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Logic Elements

functions. Another special packing mode allows the register output to 
feed back into the LUT of the same LE so that the register is packed with 
its own fan-out LUT. This provides another mechanism for improved 
fitting. The LE can also drive out registered and unregistered versions of 
the LUT output.

LUT Chain & Register Chain

In addition to the three general routing outputs, the LEs within an LAB 
have LUT chain and register chain outputs. LUT chain connections allow 
LUTs within the same LAB to cascade together for wide input functions. 
Register chain outputs allow registers within the same LAB to cascade 
together. The register chain output allows an LAB to use LUTs for a single 
combinatorial function and the registers to be used for an unrelated shift 
register implementation. These resources speed up connections between 
LABs while saving local interconnect resources. See “MultiTrack 
Interconnect” on page 2–14 for more information on LUT chain and 
register chain connections.

addnsub Signal

The LE’s dynamic adder/subtractor feature saves logic resources by 
using one set of LEs to implement both an adder and a subtractor. This 
feature is controlled by the LAB-wide control signal addnsub. The 
addnsub signal sets the LAB to perform either A + B or A – B. The LUT 
computes addition, and subtraction is computed by adding the two’s 
complement of the intended subtractor. The LAB-wide signal converts to 
two’s complement by inverting the B bits within the LAB and setting 
carry-in = 1 to add one to the least significant bit (LSB). The LSB of an 
adder/subtractor must be placed in the first LE of the LAB, where the 
LAB-wide addnsub signal automatically sets the carry-in to 1. The 
Quartus II Compiler automatically places and uses the adder/subtractor 
feature when using adder/subtractor parameterized functions.

LE Operating Modes

The Stratix LE can operate in one of the following modes:

■ Normal mode
■ Dynamic arithmetic mode

Each mode uses LE resources differently. In each mode, eight available 
inputs to the LE—the four data inputs from the LAB local interconnect; 
carry-in0 and carry-in1 from the previous LE; the LAB carry-in 
from the previous carry-chain LAB; and the register chain connection—
are directed to different destinations to implement the desired logic 
function. LAB-wide signals provide clock, asynchronous clear, 
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asynchronous preset load, synchronous clear, synchronous load, and 
clock enable control for the register. These LAB-wide signals are available 
in all LE modes. The addnsub control signal is allowed in arithmetic 
mode. 

The Quartus II software, in conjunction with parameterized functions 
such as library of parameterized modules (LPM) functions, automatically 
chooses the appropriate mode for common functions such as counters, 
adders, subtractors, and arithmetic functions. If required, you can also 
create special-purpose functions that specify which LE operating mode to 
use for optimal performance.

Normal Mode

The normal mode is suitable for general logic applications and 
combinatorial functions. In normal mode, four data inputs from the LAB 
local interconnect are inputs to a four-input LUT (see Figure 2–6). The 
Quartus II Compiler automatically selects the carry-in or the data3 
signal as one of the inputs to the LUT. Each LE can use LUT chain 
connections to drive its combinatorial output directly to the next LE in the 
LAB. Asynchronous load data for the register comes from the data3 
input of the LE. LEs in normal mode support packed registers.

Figure 2–6. LE in Normal Mode

Note to Figure 2–6:
(1) This signal is only allowed in normal mode if the LE is at the end of an adder/subtractor chain.
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MultiTrack Interconnect

can drive other R8 interconnects to extend their range as well as C8 
interconnects for row-to-row connections. One R8 interconnect is faster 
than two R4 interconnects connected together.

R24 row interconnects span 24 LABs and provide the fastest resource for 
long row connections between LABs, TriMatrix memory, DSP blocks, and 
IOEs. The R24 row interconnects can cross M-RAM blocks. R24 row 
interconnects drive to other row or column interconnects at every fourth 
LAB and do not drive directly to LAB local interconnects. R24 row 
interconnects drive LAB local interconnects via R4 and C4 interconnects. 
R24 interconnects can drive R24, R4, C16, and C4 interconnects.

