Intel - EP1S80F1020I7 Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	7904
Number of Logic Elements/Cells	79040
Total RAM Bits	7427520
Number of I/O	773
Number of Gates	-
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	1020-BBGA
Supplier Device Package	1020-FBGA (33x33)
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep1s80f1020i7

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

About This Handbook

This handbook provides comprehensive information about the Altera® Stratix family of devices.

How to Find You can find more information in the following ways: Information The Adobe Acrobat Find feature, which searches the text of a PDF document. Click the binoculars toolbar icon to open the Find dialog box. Acrobat bookmarks, which serve as an additional table of contents in PDF documents. Thumbnail icons, which provide miniature previews of each page, provide a link to the pages. Numerous links, shown in green text, which allow you to jump to related information.

How to Contact Altera

For the most up-to-date information about Altera products, go to the Altera world-wide web site at www.altera.com. For technical support on this product, go to www.altera.com/mysupport. For additional information about Altera products, consult the sources shown below.

Information Type	USA & Canada	All Other Locations
Technical support	www.altera.com/mysupport/	www.altera.com/mysupport/
	(800) 800-EPLD (3753) (7:00 a.m. to 5:00 p.m. Pacific Time)	+1 408-544-8767 7:00 a.m. to 5:00 p.m. (GMT -8:00) Pacific Time
Product literature	www.altera.com	www.altera.com
Altera literature services	literature@altera.com	literature@altera.com
Non-technical customer service	(800) 767-3753	+ 1 408-544-7000 7:00 a.m. to 5:00 p.m. (GMT -8:00) Pacific Time
FTP site	ftp.altera.com	ftp.altera.com

Typographic Conventions

This document uses the typographic conventions shown below.

Visual Cue	Meaning
Bold Type with Initial Capital Letters	Command names, dialog box titles, checkbox options, and dialog box options are shown in bold, initial capital letters. Example: Save As dialog box.
bold type	External timing parameters, directory names, project names, disk drive names, filenames, filename extensions, and software utility names are shown in bold type. Examples: f _{MAX} , \qdesigns directory, d: drive, chiptrip.gdf file.
Italic Type with Initial Capital Letters	Document titles are shown in italic type with initial capital letters. Example: AN 75: High-Speed Board Designs.
Italic type	Internal timing parameters and variables are shown in italic type. Examples: $t_{P A}$, $n + 1$.
	Example: <i>stile names, sproject names.</i>
Initial Capital Letters	Keyboard keys and menu names are shown with initial capital letters. Examples: Delete key, the Options menu.
"Subheading Title"	References to sections within a document and titles of on-line help topics are shown in quotation marks. Example: "Typographic Conventions."
Courier type	Signal and port names are shown in lowercase Courier type. Examples: data1, tdi, input. Active-low signals are denoted by suffix n, e.g., resetn.
	Anything that must be typed exactly as it appears is shown in Courier type. For example: c:\qdesigns\tutorial\chiptrip.gdf. Also, sections of an actual file, such as a Report File, references to parts of files (e.g., the AHDL keyword SUBDESIGN), as well as logic function names (e.g., TRI) are shown in Courier.
1., 2., 3., and a., b., c., etc.	Numbered steps are used in a list of items when the sequence of the items is important, such as the steps listed in a procedure.
••	Bullets are used in a list of items when the sequence of the items is not important.
\checkmark	The checkmark indicates a procedure that consists of one step only.
	The hand points to information that requires special attention.
4	The angled arrow indicates you should press the Enter key.
•••	The feet direct you to more information on a particular topic.

row connections in a four-LAB region. Every LAB has its own set of R4 interconnects to drive either left or right. Figure 2–9 shows R4 interconnect connections from an LAB. R4 interconnects can drive and be driven by DSP blocks and RAM blocks and horizontal IOEs. For LAB interfacing, a primary LAB or LAB neighbor can drive a given R4 interconnect. For R4 interconnects that drive to the right, the primary LAB and right neighbor can drive on to the interconnect. For R4 interconnects can drive other R4 interconnects that drive to the left, the primary LAB and its left neighbor can drive on to the interconnects can drive other R4 interconnects to extend the range of LABs they can drive. R4 interconnects can also drive C4 and C16 interconnects for connections from one row to another. Additionally, R4 interconnects can drive R24 interconnects.

