Intel - EP1S80F1508C7 Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	7904
Number of Logic Elements/Cells	79040
Total RAM Bits	7427520
Number of I/O	1203
Number of Gates	-
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	1508-BBGA, FCBGA
Supplier Device Package	1508-FBGA, FC (40x40)
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep1s80f1508c7

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Stratix devices are available in space-saving FineLine BGA[®] and ball-grid array (BGA) packages (see Tables 1–3 through 1–5). All Stratix devices support vertical migration within the same package (for example, you can migrate between the EP1S10, EP1S20, and EP1S25 devices in the 672pin BGA package). Vertical migration means that you can migrate to devices whose dedicated pins, configuration pins, and power pins are the same for a given package across device densities. For I/O pin migration across densities, you must cross-reference the available I/O pins using the device pin-outs for all planned densities of a given package type to identify which I/O pins are migrational. The Quartus[®] II software can automatically cross reference and place all pins except differential pins for migration when given a device migration list. You must use the pinouts for each device to verify the differential placement migration. A future version of the Quartus II software will support differential pin migration.

Table 1–3. Stratix Package Options & I/O Pin Counts											
Device	672-Pin BGA	956-Pin BGA	Pin FineLine BGA BGA FineLine BGA FineLine		780-Pin FineLine BGA	1,020-Pin FineLine BGA	1,508-Pin FineLine BGA				
EP1S10	345		335	345	426						
EP1S20	426		361	426	586						
EP1S25	473			473	597	706					
EP1S30		683			597	726					
EP1S40		683			615	773	822				
EP1S60		683				773	1,022				
EP1S80		683				773	1,203				

Note to Table 1–3:

(1) All I/O pin counts include 20 dedicated clock input pins (clk[15..0]p, clk0n, clk2n, clk9n, and clk11n) that can be used for data inputs.

Table 1–4. Stratix BGA Package Sizes								
Dimension	672 Pin	956 Pin						
Pitch (mm)	1.27	1.27						
Area (mm ²)	1,225	1,600						
Length \times width (mm \times mm)	35 imes 35	40 × 40						

The memory address depths and output widths can be configured as $4,096 \times 1, 2,048 \times 2, 1,024 \times 4, 512 \times 8$ (or 512×9 bits), 256×16 (or 256×18 bits), and 128×32 (or 128×36 bits). The 128×32 - or 36-bit configuration is not available in the true dual-port mode. Mixed-width configurations are also possible, allowing different read and write widths. Tables 2–5 and 2–6 summarize the possible M4K RAM block configurations.

Table 2–5. M4	Table 2–5. M4K RAM Block Configurations (Simple Dual-Port)												
Pood Port	Write Port												
neau ruil	$4\text{K}\times1$	$2K \times 2$	$1K \times 4$	$\textbf{512} \times \textbf{8}$	256 × 16	128 × 32	$\textbf{512} \times \textbf{9}$	256 × 18	128 × 36				
4K × 1	\checkmark	\checkmark	\checkmark	~	\checkmark	\checkmark							
2K × 2	\checkmark	\checkmark	~	~	~	\checkmark							
1K × 4	\checkmark	\checkmark	\checkmark	~	\checkmark	\checkmark							
512 × 8	\checkmark	\checkmark	\checkmark	~	~	\checkmark							
256 × 16	\checkmark	\checkmark	~	~	~	\checkmark							
128 × 32	\checkmark	\checkmark	\checkmark	~	~	\checkmark							
512 × 9							~	~	~				
256 × 18							\checkmark	\checkmark	\checkmark				
128 × 36							\checkmark	\checkmark	\checkmark				

Table 2–6. M4K RAM Block Configurations (True Dual-Port)											
Dort A		Port B									
FOILA	$4\mathbf{K} \times 1$	2K × 2	$1K \times 4$	512 × 8	256 × 16	512 × 9	256 × 18				
4K × 1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark						
2K × 2	\checkmark	~	\checkmark	\checkmark	~						
1K × 4	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark						
512 × 8	\checkmark	~	~	\checkmark	~						
256 × 16	\checkmark	~	\checkmark	\checkmark	~						
512 × 9						\checkmark	~				
256 × 18						\checkmark	~				

When the M4K RAM block is configured as a shift register block, you can create a shift register up to 4,608 bits ($w \times m \times n$).