The column interconnect operates similarly to the row interconnect and 
vertically routes signals to and from LABs, TriMatrix memory, DSP 
blocks, and IOEs. Each column of LABs is served by a dedicated column 
interconnect, which vertically routes signals to and from LABs, TriMatrix 
memory and DSP blocks, and horizontal IOEs. These column resources 
include:

■ LUT chain interconnects within an LAB
■ Register chain interconnects within an LAB
■ C4 interconnects traversing a distance of four blocks in up and down 

direction
■ C8 interconnects traversing a distance of eight blocks in up and 

down direction
■ C16 column interconnects for high-speed vertical routing through 

the device

Stratix devices include an enhanced interconnect structure within LABs 
for routing LE output to LE input connections faster using LUT chain 
connections and register chain connections. The LUT chain connection 
allows the combinatorial output of an LE to directly drive the fast input 
of the LE right below it, bypassing the local interconnect. These resources 
can be used as a high-speed connection for wide fan-in functions from 
LE 1 to LE 10 in the same LAB. The register chain connection allows the 
register output of one LE to connect directly to the register input of the 
next LE in the LAB for fast shift registers. The Quartus II Compiler 
automatically takes advantage of these resources to improve utilization 
and performance. Figure 2–10 shows the LUT chain and register chain 
interconnects.
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TriMatrix Memory

1 Violating the setup or hold time on the address registers could 
corrupt the memory contents. This applies to both read and 
write operations.

Memory Modes

TriMatrix memory blocks include input registers that synchronize writes 
and output registers to pipeline designs and improve system 
performance. M4K and M-RAM memory blocks offer a true dual-port 
mode to support any combination of two-port operations: two reads, two 
writes, or one read and one write at two different clock frequencies. 
Figure 2–12 shows true dual-port memory.

Figure 2–12. True Dual-Port Memory Configuration

Configurations 512 × 1
256 × 2
128 × 4
64 × 8
64 × 9
32 × 16
32 × 18

4K × 1
2K × 2
1K × 4
512 × 8
512 × 9
256 × 16
256 × 18
128 × 32
128 × 36

64K × 8
64K × 9
32K × 16
32K × 18
16K × 32
16K × 36
8K × 64
8K × 72
4K × 128
4K × 144

Notes to Table 2–3:
(1) See Table 4–36 for maximum performance information.
(2) The M-RAM block does not support memory initializations. However, the 

M-RAM block can emulate a ROM function using a dual-port RAM bock. The 
Stratix device must write to the dual-port memory once and then disable the 
write-enable ports afterwards.

Table 2–3. TriMatrix Memory Features (Part 2 of 2)

Memory Feature M512 RAM Block 
(32 × 18 Bits)

M4K RAM Block 
(128 × 36 Bits)

M-RAM Block 
(4K × 144 Bits)

dataA[ ]
addressA[ ]
wrenA

   clockA

clockenA

qA[ ]
aclrA

dataB[ ]
addressB[ ]

wrenB

clockB   
clockenB

qB[ ]
aclrB

A B
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Figure 2–15. M512 RAM Block Control Signals
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Digital Signal Processing Block

Table 2–14 shows the summary of input register modes for the DSP block.

Multiplier

The multiplier supports 9 × 9-, 18 × 18-, or 36 × 36-bit multiplication. Each 
DSP block supports eight possible 9 × 9-bit or smaller multipliers. There 
are four multiplier blocks available for multipliers larger than 9 × 9 bits 
but smaller than 18 × 18 bits. There is one multiplier block available for 
multipliers larger than 18 × 18 bits but smaller than or equal to 36 × 36 
bits. The ability to have several small multipliers is useful in applications 
such as video processing. Large multipliers greater than 18 × 18 bits are 
useful for applications such as the mantissa multiplication of a single-
precision floating-point number.

The multiplier operands can be signed or unsigned numbers, where the 
result is signed if either input is signed as shown in Table 2–15. The 
sign_a and sign_b signals provide dynamic control of each operand’s 
representation: a logic 1 indicates the operand is a signed number, a logic 
0 indicates the operand is an unsigned number. These sign signals affect 
all multipliers and adders within a single DSP block and you can register 
them to match the data path pipeline. The multipliers are full precision 
(that is, 18 bits for the 18-bit multiply, 36-bits for the 36-bit multiply, and 
so on) regardless of whether sign_a or sign_b set the operands as 
signed or unsigned numbers.

Table 2–14. Input Register Modes

Register Input Mode 9 × 9 18 × 18 36 × 36

Parallel input v v v

Shift register input v v

Table 2–15. Multiplier Signed Representation

Data A Data B Result

Unsigned Unsigned Unsigned

Unsigned Signed Signed

Signed Unsigned Signed

Signed Signed Signed
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During switchover, the PLL VCO continues to run and will either slow 
down or speed up, generating frequency drift on the PLL outputs. The 
clock switchover transitions without any glitches. After the switch, there 
is a finite resynchronization period to lock onto new clock as the VCO 
ramps up. The exact amount of time it takes for the PLL to relock relates 
to the PLL configuration and may be adjusted by using the 
programmable bandwidth feature of the PLL. The specification for the 
maximum time to relock is 100 µs.

f For more information on clock switchover, see AN 313, Implementing 
Clock Switchover in Stratix & Stratix GX Devices.