Notes to Figure 2–9:

(1) C4 interconnects can drive R4 interconnects.

(2) This pattern is repeated for every LAB in the LAB row.

The R8 interconnects span eight LABs, M512 or M4K RAM blocks, or DSP blocks to the right or left from a source LAB. These resources are used for fast row connections in an eight-LAB region. Every LAB has its own set of R8 interconnects to drive either left or right. R8 interconnect connections between LABs in a row are similar to the R4 connections shown in Figure 2–9, with the exception that they connect to eight LABs to the right or left, not four. Like R4 interconnects, R8 interconnects can drive and be driven by all types of architecture blocks. R8 interconnects

Table 2–3. TriMatrix Memory Features (Part 2 of 2)			
Memory Feature	M512 RAM Block (32 × 18 Bits)	M4K RAM Block (128 × 36 Bits)	M-RAM Block (4K × 144 Bits)
Configurations	512×1	$4K \times 1$	64K × 8
	256 × 2	$2K \times 2$	64K × 9
	128×4	$1K \times 4$	32K × 16
	64 imes 8	512 × 8	32K × 18
	64 imes 9	512 × 9	16K × 32
	32×16	256×16	16K × 36
	32 × 18	256 × 18	$8K \times 64$
		128 × 32	$8K \times 72$
		128×36	4K × 128
			4K × 144

Notes to Table 2–3:

(1) See Table 4–36 for maximum performance information.

(2) The M-RAM block does not support memory initializations. However, the M-RAM block can emulate a ROM function using a dual-port RAM bock. The Stratix device must write to the dual-port memory once and then disable the write-enable ports afterwards.

Violating the setup or hold time on the address registers could corrupt the memory contents. This applies to both read and write operations.

Memory Modes

TriMatrix memory blocks include input registers that synchronize writes and output registers to pipeline designs and improve system performance. M4K and M-RAM memory blocks offer a true dual-port mode to support any combination of two-port operations: two reads, two writes, or one read and one write at two different clock frequencies. Figure 2–12 shows true dual-port memory.

Figure 2–12. True Dual-Port Memory Configuration

Table 2–14 shows the summary	y of input regist	ter modes for the D	SP block.
------------------------------	-------------------	---------------------	-----------

Table 2–14. Input Register Modes			
Register Input Mode	9 × 9	18 × 18	36 × 36
Parallel input	\checkmark	~	\checkmark
Shift register input	\checkmark	~	

Multiplier

The multiplier supports 9×9 -, 18×18 -, or 36×36 -bit multiplication. Each DSP block supports eight possible 9×9 -bit or smaller multipliers. There are four multiplier blocks available for multipliers larger than 9×9 bits but smaller than 18×18 bits. There is one multiplier block available for multipliers larger than 18×18 bits but smaller than or equal to 36×36 bits. The ability to have several small multipliers is useful in applications such as video processing. Large multipliers greater than 18×18 bits are useful for applications such as the mantissa multiplication of a single-precision floating-point number.

The multiplier operands can be signed or unsigned numbers, where the result is signed if either input is signed as shown in Table 2–15. The sign_a and sign_b signals provide dynamic control of each operand's representation: a logic 1 indicates the operand is a signed number, a logic 0 indicates the operand is an unsigned number. These sign signals affect all multipliers and adders within a single DSP block and you can register them to match the data path pipeline. The multipliers are full precision (that is, 18 bits for the 18-bit multiply, 36-bits for the 36-bit multiply, and so on) regardless of whether sign_a or sign_b set the operands as signed or unsigned numbers.