Notes to Figure 2–24

- (1) All registers shown have asynchronous clear ports.
- (2) Violating the setup or hold time on the address registers could corrupt the memory contents. This applies to both read and write operations.

Figure 2–27. Read/Write Clock Mode in Simple Dual-Port Mode Notes (1), (2)

Notes to Figure 2–27:

- (1) All registers shown except the rden register have asynchronous clear ports.
- (2) Violating the setup or hold time on the address registers could corrupt the memory contents. This applies to both read and write operations.

Figure 2–30. DSP Block Diagram for 18 × 18-Bit Configuration

Figure 2–39. Four-Multipliers Adder Mode

Notes to Figure 2–39:

- (1) These signals are not registered or registered once to match the data path pipeline.
- (2) These signals are not registered, registered once, or registered twice for latency to match the data path pipeline.

provide general purpose clocking with multiplication and phase shifting as well as high-speed outputs for high-speed differential I/O support. Enhanced and fast PLLs work together with the Stratix high-speed I/O and advanced clock architecture to provide significant improvements in system performance and bandwidth.

The Quartus II software enables the PLLs and their features without requiring any external devices. Table 2–18 shows the PLLs available for each Stratix device.

Table 2–18	Table 2–18. Stratix Device PLL Availability												
Dovice					Enhanc	ed PLLs							
Device	1	2	3	4	7	8	9	10	5(1)	6 (1)	11 (2)	12 <i>(2)</i>	
EP1S10	\checkmark	\checkmark	\checkmark	~					\checkmark	~			
EP1S20	\checkmark	\checkmark	\checkmark	~					\checkmark	\checkmark			
EP1S25	\checkmark	\checkmark	\checkmark	~					\checkmark	~			
EP1S30	\checkmark	\checkmark	\checkmark	\checkmark	🗸 (3)	🗸 (3)	🗸 (3)	🗸 (3)	\checkmark	\checkmark			
EP1S40	~	~	~	~	✓ (3)	✓ (3)	✓ (3)	✓ (3)	~	\checkmark	√ (3)	√ (3)	
EP1S60	~	~	~	~	~	\checkmark	~	\checkmark	~	~	<	\checkmark	
EP1S80	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	~	\checkmark	

Notes to Table 2–18:

(1) PLLs 5 and 6 each have eight single-ended outputs or four differential outputs.

(2) PLLs 11 and 12 each have one single-ended output.

(3) EP1S30 and EP1S40 devices do not support these PLLs in the 780-pin FineLine BGA® package.

shift by the same degree amount. For example, all 10 DQS pins on the top of the device can be shifted by 90° and all 10 DQS pins on the bottom of the device can be shifted by 72°. The reference circuits require a maximum of 256 system reference clock cycles to set the correct phase on the DQS delay elements. Figure 2-69 illustrates the phase-shift reference circuit control of each DQS delay shift on the top of the device. This same circuit is duplicated on the bottom of the device.

Figure 2–69. Simplified Diagram of the DQS Phase-Shift Circuitry

See the *External Memory Interfaces* chapter in the *Stratix Device Handbook*, Volume 2 for more information on external memory interfaces.

Programmable Drive Strength

The output buffer for each Stratix device I/O pin has a programmable drive strength control for certain I/O standards. The LVTTL and LVCMOS standard has several levels of drive strength that the user can control. SSTL-3 Class I and II, SSTL-2 Class I and II, HSTL Class I and II, and 3.3-V GTL+ support a minimum setting, the lowest drive strength that guarantees the I_{OH}/I_{OL} of the standard. Using minimum settings provides signal slew rate control to reduce system noise and signal overshoot.

