registered, registered once, or registered twice to match the data path pipeline.
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Figure 2–70. Stratix I/O Banks Notes (1), (2), (3)

Notes to Figure 2–70:
(1) Figure 2–70 is a top view of the silicon die. This will correspond to a top-down view for non-flip-chip packages, but 

will be a reverse view for flip-chip packages.
(2) Figure 2–70 is a graphic representation only. See the device pin-outs on the web (www.altera.com) and the 

Quartus II software for exact locations.
(3) Banks 9 through 12 are enhanced PLL external clock output banks.
(4) If the high-speed differential I/O pins are not used for high-speed differential signaling, they can support all of the 

I/O standards except HSTL Class I and II, GTL, SSTL-18 Class II, PCI, PCI-X 1.0, and AGP 1× /2× .

(5) For guidelines for placing single-ended I/O pads next to differential I/O pads, see the Selectable I/O Standards in 
Stratix and Stratix GX Devices chapter in the Stratix Device Handbook, Volume 2.
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Each I/O bank has its own VCCIO pins. A single device can support 1.5-, 
1.8-, 2.5-, and 3.3-V interfaces; each bank can support a different standard 
independently. Each bank also has dedicated VREF pins to support any 
one of the voltage-referenced standards (such as SSTL-3) independently.

Each I/O bank can support multiple standards with the same VCCIO for 
input and output pins. Each bank can support one voltage-referenced 
I/O standard. For example, when VCCIO is 3.3 V, a bank can support 
LVTTL, LVCMOS, 3.3-V PCI, and SSTL-3 for inputs and outputs.

Differential On-Chip Termination

Stratix devices provide differential on-chip termination (LVDS I/O 
standard) to reduce reflections and maintain signal integrity. Differential 
on-chip termination simplifies board design by minimizing the number 
of external termination resistors required. Termination can be placed 
inside the package, eliminating small stubs that can still lead to 
reflections. The internal termination is designed using transistors in the 
linear region of operation. 

Stratix devices support internal differential termination with a nominal 
resistance value of 137.5 Ω for LVDS input receiver buffers. LVPECL 
signals require an external termination resistor. Figure 2–71 shows the 
device with differential termination.

SSTL-3 Class II v v v

AGP (1×  and 2× ) v v

CTT v v v

Table 2–32. I/O Support by Bank (Part 2 of 2)

I/O Standard Top & Bottom Banks 
(3, 4, 7 & 8)

Left & Right Banks 
(1, 2, 5 & 6)

Enhanced PLL External 
Clock Output Banks 

(9, 10, 11 & 12)
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1,020-pin 
FineLine 
BGA

Transmitter 
(4)

80 (12) 
(7)

840 12 
(2)

10 
(4)

10 
(4)

12 
(2)

20 20 20 20

840 (5), (8) 22 
(6)

22 
(6)

22 
(6)

22 
(6)

20 20 20 20

Receiver 80 (10) 
(7)

840 20 20 20 20 12 
(8)

10 
(10)

10 
(10)

12 (8)

840 (5), (8) 40 40 40 40 12 
(8)

10 
(10)

10 
(10)

12 (8)

1,508-pin 
FineLine 
BGA

Transmitter 
(4)

80 (36) 
(7)

840 12 
(8)

10 
(10)

10 
(10)

12 
(8)

20 20 20 20

840 (5),(8) 22 
(18)

22 
(18)

22 
(18)

22 
(18)

20 20 20 20

Receiver 80 (36) 
(7)

840 20 20 20 20 12 
(8)

10 
(10)

10 
(10)

12 (8)

840 (5),(8) 40 40 40 40 12 
(8)

10 
(10)

10 
(10)

12 (8)

Table 2–41. EP1S80 Differential Channels (Part 1 of 2) Note (1)

Package Transmitter/
Receiver

Total 
Channels

Maximum 
Speed 
(Mbps)

Center Fast PLLs Corner Fast PLLs (2), (3)

PLL1 PLL2 PLL3 PLL4 PLL7 PLL8 PLL9 PLL10

956-pin 
BGA

Transmitter 
(4)

80 (40) 
(7)