Table 2–15. Multiplier Signed Representation			
Data A Data B Result			
Unsigned	Unsigned	Unsigned	
Unsigned	Signed	Signed	
Signed	Unsigned	Signed	
Signed	Signed	Signed	

clock signals are routed from LAB row clocks and are generated from
specific LAB rows at the DSP block interface. The LAB row source for
control signals, data inputs, and outputs is shown in Table 2–17.

Table 2–17. DSP Block Signal Sources & Destinations			
LAB Row at Interface	Control Signals Generated	Data Inputs	Data Outputs
1	signa	A1[170]	OA[170]
2	aclr0 accum_sload0	B1[170]	OB[170]
3	addnsub1 clock0 ena0	A2[170]	OC[170]
4	aclr1 clock1 enal	B2[170]	OD[170]
5	aclr2 clock2 ena2	A3[170]	OE[170]
6	sign_b clock3 ena3	B3[170]	OF[170]
7	clear3 accum_sload1	A4[170]	OG[170]
8	addnsub3	B4[170]	OH[170]

PLLs & Clock Networks

Stratix devices provide a hierarchical clock structure and multiple PLLs with advanced features. The large number of clocking resources in combination with the clock synthesis precision provided by enhanced and fast PLLs provides a complete clock management solution.

Global & Hierarchical Clocking

Stratix devices provide 16 dedicated global clock networks, 16 regional clock networks (four per device quadrant), and 8 dedicated fast regional clock networks (for EP1S10, EP1S20, and EP1S25 devices), and 16 dedicated fast regional clock networks (for EP1S30 EP1S40, and EP1S60, and EP1S80 devices). These clocks are organized into a hierarchical clock structure that allows for up to 22 clocks per device region with low skew and delay. This hierarchical clocking scheme provides up to 48 unique clock domains within Stratix devices.

resynchronization or relock period. The clkena signal can also disable clock outputs if the system is not tolerant to frequency overshoot during resynchronization.

The extclkena signals work in the same way as the clkena signals, but they control the external clock output counters (e0, e1, e2, and e3). Upon re-enabling, the PLL does not need a resynchronization or relock period unless the PLL is using external feedback mode. In order to lock in external feedback mode, the external output must drive the board trace back to the FBIN pin.

Fast PLLs

Stratix devices contain up to eight fast PLLs with high-speed serial interfacing ability, along with general-purpose features. Figure 2–58 shows a diagram of the fast PLL.

•

For more information on I/O standards supported by Stratix devices, see the *Selectable I/O Standards in Stratix & Stratix GX Devices* chapter of the *Stratix Device Handbook, Volume* 2.

Stratix devices contain eight I/O banks in addition to the four enhanced PLL external clock out banks, as shown in Figure 2–70. The four I/O banks on the right and left of the device contain circuitry to support high-speed differential I/O for LVDS, LVPECL, 3.3-V PCML, and HyperTransport inputs and outputs. These banks support all I/O standards listed in Table 2–31 except PCI I/O pins or PCI-X 1.0, GTL, SSTL-18 Class II, and HSTL Class II outputs. The top and bottom I/O banks support all single-ended I/O standards. Additionally, Stratix devices support four enhanced PLL external clock output banks, allowing clock output capabilities such as differential support for SSTL and HSTL. Table 2–32 shows I/O standard support for each I/O bank.