PLL Reconfiguration

The PLL reconfiguration feature enables system logic to change Stratix 
device enhanced PLL counters and delay elements without reloading a 
Programmer Object File (.pof). This provides considerable flexibility for 
frequency synthesis, allowing real-time PLL frequency and output clock 
delay variation. You can sweep the PLL output frequencies and clock 
delay in prototype environments. The PLL reconfiguration feature can 
also dynamically or intelligently control system clock speeds or tCO 
delays in end systems.

Clock delay elements at each PLL output port implement variable delay. 
Figure 2–54 shows a diagram of the overall dynamic PLL control feature 
for the counters and the clock delay elements. The configuration time is 
less than 20 μs for the enhanced PLL using a input shift clock rate of 
22 MHz. The charge pump, loop filter components, and phase shifting 
using VCO phase taps cannot be dynamically adjusted.
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I/O Structure

Control Signals

The fast PLL has the same lock output, pllenable input, and areset 
input control signals as the enhanced PLL.

If the input clock stops and causes the PLL to lose lock, then the PLL must 
be reset for correct phase shift operation.

For more information on high-speed differential I/O support, see “High-
Speed Differential I/O Support” on page 2–130.

I/O Structure IOEs provide many features, including:

■ Dedicated differential and single-ended I/O buffers
■ 3.3-V, 64-bit, 66-MHz PCI compliance
■ 3.3-V, 64-bit, 133-MHz PCI-X 1.0 compliance
■ Joint Test Action Group (JTAG) boundary-scan test (BST) support
■ Differential on-chip termination for LVDS I/O standard
■ Programmable pull-up during configuration
■ Output drive strength control
■ Slew-rate control
■ Tri-state buffers
■ Bus-hold circuitry
■ Programmable pull-up resistors
■ Programmable input and output delays
■ Open-drain outputs
■ DQ and DQS I/O pins
■ Double-data rate (DDR) Registers

The IOE in Stratix devices contains a bidirectional I/O buffer, six 
registers, and a latch for a complete embedded bidirectional single data 
rate or DDR transfer. Figure 2–59 shows the Stratix IOE structure. The 
IOE contains two input registers (plus a latch), two output registers, and 
two output enable registers. The design can use both input registers and 
the latch to capture DDR input and both output registers to drive DDR 
outputs. Additionally, the design can use the output enable (OE) register 
for fast clock-to-output enable timing. The negative edge-clocked OE 
register is used for DDR SDRAM interfacing. The Quartus II software 
automatically duplicates a single OE register that controls multiple 
output or bidirectional pins.
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Figure 2–68. Output Timing Diagram in DDR Mode

The Stratix IOE operates in bidirectional DDR mode by combining the 
DDR input and DDR output configurations. Stratix device I/O pins 
transfer data on a DDR bidirectional bus to support DDR SDRAM. The 
negative-edge-clocked OE register holds the OE signal inactive until the 
falling edge of the clock. This is done to meet DDR SDRAM timing 
requirements.

External RAM Interfacing

Stratix devices support DDR SDRAM at up to 200 MHz (400-Mbps data 
rate) through dedicated phase-shift circuitry, QDR and QDRII SRAM 
interfaces up to 167 MHz, and ZBT SRAM interfaces up to 200 MHz. 
Stratix devices also provide preliminary support for reduced latency 
DRAM II (RLDRAM II) at rates up to 200 MHz through the dedicated 
phase-shift circuitry.

1 In addition to the required signals for external memory 
interfacing, Stratix devices offer the optional clock enable signal. 
By default the Quartus II software sets the clock enable signal 
high, which tells the output register to update with new values. 
The output registers hold their own values if the design sets the 
clock enable signal low. See Figure 2–64.

f To find out more about the DDR SDRAM specification, see the JEDEC 
web site (www.jedec.org). For information on memory controller 
megafunctions for Stratix devices, see the Altera web site 
(www.altera.com). See AN 342: Interfacing DDR SDRAM with Stratix & 
Stratix GX Devices for more information on DDR SDRAM interface in 
Stratix. Also see AN 349: QDR SRAM Controller Reference Design for 
Stratix & Stratix GX Devices and AN 329: ZBT SRAM Controller Reference 
Design for Stratix & Stratix GX Devices.
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■ RapidIO
■ HyperTransport