840 10 10 10 10 20 20 20 20

840 (5),(8) 20 20 20 20 20 20 20 20

Receiver 80 840 20 20 20 20 10 10 10 10

840 (5),(8) 40 40 40 40 10 10 10 10

1,020-pin 
FineLine 
BGA

Transmitter 
(4)

92 (12) 
(7)

840 10 
(2)

10 
(4)

10 
(4)

10 
(2)

20 20 20 20

840 (5),(8) 20 
(6)

20 
(6)

20 
(6)

20 
(6)

20 20 20 20

Receiver 90 (10) 
(7)

840 20 20 20 20 10 
(2)

10 
(3)

10 (3) 10 (2)

840 (5),(8) 40 40 40 40 10 
(2)

10 
(3)

10 (3) 10 (2)

Table 2–40. EP1S60 Differential Channels (Part 2 of 2) Note (1)

Package Transmitter/
Receiver

Total 
Channels

Maximum 
Speed 
(Mbps)

Center Fast PLLs Corner Fast PLLs (2), (3)

PLL1 PLL2 PLL3 PLL4 PLL7 PLL8 PLL9 PLL10 
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3. Configuration & Testing

IEEE Std. 1149.1 
(JTAG) 
Boundary-Scan 
Support

All Stratix® devices provide JTAG BST circuitry that complies with the 
IEEE Std. 1149.1a-1990 specification. JTAG boundary-scan testing can be 
performed either before or after, but not during configuration. Stratix 
devices can also use the JTAG port for configuration together with either 
the Quartus® II software or hardware using either Jam Files (.jam) or Jam 
Byte-Code Files (.jbc). 

Stratix devices support IOE I/O standard setting reconfiguration through 
the JTAG BST chain. The JTAG chain can update the I/O standard for all 
input and output pins any time before or during user mode through the 
CONFIG_IO instruction. You can use this ability for JTAG testing before 
configuration when some of the Stratix pins drive or receive from other 
devices on the board using voltage-referenced standards. Since the Stratix 
device may not be configured before JTAG testing, the I/O pins may not 
be configured for appropriate electrical standards for chip-to-chip 
communication. Programming those I/O standards via JTAG allows you 
to fully test the I/O connection to other devices.

The enhanced PLL reconfiguration bits are part of the JTAG chain before 
configuration and after power-up. After device configuration, the PLL 
reconfiguration bits are not part of the JTAG chain.

The JTAG pins support 1.5-V/1.8-V or 2.5-V/3.3-V I/O standards. The 
TDO pin voltage is determined by the VCCIO of the bank where it resides. 
The VCCSEL pin selects whether the JTAG inputs are 1.5-V, 1.8-V, 2.5-V, or 
3.3-V compatible. 

Stratix devices also use the JTAG port to monitor the logic operation of the 
device with the SignalTap® II embedded logic analyzer. Stratix devices 
support the JTAG instructions shown in Table 3–1.

The Quartus II software has an Auto Usercode feature where you can 
choose to use the checksum value of a programming file as the JTAG user 
code. If selected, the checksum is automatically loaded to the USERCODE 
register. In the Settings dialog box in the Assignments menu, click Device 
& Pin Options, then General, and then turn on the Auto Usercode 
option.

S51003-1.3
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Stratix Automated Single Event Upset (SEU) Detection

Local Update Mode

Local update mode is a simplified version of the remote update. This 
feature is intended for simple systems that need to load a single 
application configuration immediately upon power up without loading 
the factory configuration first. Local update designs have only one 
application configuration to load, so it does not require a factory 
configuration to determine which application configuration to use. 
Figure 3–4 shows the transition diagram for local update mode.

Figure 3–4. Local Update Transition Diagram

Stratix 
Automated 
Single Event 
Upset (SEU) 
Detection

Stratix devices offer on-chip circuitry for automated checking of single 
event upset (SEU) detection. FPGA devices that operate at high elevations 
or in close proximity to earth’s North or South Pole require periodic 
checks to ensure continued data integrity. The error detection cyclic 
redundancy check (CRC) feature controlled by the Device & Pin Options 
dialog box in the Quartus II software uses a 32-bit CRC circuit to ensure 
data reliability and is one of the best options for mitigating SEU.

nCONFIG

nCONFIG
Configuration
Error

Application
Configuration

Configuration
Error

Factory
Configuration

Power-Up
or nCONFIG
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Configuration & Testing

For Stratix, the CRC is computed by the Quartus II software and 
downloaded into the device as a part of the configuration bit stream. The 
CRC_ERROR pin reports a soft error when configuration SRAM data is 
corrupted, triggering device reconfiguration.