Table 2–32. I/O Support by Bank (Part 1 of 2)			
I/O Standard	Top & Bottom Banks (3, 4, 7 & 8)	Left & Right Banks (1, 2, 5 & 6)	Enhanced PLL External Clock Output Banks (9, 10, 11 & 12)
LVTTL	\checkmark	\checkmark	 Image: A set of the set of the
LVCMOS	\checkmark	\checkmark	~
2.5 V	\checkmark	\checkmark	~
1.8 V	\checkmark	\checkmark	~
1.5 V	\checkmark	\checkmark	~
3.3-V PCI	\checkmark		~
3.3-V PCI-X 1.0	\checkmark		~
LVPECL		\checkmark	~
3.3-V PCML		\checkmark	~
LVDS		\checkmark	~
HyperTransport technology		\checkmark	~
Differential HSTL (clock inputs)	\checkmark	\checkmark	
Differential HSTL (clock outputs)			~
Differential SSTL (clock outputs)			~
3.3-V GTL	~		✓
3.3-V GTL+	\checkmark	\checkmark	~
1.5-V HSTL Class I	\checkmark	\checkmark	~
1.5-V HSTL Class II	\checkmark		~
1.8-V HSTL Class I	\checkmark	\checkmark	~
1.8-V HSTL Class II	\checkmark		~
SSTL-18 Class I	\checkmark	\checkmark	✓
SSTL-18 Class II	\checkmark		✓
SSTL-2 Class I	\checkmark	\checkmark	✓
SSTL-2 Class II	\checkmark	\checkmark	~
SSTL-3 Class I	\checkmark	\checkmark	✓

Table 2–32 shows I/O standard support for each I/O bank.

Figure 2–75. Fast PLL & Channel Layout in the EP1S30 to EP1S80 Devices Note (1)

Notes to Figure 2-75:

- (1) Wire-bond packages support up to 624 Mbps.
- (2) See Table 2–38 through 2–41 for the number of channels each device supports.
- (3) There is a multiplexer here to select the PLL clock source. If a PLL uses this multiplexer to clock channels outside of its bank quadrant, those clocked channels support up to 840 Mbps for "high" speed channels and 462 Mbps for "low" speed channels as labeled in the device pin-outs at www.altera.com.

- Stratix, Stratix II, Cyclone[®], and Cyclone II devices must be within the first 17 devices in a JTAG chain. All of these devices have the same JTAG controller. If any of the Stratix, Stratix II, Cyclone, and Cyclone II devices are in the 18th or after they will fail configuration. This does not affect SignalTap II.
- For more information on JTAG, see the following documents:
 - AN 39: IEEE Std. 1149.1 (JTAG) Boundary-Scan Testing in Altera Devices
 - Jam Programming & Test Language Specification

SignalTap II Embedded Logic Analyzer

Stratix devices feature the SignalTap II embedded logic analyzer, which monitors design operation over a period of time through the IEEE Std. 1149.1 (JTAG) circuitry. You can analyze internal logic at speed without bringing internal signals to the I/O pins. This feature is particularly important for advanced packages, such as FineLine BGA[®] packages, because it can be difficult to add a connection to a pin during the debugging process after a board is designed and manufactured.

Configuration

The logic, circuitry, and interconnects in the Stratix architecture are configured with CMOS SRAM elements. Altera® devices are reconfigurable. Because every device is tested with a high-coverage production test program, you do not have to perform fault testing and can focus on simulation and design verification.

Stratix devices are configured at system power-up with data stored in an Altera serial configuration device or provided by a system controller. Altera offers in-system programmability (ISP)-capable configuration devices that configure Stratix devices via a serial data stream. Stratix devices can be configured in under 100 ms using 8-bit parallel data at 100 MHz. The Stratix device's optimized interface allows microprocessors to configure it serially or in parallel, and synchronously or asynchronously. The interface also enables microprocessors to treat Stratix devices as memory and configure them by writing to a virtual memory location, making reconfigured in-circuit by resetting the device and loading new data. Real-time changes can be made during system operation, enabling innovative reconfigurable computing applications.

Operating Modes

The Stratix architecture uses SRAM configuration elements that require configuration data to be loaded each time the circuit powers up. The process of physically loading the SRAM data into the device is called configuration. During initialization, which occurs immediately after

Figure 3–5. External Temperature-Sensing Diode

Table 3–6 shows the specifications for bias voltage and current of the Stratix temperature sensing diode.