Dedicated Circuitry

Stratix devices support source-synchronous interfacing with LVDS, 
LVPECL, 3.3-V PCML, or HyperTransport signaling at up to 840 Mbps. 
Stratix devices can transmit or receive serial channels along with a 
low-speed or high-speed clock. The receiving device PLL multiplies the 
clock by a integer factor W (W = 1 through 32). For example, a 
HyperTransport application where the data rate is 800 Mbps and the 
clock rate is 400 MHz would require that W be set to 2. The SERDES factor 
J determines the parallel data width to deserialize from receivers or to 
serialize for transmitters. The SERDES factor J can be set to 4, 7, 8, or 10 
and does not have to equal the PLL clock-multiplication W value. For a J 
factor of 1, the Stratix device bypasses the SERDES block. For a J factor of 
2, the Stratix device bypasses the SERDES block, and the DDR input and 
output registers are used in the IOE. See Figure 2–73. 

Figure 2–73. High-Speed Differential I/O Receiver / Transmitter Interface Example

An external pin or global or regional clock can drive the fast PLLs, which 
can output up to three clocks: two multiplied high-speed differential I/O 
clocks to drive the SERDES block and/or external pin, and a low-speed 
clock to drive the logic array.
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DC & Switching Characteristics

Timing Model The DirectDrive™ technology and MultiTrack™ interconnect ensure 
predictable performance, accurate simulation, and accurate timing 
analysis across all Stratix device densities and speed grades. This section 
describes and specifies the performance, internal, external, and PLL 
timing specifications. 

All specifications are representative of worst-case supply voltage and 
junction temperature conditions.

Preliminary & Final Timing

Timing models can have either preliminary or final status. The Quartus II 
software issues an informational message during the design compilation 
if the timing models are preliminary. Table 4–35 shows the status of the 
Stratix device timing models.

Preliminary status means the timing model is subject to change. Initially, 
timing numbers are created using simulation results, process data, and 
other known parameters. These tests are used to make the preliminary 
numbers as close to the actual timing parameters as possible. 

Final timing numbers are based on actual device operation and testing. 
These numbers reflect the actual performance of the device under worst-
case voltage and junction temperature conditions.

Table 4–35. Stratix Device Timing Model Status

Device Preliminary Final

EP1S10 v

EP1S20 v

EP1S25 v

EP1S30 v

EP1S40 v

EP1S60 v

EP1S80 v
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Stratix External I/O Timing

These timing parameters are for both column IOE and row IOE pins. In 
EP1S30 devices and above, you can decrease the tSU time by using the 
FPLLCLK, but may get positive hold time in EP1S60 and EP1S80 devices. 
You should use the Quartus II software to verify the external devices for 
any pin. 

Tables 4–55 through 4–60 show the external timing parameters on column 
and row pins for EP1S10 devices.  

Table 4–55. EP1S10 External I/O Timing on Column Pins Using Fast Regional Clock Networks Note (1)

Parameter
-5 Speed Grade -6 Speed Grade -7 Speed Grade -8 Speed Grade

Unit
Min Max Min Max Min Max Min Max

tINSU 2.238 2.325 2.668 NA ns

tINH 0.000 0.000 0.000 NA ns

tOUTCO 2.240 4.549 2.240 4.836 2.240 5.218 NA NA ns

tXZ 2.180 4.423 2.180 4.704 2.180 5.094 NA NA ns

tZX 2.180 4.423 2.180 4.704 2.180 5.094 NA NA ns

Table 4–56. EP1S10 External I/O Timing on Column Pins Using Regional Clock Networks Note (1)

Parameter
-5 Speed Grade -6 Speed Grade -7 Speed Grade -8 Speed Grade

Unit
Min Max Min Max Min Max

tINSU 1.992 2.054 2.359 NA ns

tINH 0.000 0.000 0.000 NA ns

tOUTCO 2.395 4.795 2.395 5.107 2.395 5.527 NA NA ns

tXZ 2.335 4.669 2.335 4.975 2.335 5.403 NA NA ns

tZX 2.335 4.669 2.335 4.975 2.335 5.403 NA NA ns

tINSUPLL 0.975 0.985 1.097 NA ns

tINHPLL 0.000 0.000 0.000 NA NA ns

tOUTCOPLL 1.262 2.636 1.262 2.680 1.262 2.769 NA NA ns

tXZPLL 1.202 2.510 1.202 2.548 1.202 2.645 NA NA ns

tZXPLL 1.202 2.510 1.202 2.548 1.202 2.645 NA NA ns
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Table 4–57. EP1S10 External I/O Timing on Column Pins Using Global Clock Networks Note (1)