Custom-Built Circuitry

Dedicated circuitry is built in the Stratix devices to perform error 
detection automatically. You can use the built-in dedicated circuitry for 
error detection using CRC feature in Stratix devices, eliminating the need 
for external logic. This circuitry will perform error detection 
automatically when enabled. This error detection circuitry in Stratix 
devices constantly checks for errors in the configuration SRAM cells 
while the device is in user mode. You can monitor one external pin for the 
error and use it to trigger a re-configuration cycle. Select the desired time 
between checks by adjusting a built-in clock divider.

Software Interface

In the Quartus II software version 4.1 and later, you can turn on the 
automated error detection CRC feature in the Device & Pin Options 
dialog box. This dialog box allows you to enable the feature and set the 
internal frequency of the CRC between 400 kHz to 100 MHz. This controls 
the rate that the CRC circuitry verifies the internal configuration SRAM 
bits in the FPGA device.

For more information on CRC, see AN 357: Error Detection Using CRC in 
Altera FPGA Devices.

Temperature 
Sensing Diode

Stratix devices include a diode-connected transistor for use as a 
temperature sensor in power management. This diode is used with an 
external digital thermometer device such as a MAX1617A or MAX1619 
from MAXIM Integrated Products. These devices steer bias current 
through the Stratix diode, measuring forward voltage and converting this 
reading to temperature in the form of an 8-bit signed number (7 bits plus 
sign). The external device’s output represents the junction temperature of 
the Stratix device and can be used for intelligent power management.

The diode requires two pins (tempdiodep and tempdioden) on the 
Stratix device to connect to the external temperature-sensing device, as 
shown in Figure 3–5. The temperature sensing diode is a passive element 
and therefore can be used before the Stratix device is powered. 
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Operating Conditions

VCCIO Supply voltage for output 
buffers, 3.3-V operation

(4), (5) 3.00 (3.135) 3.60 (3.465) V

Supply voltage for output 
buffers, 2.5-V operation

(4) 2.375 2.625 V

Supply voltage for output 
buffers, 1.8-V operation

(4) 1.71 1.89 V

Supply voltage for output 
buffers, 1.5-V operation

(4) 1.4 1.6 V

VI Input voltage (3), (6) –0.5 4.0 V

VO Output voltage 0 VCCIO V

TJ Operating junction 
temperature

For commercial use 0 85 °C

For industrial use –40 100 °C

Table 4–3. Stratix Device DC Operating Conditions Note (7) (Part 1 of 2)

Symbol Parameter Conditions Minimum Typical Maximum Unit

II Input pin leakage 
current

VI = VCCIOmax to 0 V (8) –10 10 μA

IOZ Tri-stated I/O pin 
leakage current

VO = VCCIOmax to 0 V (8) –10 10 μA

ICC0 VCC supply current 
(standby) (All 
memory blocks in 
power-down mode)

VI = ground, no load, no 
toggling inputs

mA

EP1S10. VI  = ground, no 
load, no toggling inputs

37 mA

EP1S20. VI  = ground, no 
load, no toggling inputs

65 mA

EP1S25. VI  = ground, no 
load, no toggling inputs

90 mA

EP1S30. VI  = ground, no 
load, no toggling inputs

114 mA

EP1S40. VI  = ground, no 
load, no toggling inputs

145 mA

EP1S60. VI  = ground, no 
load, no toggling inputs

200 mA

EP1S80. VI  = ground, no 
load, no toggling inputs

277 mA

Table 4–2. Stratix Device Recommended Operating Conditions (Part 2 of 2)