Table 3–6. Temperature-Sensing Diode Electrical Characteristics				
Parameter Minimum Typical Maximum Unit				
l _{BIAS} high	80	100	120	μA
I _{BIAS} low	8	10	12	μA
$V_{BP} - V_{BN}$	0.3		0.9	V
V _{BN}		0.7		V
Series resistance			3	W

Г

ladie 4–40. M512 Block Internal Timing Microparameter Descriptions		
Symbol	Parameter	
t _{M512RC}	Synchronous read cycle time	
t _{M512WC}	Synchronous write cycle time	
t _{M512WERESU}	Write or read enable setup time before clock	
t _{M512WEREH}	Write or read enable hold time after clock	
t _{M512CLKENSU}	Clock enable setup time before clock	
t _{M512CLKENH}	Clock enable hold time after clock	
t _{M512DATASU}	Data setup time before clock	
t _{M512DATAH}	Data hold time after clock	
t _{M512WADDRSU}	Write address setup time before clock	
t _{m512WADDRH}	Write address hold time after clock	
t _{M512RADDRSU}	Read address setup time before clock	
t _{M512RADDRH}	Read address hold time after clock	
t _{M512DATACO1}	Clock-to-output delay when using output registers	
t _{M512DATACO2}	Clock-to-output delay without output registers	
t _{M512CLKHL}	Register minimum clock high or low time. This is a limit on the min time for the clock on the registers in these blocks. The actual performance is dependent upon the internal point-to-point delays in the blocks and may give slower performance as shown in Table 4–36 on page 4–20 and as reported by the timing analyzer in the Quartus II software.	
t _{M512CLR}	Minimum clear pulse width	

Table 4–41. M4K Block Internal Timing Microparameter Descriptions (Part 1 of 2)

Symbol	Parameter
t _{M4KRC}	Synchronous read cycle time
t _{M4KWC}	Synchronous write cycle time
t _{M4KWERESU}	Write or read enable setup time before clock
t _{M4KWEREH}	Write or read enable hold time after clock
t _{M4KCLKENSU}	Clock enable setup time before clock
t _{M4KCLKENH}	Clock enable hold time after clock
t _{M4KBESU}	Byte enable setup time before clock
t _{M4KBEH}	Byte enable hold time after clock
t _{M4KDATAASU}	A port data setup time before clock

Table 4–52 shows the external I/O timing parameters when using fast regional clock networks.

Table 4–52. Stratix Fast Regional Clock External I/O Timing Parameters Notes (1), (2)

Symbol	Parameter
t _{INSU}	Setup time for input or bidirectional pin using IOE input register with fast regional clock fed by FCLK pin
t _{INH}	Hold time for input or bidirectional pin using IOE input register with fast regional clock fed by FCLK pin
t _{outco}	Clock-to-output delay output or bidirectional pin using IOE output register with fast regional clock fed by FCLK pin
t _{XZ}	Synchronous IOE output enable register to output pin disable delay using fast regional clock fed by FCLK pin
t _{ZX}	Synchronous IOE output enable register to output pin enable delay using fast regional clock fed by FCLK pin

Notes to Table 4–52:

- (1) These timing parameters are sample-tested only.
- (2) These timing parameters are for column and row IOE pins. You should use the Quartus II software to verify the external timing for any pin.

Table 4–53 shows the external I/O timing parameters when using regional clock networks.