Parameter
-5 Speed Grade -6 Speed Grade -7 Speed Grade -8 Speed Grade

Unit
Min Max Min Max Min Max Min Max

tINSU 1.647 1.692 1.940 NA ns

tINH 0.000 0.000 0.000 NA ns

tOUTCO 2.619 5.184 2.619 5.515 2.619 5.999 NA NA ns

tXZ 2.559 5.058 2.559 5.383 2.559 5.875 NA NA ns

tZX 2.559 5.058 2.559 5.383 2.559 5.875 NA NA ns

tINSUPLL 1.239 1.229 1.374 NA ns

tINHPLL 0.000 0.000 0.000 NA ns

tOUTCOPLL 1.109 2.372 1.109 2.436 1.109 2.492 NA NA ns

tXZPLL 1.049 2.246 1.049 2.304 1.049 2.368 NA NA ns

tZXPLL 1.049 2.246 1.049 2.304 1.049 2.368 NA NA ns

Table 4–58. EP1S10 External I/O Timing on Row Pin Using Fast Regional Clock Network Note (1)

Parameter
-5 Speed Grade -6 Speed Grade -7 Speed Grade -8 Speed Grade

Unit
Min Max Min Max Min Max Min Max

tINSU 2.212 2.403 2.759 NA ns

tINH 0.000 0.000 0.000 NA ns

tOUTCO 2.391 4.838 2.391 5.159 2.391 5.569 NA NA ns

tXZ 2.418 4.892 2.418 5.215 2.418 5.637 NA NA ns

tZX 2.418 4.892 2.418 5.215 2.418 5.637 NA NA ns
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Table 4–63. EP1S20 External I/O Timing on Column Pins Using Global Clock Networks Note (1)

Parameter
-5 Speed Grade -6 Speed Grade -7 Speed Grade -8 Speed Grade

Unit
Min Max Min Max Min Max Min Max

tINSU 1.351  1.479  1.699  NA  ns

tINH 0.000  0.000  0.000  NA  ns

tOUTCO 2.732 5.380 2.732 5.728 2.732 6.240 NA NA ns

tXZ 2.672 5.254 2.672 5.596 2.672 6.116 NA NA ns

tZX 2.672 5.254 2.672 5.596 2.672 6.116 NA NA ns

tINSUPLL 0.923  0.971  1.098  NA  ns

tINHPLL 0.000  0.000  0.000  NA  ns

tOUTCOPLL 1.210 2.544 1.210 2.648 1.210 2.715 NA NA ns

tXZPLL 1.150 2.418 1.150 2.516 1.150 2.591 NA NA ns

tZXPLL 1.150 2.418 1.150 2.516 1.150 2.591 NA NA ns

Table 4–64. EP1S20 External I/O Timing on Row Pins Using Fast Regional Clock Networks Note (1)

Parameter
-5 Speed Grade -6 Speed Grade -7 Speed Grade -8 Speed Grade

Unit
Min Max Min Max Min Max Min Max

tINSU 2.032  2.207  2.535  NA  ns

tINH 0.000  0.000  0.000  NA  ns

tOUTCO 2.492 5.018 2.492 5.355 2.492 5.793 NA NA ns

tXZ 2.519 5.072 2.519 5.411 2.519 5.861 NA NA ns

tZX 2.519 5.072 2.519 5.411 2.519 5.861 NA NA ns
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Figure 4–7. Output Delay Timing Reporting Setup Modeled by Quartus II

Notes to Figure 4–7:
(1) Output pin timing is reported at the output pin of the FPGA device. Additional 

delays for loading and board trace delay need to be accounted for with IBIS model 
simulations.

(2) VCCINT is 1.42-V unless otherwise specified.