Symbol Parameter Conditions Minimum  Maximum Unit
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tPIPE2OUTREG2ADD  2,002  2,203  2,533  2,980 ps

tPIPE2OUTREG4ADD  2,899  3,189  3,667  4,314 ps

tPD9  3,709  4,081  4,692  5,520 ps

tPD18  4,795  5,275  6,065  7,135 ps

tPD36  7,495  8,245  9,481  11,154 ps

tCLR 450  500  575  676  ps

tCLKHL 1,350  1,500  1,724  2,029  ps

Table 4–48. M512 Block Internal Timing Microparameters

Symbol
-5 -6 -7 -8

Unit
Min Max Min Max Min Max Min Max

tM512RC  3,340  3,816  4,387  5,162 ps

tM512WC  3,138  3,590  4,128  4,860 ps

tM512WERESU 110  123  141  166  ps

tM512WEREH 34  38  43  51  ps

tM512CLKENSU 215 215 247 290 ps

tM512CLKENH –70 –70 –81 –95 ps

tM512DATASU 110  123  141  166  ps

tM512DATAH 34  38  43  51  ps

tM512WADDRSU 110  123  141  166  ps

tM512WADDRH 34  38  43  51  ps

tM512RADDRSU 110  123  141  166  ps

tM512RADDRH 34  38  43  51  ps

tM512DATACO1  424  472  541  637 ps

tM512DATACO2  3,366  3,846  4,421  5,203 ps

tM512CLKHL 1,000  1,111  1,190  1,400  ps

tM512CLR 170  189  217  255  ps

Table 4–47. DSP Block Internal Timing Microparameters (Part 2 of 2)

Symbol
-5 -6 -7 -8

Unit
Min Max Min Max Min Max Min Max
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Tables 4–61 through 4–66 show the external timing parameters on column 
and row pins for EP1S20 devices.

Table 4–61. EP1S20 External I/O Timing on Column Pins Using Fast Regional Clock Networks Note (1)

Parameter
-5 Speed Grade -6 Speed Grade -7 Speed Grade -8 Speed Grade

Unit
Min Max Min Max Min Max Min Max

tINSU 2.065  2.245  2.576  NA  ns

tINH 0.000  0.000  0.000  NA  ns

tOUTCO 2.283 4.622 2.283 4.916 2.283 5.310 NA NA ns

tXZ 2.223 4.496 2.223 4.784 2.223 5.186 NA NA ns

tZX 2.223 4.496 2.223 4.784 2.223 5.186 NA NA ns

Table 4–62. EP1S20 External I/O Timing on Column Pins Using Regional Clock Networks Note (1)

Parameter
-5 Speed Grade -6 Speed Grade -7 Speed Grade -8 Speed Grade

Unit
Min Max Min Max Min Max Min Max

tINSU 1.541  1.680  1.931  NA  ns

tINH 0.000  0.000  0.000  NA  ns

tOUTCO 2.597 5.146 2.597 5.481 2.597 5.955 NA NA ns

tXZ 2.537 5.020 2.537 5.349 2.537 5.831 NA NA ns

tZX 2.537 5.020 2.537 5.349 2.537 5.831 NA NA ns

tINSUPLL 0.777  0.818  0.937  NA  ns

tINHPLL 0.000  0.000  0.000  NA  ns

tOUTCOPLL 1.296 2.690 1.296 2.801 1.296 2.876 NA NA ns

tXZPLL 1.236 2.564 1.236 2.669 1.236 2.752 NA NA ns

tZXPLL 1.236 2.564 1.236 2.669 1.236 2.752 NA NA ns
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Figure 4–6 shows the case where four IOE registers are located in two 
different I/O banks.

Figure 4–6. I/O Skew Across Two I/O Banks

Table 4–97 defines the timing parameters used to define the timing for 
horizontal I/O pins (side banks 1, 2, 5, 6) and vertical I/O pins (top and 
bottom banks 3, 4, 7, 8). The timing parameters define the skew within an 
I/O bank, across two neighboring I/O banks on the same side of the 
device, across all horizontal I/O banks, across all vertical I/O banks, and 
the skew for the overall device.