Table 4–53.	Stratix Regional	Clock External I/O	Timing Parameters	(Part 1
of 2) Notes ((1), (2)			

Symbol	Parameter
t _{INSU}	Setup time for input or bidirectional pin using IOE input register with regional clock fed by CLK pin
t _{INH}	Hold time for input or bidirectional pin using IOE input register with regional clock fed by CLK pin
t _{outco}	Clock-to-output delay output or bidirectional pin using IOE output register with regional clock fed by CLK pin
t _{INSUPLL}	Setup time for input or bidirectional pin using IOE input register with regional clock fed by Enhanced PLL with default phase setting
t _{INHPLL}	Hold time for input or bidirectional pin using IOE input register with regional clock fed by Enhanced PLL with default phase setting
t _{OUTCOPLL}	Clock-to-output delay output or bidirectional pin using IOE output register with regional clock Enhanced PLL with default phase setting

Tables 4–67 through 4–72 show the external timing parameters on column and row pins for EP1S25 devices.

Table 4–67. EP1S25 External I/O Timing on Column Pins Using Fast Regional Clock Networks											
Parameter	-5 Speed Grade		-6 Spee	d Grade	ide -7 Speed Grade -8 Speed Grade			d Grade	1114		
	Min	Max	Min	Max	Min	Max	Min	Max	Unit		
t _{INSU}	2.412		2.613		2.968		3.468		ns		
t _{INH}	0.000		0.000		0.000		0.000		ns		
t _{OUTCO}	2.196	4.475	2.196	4.748	2.196	5.118	2.196	5.603	ns		
t _{xz}	2.136	4.349	2.136	4.616	2.136	4.994	2.136	5.488	ns		
t _{ZX}	2.136	4.349	2.136	4.616	2.136	4.994	2.136	5.488	ns		

Table 4–68. EP1S25 External I/O Timing on Column Pins Using Regional Clock Networks											
Parameter	-5 Spee	d Grade	-6 Spee	d Grade	-7 Spee	d Grade	-8 Spee	d Grade	Unit		
	Min	Max	Min	Max	Min	Max	Min	Max	UNIT		
t _{INSU}	1.535		1.661		1.877		2.125		ns		
t _{INH}	0.000		0.000		0.000		0.000		ns		
t _{OUTCO}	2.739	5.396	2.739	5.746	2.739	6.262	2.739	6.946	ns		
t _{xz}	2.679	5.270	2.679	5.614	2.679	6.138	2.679	6.831	ns		
t _{ZX}	2.679	5.270	2.679	5.614	2.679	6.138	2.679	6.831	ns		
t _{INSUPLL}	0.934		0.980		1.092		1.231		ns		
t _{INHPLL}	0.000		0.000		0.000		0.000		ns		
t _{OUTCOPLL}	1.316	2.733	1.316	2.839	1.316	2.921	1.316	3.110	ns		
t ^{XZPLL}	1.256	2.607	1.256	2.707	1.256	2.797	1.256	2.995	ns		
t _{ZXPLL}	1.256	2.607	1.256	2.707	1.256	2.797	1.256	2.995	ns		

Tables 4–79 through 4–84 show the external timing parameters on column and row pins for EP1S40 devices.

Table 4–79. EP1S40 External I/O Timing on Column Pins Using Fast Regional Clock Networks											
Parameter	-5 Speed Grade		-6 Spee	d Grade	-7 Spee	d Grade	-8 Spee	d Grade	Unit		
	Min	Max	Min	Max	Min	Max	Min	Max	Unit		
t _{INSU}	2.696		2.907		3.290		2.899		ns		
t _{INH}	0.000		0.000		0.000		0.000		ns		
t _{OUTCO}	2.506	5.015	2.506	5.348	2.506	5.809	2.698	7.286	ns		
t _{xz}	2.446	4.889	2.446	5.216	2.446	5.685	2.638	7.171	ns		
t _{ZX}	2.446	4.889	2.446	5.216	2.446	5.685	2.638	7.171	ns		