VCCIO

GND

OUTPUT

GND

RT

VTT

RS

CL

Output
Buffer

Single-Ended Outputs

VMEAS

GND

RUP

VCCIO

RDN

Table 4–101. Reporting Methodology For Maximum Timing For Single-Ended Output Pins (Part 1 of 2) 
Notes (1), (2), (3)

I/O Standard

Loading and Termination Measurement 
Point

RUP

Ω
RDN

Ω
RS

Ω
RT

Ω
VCCIO

(V)
VTT
(V)

CL

(pF)
VMEAS

3.3-V LVTTL – – 0 – 2.950 2.95 10 1.500

2.5-V LVTTL – – 0 – 2.370 2.37 10 1.200

1.8-V LVTTL – – 0 – 1.650 1.65 10 0.880

1.5-V LVTTL – – 0 – 1.400 1.40 10 0.750

3.3-V LVCMOS – – 0 – 2.950 2.95 10 1.500

2.5-V LVCMOS – – 0 – 2.370 2.37 10 1.200

1.8-V LVCMOS – – 0 – 1.650 1.65 10 0.880

1.5-V LVCMOS – – 0 – 1.400 1.40 10 0.750

3.3-V GTL – – 0 25 2.950 1.14 30 0.740

2.5-V GTL – – 0 25 2.370 1.14 30 0.740

3.3-V GTL+ – – 0 25 2.950 1.35 30 0.880

2.5-V GTL+ – – 0 25 2.370 1.35 30 0.880

3.3-V SSTL-3 Class II – – 25 25 2.950 1.25 30 1.250



Altera Corporation 4–67
January 2006 Stratix Device Handbook, Volume 1

DC & Switching Characteristics

Table 4–104. Stratix I/O Standard Row Pin Input Delay Adders 

Parameter
-5 Speed Grade -6 Speed Grade -7 Speed Grade -8 Speed Grade

Unit
Min Max Min Max Min Max Min Max

LVCMOS  0  0  0  0 ps

3.3-V LVTTL  0  0  0  0 ps

2.5-V LVTTL  21  22  25  29 ps

1.8-V LVTTL  181  190  218  257 ps

1.5-V LVTTL  300  315  362  426 ps

GTL+  –152  –160  –184  –216 ps

CTT  –168  –177  –203  –239 ps

SSTL-3 Class I  –193  –203  –234  –275 ps

SSTL-3 Class II  –193  –203  –234  –275 ps

SSTL-2 Class I  –262  –276  –317  –373 ps

SSTL-2 Class II  –262  –276  –317  –373 ps

SSTL-18 Class I  –105  –111  –127  –150 ps

SSTL-18 Class II  0  0  0  0 ps

1.5-V HSTL Class I  –151  –159  –183  –215 ps

1.8-V HSTL Class I  –126  –133  –153  –179 ps

LVDS  –149 –157  –180  –212 ps

LVPECL  –149 –157  –180  –212 ps

3.3-V PCML  –65  –69  –79  –93 ps

HyperTransport  77  –81  –93  –110 ps
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DLL 
Specifications

Table 4–134 reports the jitter for the DLL in the DQS phase shift reference 
circuit.

f For more information on DLL jitter, see the DDR SRAM section in the 
Stratix Architecture chapter of the Stratix Device Handbook, Volume 1.

Table 4–135 lists the Stratix DLL low frequency limit for full phase shift 
across all PVT conditions. The Stratix DLL can be used below these 
frequencies, but it will not achieve the full phase shift requested across all 

tARESET Minimum pulse width on areset 
signal

10 ns

Notes to Tables 4–131 through 4–133:
(1) See “Maximum Input & Output Clock Rates” on page 4–76.
(2) PLLs 7, 8, 9, and 10 in the EP1S80 device support up to 717-MHz input and output.

(3) Use this equation (fO U T = fI N * ml(n × post-scale counter)) in conjunction with the specified fI N P F D  and fV C O 
ranges to determine the allowed PLL settings.

(4) When using the SERDES, high-speed differential I/O mode supports a maximum output frequency of 210 MHz 
to the global or regional clocks (that is, the maximum data rate 840 Mbps divided by the smallest SERDES J factor 
of 4).

(5) Refer to the section “High-Speed I/O Specification” on page 4–87 for more information.
(6) This parameter is for high-speed differential I/O mode only.
(7) These counters have a maximum of 32 if programmed for 50/50 duty cycle. Otherwise, they have a maximum 

of 16. 
(8) High-speed differential I/O mode supports W = 1 to 16 and J = 4, 7, 8, or 10.

Table 4–133. Fast PLL Specifications for -8 Speed Grades (Part 2 of 2)

Symbol Parameter Min Max Unit

Table 4–134. DLL Jitter for DQS Phase Shift Reference Circuit

Frequency (MHz) DLL Jitter (ps)

197 to 200 ± 100

160 to 196 ± 300

100 to 159 ± 500