Table 4–97. Output Pin Timing Skew Definitions (Part 1 of 2)

Symbol Definition

tSB_HIO Row I/O (HIO) within one I/O bank (1)

tSB_VIO Column I/O (VIO) within one I/O bank (1)

tSS_HIO Row I/O (HIO) same side of the device, across two 
banks (2)

tSS_VIO Column I/O (VIO) same side of the device, across two 
banks (2)

Common Source of GCLK

I/O Bank

I/O Bank

I/O Pin A

I/O Pin B

I/O Pin C

I/O Pin D

I/O Pin A

I/O Pin B

I/O Pin C

I/O Pin D

I/O Pin Skew across
two Banks
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External I/O Delay Parameters

External I/O delay timing parameters for I/O standard input and output 
adders and programmable input and output delays are specified by 
speed grade independent of device density. All of the timing parameters 
in this section apply to both flip-chip and wire-bond packages.

Tables 4–103 and 4–104 show the input adder delays associated with 
column and row I/O pins. If an I/O standard is selected other than 3.3-V 
LVTTL or LVCMOS, add the selected delay to the external tINSU and 
tINSUPLL I/O parameters shown in Tables 4–54 through 4–96.

Table 4–103. Stratix I/O Standard Column Pin Input Delay Adders  

Parameter
-5 Speed Grade -6 Speed Grade -7 Speed Grade -8 Speed Grade

Unit
Min Max Min Max Min Max Min Max

LVCMOS  0  0  0  0 ps

3.3-V LVTTL  0  0  0  0 ps

2.5-V LVTTL  19  19  22  26 ps

1.8-V LVTTL  221  232  266  313 ps

1.5-V LVTTL  352  369  425  500 ps

GTL  –45  –48  –55  –64 ps

GTL+  –75  –79  –91  –107 ps

3.3-V PCI  0  0  0  0 ps

3.3-V PCI-X 1.0  0  0  0  0 ps

Compact PCI  0  0  0  0 ps

AGP 1×  0  0  0  0 ps

AGP 2×  0  0  0  0 ps

CTT  120  126  144  170 ps

SSTL-3 Class I  –162  –171  –196  –231 ps

SSTL-3 Class II  –162  –171  –196  –231 ps

SSTL-2 Class I  –202  –213  –244  –287 ps

SSTL-2 Class II  –202  –213  –244  –287 ps

SSTL-18 Class I  78  81  94  110 ps

SSTL-18 Class II  78  81  94  110 ps

1.5-V HSTL Class I  –76  –80  –92  –108 ps

1.5-V HSTL Class II  –76  –80  –92  –108 ps

1.8-V HSTL Class I  –52  –55  –63  –74 ps

1.8-V HSTL Class II  –52  –55  –63  –74 ps
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Table 4–122. Stratix Maximum Output Clock Rate for PLL[5, 6, 11, 12] Pins 
in Wire-Bond Packages (Part 1 of 2)

I/O Standard -6 Speed 
Grade

-7 Speed 
Grade

-8 Speed 
Grade Unit

LVTTL 175 150 150 MHz

2.5 V 175 150 150 MHz

1.8 V 175 150 150 MHz

1.5 V 175 150 150 MHz

LVCMOS 175 150 150 MHz

GTL 125 100 100 MHz

GTL+ 125 100 100 MHz

SSTL-3 Class I 110 90 90 MHz

SSTL-3 Class II 133 125 125 MHz

SSTL-2 Class I 166 133 133 MHz

SSTL-2 Class II 133 100 100 MHz

SSTL-18 Class I 110 100 100 MHz

SSTL-18 Class II 110 100 100 MHz

1.5-V HSTL Class I 167 167 167 MHz

1.5-V HSTL Class II 167 133 133 MHz

1.8-V HSTL Class I 167 167 167 MHz

1.8-V HSTL Class II 167 133 133 MHz

3.3-V PCI 167 167 167 MHz

3.3-V PCI-X 1.0 167 133 133 MHz

Compact PCI 175 150 150 MHz

AGP 1× 175 150 150 MHz

AGP 2× 175 150 150 MHz

CTT 125 100 100 MHz

Differential 1.5-V HSTL 
C1

167 133 133 MHz

Differential 1.8-V HSTL 
Class I

167 167 167 MHz

Differential 1.8-V HSTL 
Class II

167 133 133 MHz

Differential SSTL-2  (1) 110 100 100 MHz

LVPECL (2) 311 275 275 MHz

PCML (2) 250 200 200 MHz