Table 4–80. EP1S40 External I/O Timing on Column Pins Using Regional Clock Networks											
Parameter	-5 Spee	d Grade	-6 Spee	d Grade	-7 Spee	d Grade	-8 Spee	d Grade	Unit		
	Min	Max	Min	Max	Min	Max	Min	Max	UNIT		
t _{INSU}	2.413		2.581		2.914		2.938		ns		
t _{INH}	0.000		0.000		0.000		0.000		ns		
t _{OUTCO}	2.668	5.254	2.668	5.628	2.668	6.132	2.869	7.307	ns		
t _{xz}	2.608	5.128	2.608	5.496	2.608	6.008	2.809	7.192	ns		
t _{ZX}	2.608	5.128	2.608	5.496	2.608	6.008	2.809	7.192	ns		
t _{INSUPLL}	1.385		1.376		1.609		1.837		ns		
t _{INHPLL}	0.000		0.000		0.000		0.000		ns		
t _{OUTCOPLL}	1.117	2.382	1.117	2.552	1.117	2.504	1.117	2.542	ns		
t _{XZPLL}	1.057	2.256	1,057	2.420	1.057	2.380	1.057	2.427	ns		
t _{ZXPLL}	1.057	2.256	1,057	2.420	1.057	2.380	1.057	2.427	ns		

Tables 4–91 through 4–96 show the external timing parameters on column and row pins for EP1S80 devices.

Table 4–91. EP1S80 External I/O Timing on Column Pins Using Fast Regional Clock Networks Note (1)											
Parameter	-5 Speed Grade		-6 Spee	d Grade	-7 Spee	d Grade	-8 Spee	-8 Speed Grade			
	Min	Max	Min	Max	Min	Max	Min	Max	UIII		
t _{INSU}	2.328		2.528		2.900		NA		ns		
t _{INH}	0.000		0.000		0.000		NA		ns		
t _{OUTCO}	2.422	4.830	2.422	5.169	2.422	5.633	NA	NA	ns		
t _{xz}	2.362	4.704	2.362	5.037	2.362	5.509	NA	NA	ns		
t _{ZX}	2.362	4.704	2.362	5.037	2.362	5.509	NA	NA	ns		

Table 4–92. EP1S80 External I/O Timing on Column Pins Using Regional Clock Networks Note (1)											
Doromotor	-5 Spee	d Grade	-6 Spee	d Grade	-7 Spee	d Grade	-8 Spee	-8 Speed Grade			
Falaiiielei	Min	Max	Min	Max	Min	Max	Min	Max	Unit		
t _{INSU}	1.760		1.912		2.194		NA		ns		
t _{INH}	0.000		0.000		0.000		NA		ns		
t _{OUTCO}	2.761	5.398	2.761	5.785	2.761	6.339	NA	NA	ns		
t _{XZ}	2.701	5.272	2.701	5.653	2.701	6.215	NA	NA	ns		
t _{ZX}	2.701	5.272	2.701	5.653	2.701	6.215	NA	NA	ns		
t _{INSUPLL}	0.462		0.606		0.785		NA		ns		
t _{INHPLL}	0.000		0.000		0.000		NA		ns		
t _{OUTCOPLL}	1.661	2.849	1.661	2.859	1.661	2.881	NA	NA	ns		
t _{XZPLL}	1.601	2.723	1.601	2.727	1.601	2.757	NA	NA	ns		
t _{ZXPLL}	1.601	2.723	1.601	2.727	1.601	2.757	NA	NA	ns		