Table 2–37 shows the number of channels that each fast PLL can clock in EP1S10, EP1S20, and EP1S25 devices. Tables 2–38 through Table 2–41 show this information for EP1S30, EP1S40, EP1S60, and EP1S80 devices.

Table 2-	Table 2–37. EP1S10, EP1S20 & EP1S25 Device Differential Channels (Part 1 of 2) Note (1)											
		Transmitter/	Total	Maximum	Center Fast PLLs							
Device	Package	Receiver	Channels	Speed (Mbps)	PLL 1	PLL 2	PLL 3	PLL 4				
EP1S10	484-pin FineLine BGA	Transmitter (2)	20	840 (4)	5	5	5	5				
				840 (3)	10	10	10	10				
		Receiver	20	840 (4)	5	5	5	5				
				840 <i>(3)</i>	10	10	10	10				
	672-pin FineLine BGA	Transmitter (2)	36	624 (4)	9	9	9	9				
	672-pin BGA			624 <i>(3)</i>	18	18	18	18				
		Receiver	36	624 (4)	9	9	9	9				
	780-pin FineLine BGA			624 <i>(3)</i>	18	18	18	18				
		Transmitter (2)	44	840 (4)	11	11	11	11				
			840 (3)	22	22	22	22					
		Receiver	44	840 (4)	11	11	11	11				
				840 (3)	22	22	22	22				
EP1S20	484-pin FineLine BGA	Transmitter (2)	24	840 (4)	6	6	6	6				
				840 <i>(3)</i>	12	12	12	12				
		Receiver	20	840 (4)	5	5	5	5				
				840 <i>(3)</i>	10	10	10	10				
	672-pin FineLine BGA	Transmitter (2)	48	624 (4)	12	12	12	12				
	672-pin BGA			624 <i>(3)</i>	24	24	24	24				
		Receiver	50	624 (4)	13	12	12	13				
				624 <i>(3)</i>	25	25	25	25				
	780-pin FineLine BGA	Transmitter (2)	66	840 (4)	17	16	16	17				
				840 (3)	33	33	33	33				
		Receiver	66	840 (4)	17	16	16	17				
				840 (3)	33	33	33	33				

The transmitter external clock output is transmitted on a data channel. The txclk pin for each bank is located in between data transmitter pins. For ×1 clocks (e.g., 622 Mbps, 622 MHz), the high-speed PLL clock bypasses the SERDES to drive the output pins. For half-rate clocks (e.g., 622 Mbps, 311 MHz) or any other even-numbered factor such as 1/4, 1/7, 1/8, or 1/10, the SERDES automatically generates the clock in the Quartus II software.

For systems that require more than four or eight high-speed differential I/O clock domains, a SERDES bypass implementation is possible using IOEs.

Byte Alignment

For high-speed source synchronous interfaces such as POS-PHY 4, XSBI, RapidIO, and HyperTransport technology, the source synchronous clock rate is not a byte- or SERDES-rate multiple of the data rate. Byte alignment is necessary for these protocols since the source synchronous clock does not provide a byte or word boundary since the clock is one half the data rate, not one eighth. The Stratix device's high-speed differential I/O circuitry provides dedicated data realignment circuitry for usercontrolled byte boundary shifting. This simplifies designs while saving LE resources. An input signal to each fast PLL can stall deserializer parallel data outputs by one bit period. You can use an LE-based state machine to signal the shift of receiver byte boundaries until a specified pattern is detected to indicate byte alignment.

Power Sequencing & Hot Socketing

Because Stratix devices can be used in a mixed-voltage environment, they have been designed specifically to tolerate any possible power-up sequence. Therefore, the VCCIO and VCCINT power supplies may be powered in any order.

Although you can power up or down the VCCIO and VCCINT power supplies in any sequence, you should not power down any I/O banks that contain configuration pins while leaving other I/O banks powered on. For power up and power down, all supplies (VCCINT and all VCCIO power planes) must be powered up and down within 100 ms of each other. This prevents I/O pins from driving out.