Table 4–110. Stratix IOE Programmable Delays on Row Pins Note (1)										
Paramatar	Sotting	-5 Spee	d Grade	-6 Spee	d Grade	-7 Spee	d Grade	-8 Spee	d Grade	Unit
Farameter	Setting	Min	Max	Min	Max	Min	Max	Min	Max	Unit
Decrease input delay	Off		3,970		4,367		5,022		5,908	ps
to internal cells	Small		3,390		3,729		4,288		5,045	ps
	Medium		2,810		3,091		3,554		4,181	ps
	Large		173		181		208		245	ps
	On		173		181		208		245	ps
Decrease input delay	Off		3,900		4,290		4,933		5,804	ps
to input register	On		0		0		0		0	ps
Decrease input delay	Off		1,240		1,364		1,568		1,845	ps
to output register	On		0		0		0		0	ps
Increase delay to	Off		0		0		0		0	ps
output pin	On		397		417		417		417	ps
Increase delay to	Off		0		0		0		0	ps
output enable pin	On		348		383		441		518	ps
Increase output clock	Off		0		0		0		0	ps
enable delay	Small		180		198		227		267	ps
	Large		260		286		328		386	ps
	On		260		286		328		386	ps
Increase input clock	Off		0		0		0		0	ps
enable delay	Small		180		198		227		267	ps
	Large		260		286		328		386	ps
	On		260		286		328		386	ps
Increase output	Off		0		0		0		0	ps
enable clock enable	Small		540		594		683		804	ps
uoluy	Large		1,016		1,118		1,285		1,512	ps
	On		1,016		1,118		1,285		1,512	ps
Increase t _{ZX} delay to	Off		0		0		0		0	ps
output pin	On		1,993		2,092		2,092		2,092	ps

Note to Table 4–109 and Table 4–110:

 The delay chain delays vary for different device densities. These timing values only apply to EP1S30 and EP1S40 devices. Reference the timing information reported by the Quartus II software for other devices.

Maximum Input & Output Clock Rates

Tables 4–114 through 4–119 show the maximum input clock rate for column and row pins in Stratix devices.

I/O Standard	-5 Speed Grade	-6 Speed Grade	-7 Speed Grade	-8 Speed Grade	Unit
LVTTL	422	422	390	390	MHz
2.5 V	422	422	390	390	MHz
1.8 V	422	422	390	390	MHz
1.5 V	422	422	390	390	MHz
LVCMOS	422	422	390	390	MHz
GTL	300	250	200	200	MHz
GTL+	300	250	200	200	MHz
SSTL-3 Class I	400	350	300	300	MHz
SSTL-3 Class II	400	350	300	300	MHz
SSTL-2 Class I	400	350	300	300	MHz
SSTL-2 Class II	400	350	300	300	MHz
SSTL-18 Class I	400	350	300	300	MHz
SSTL-18 Class II	400	350	300	300	MHz
1.5-V HSTL Class I	400	350	300	300	MHz
1.5-V HSTL Class II	400	350	300	300	MHz
1.8-V HSTL Class I	400	350	300	300	MHz
1.8-V HSTL Class II	400	350	300	300	MHz
3.3-V PCI	422	422	390	390	MHz
3.3-V PCI-X 1.0	422	422	390	390	MHz
Compact PCI	422	422	390	390	MHz
AGP 1×	422	422	390	390	MHz
AGP 2×	422	422	390	390	MHz
CTT	300	250	200	200	MHz
Differential 1.5-V HSTL C1	400	350	300	300	MHz
LVPECL (1)	645	645	622	622	MHz
PCML (1)	300	275	275	275	MHz

5. Reference & Ordering Information

S51005-2.1

Software	Stratix [®] devices are supported by the Altera [®] Quartus [®] II design software, which provides a comprehensive environment for system-on-a- programmable-chip (SOPC) design. The Quartus II software includes HDL and schematic design entry, compilation and logic synthesis, full simulation and advanced timing analysis, SignalTap [®] II logic analyzer, and device configuration. See the <i>Design Software Selector Guide</i> for more details on the Quartus II software features.		
	The Quartus II software supports the Windows XP/2000/NT/98, Sun Solaris, Linux Red Hat v7.1 and HP-UX operating systems. It also supports seamless integration with industry-leading EDA tools through the NativeLink [®] interface.		
Device Pin-Outs	Stratix device pin-outs can be found on the Altera web site (www.altera.com).		
Ordering Information	Figure 5–1 describes the ordering codes for Stratix devices. For more information on a specific package, see the <i>Package Information for Stratix Devices</i> chapter.		