Signals can be driven into Stratix devices before and during power up without damaging the device. In addition, Stratix devices do not drive out during power up. Once operating conditions are reached and the device is configured, Stratix devices operate as specified by the user. For more information, see *Hot Socketing* in the *Selectable I/O Standards in Stratix & Stratix GX Devices* chapter in the *Stratix Device Handbook, Volume 2.*

Table 4–9. Overshoot Input Voltage with Respect to Duty Cycle (Part 2 of 2)						
Vin (V)	Maximum Duty Cycle (%)					
4.3	30					
4.4	17					
4.5	10					

Figures 4–1 and 4–2 show receiver input and transmitter output waveforms, respectively, for all differential I/O standards (LVDS, 3.3-V PCML, LVPECL, and HyperTransport technology).

Figure 4–1. Receiver Input Waveforms for Differential I/O Standards

Figure 4–2. Transmitter Output Waveforms for Differential I/O Standards

Tables 4–10 through 4–33 recommend operating conditions, DC operating conditions, and capacitance for 1.5-V Stratix devices.

Table 4–10. 3.3-V LVDS I/O Specifications (Part 1 of 2)											
Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Unit					
V _{CCIO}	I/O supply voltage		3.135	3.3	3.465	V					
V _{ID} (6)	Input differential voltage swing (single-ended)	0.1 V \le V _{CM} < 1.1 V W = 1 through 10	300		1,000	mV					
		1.1 V ≤V _{CM} ≤1.6 V <i>W</i> = 1	200		1,000	mV					
		1.1 V \leq V _{CM} \leq 1.6 V W = 2 through10	100		1,000	mV					
		1.6 V < V _{CM} ≤1.8 V <i>W</i> = 1 through 10	300		1,000	mV					

Table 4–36	Table 4–36. Stratix Performance (Part 2 of 2) Notes (1), (2)												
		F	Resources L	lsed	Performance								
Applications			TriMatrix Memory Blocks	DSP Blocks	-5 Speed Grade	-6 Speed Grade	-7 Speed Grade	-8 Speed Grade	Units				
TriMatrix memory	True dual-port RAM 16K × 36 bit	0	1	0	269.83	237.69	206.82	175.74	MHz				
M-RAM block	Single port RAM 32K \times 18 bit	0	1	0	275.86	244.55	212.76	180.83	MHz				
	Simple dual-port RAM 32K \times 18 bit	0	1	0	275.86	244.55	212.76	180.83	MHz				
	True dual-port RAM 32K \times 18 bit	0	1	0	275.86	244.55	212.76	180.83	MHz				
	Single port RAM 64K \times 9 bit	0	1	0	287.85	253.29	220.36	187.26	MHz				
	Simple dual-port RAM 64K \times 9 bit	0	1	0	287.85	253.29	220.36	187.26	MHz				
	True dual-port RAM 64K \times 9 bit	0	1	0	287.85	253.29	220.36	187.26	MHz				
DSP block	9×9 -bit multiplier (3)	0	0	1	335.0	293.94	255.68	217.24	MHz				
	18 × 18-bit multiplier (4)	0	0	1	278.78	237.41	206.52	175.50	MHz				
	36 × 36-bit multiplier (4)	0	0	1	148.25	134.71	117.16	99.59	MHz				
	36×36 -bit multiplier (5)	0	0	1	278.78	237.41	206.52	175.5	MHz				
	18-bit, 4-tap FIR filter	0	0	1	278.78	237.41	206.52	175.50	MHz				
Larger Designs	8-bit, 16-tap parallel FIR filter	58	0	4	141.26	133.49	114.88	100.28	MHz				
	8-bit, 1,024-point FFT function	870	5	1	261.09	235.51	205.21	175.22	MHz				

Notes to Table 4–36:

- (1) These design performance numbers were obtained using the Quartus II software.
- (2) Numbers not listed will be included in a future version of the data sheet.
- (3) This application uses registered inputs and outputs.
- (4) This application uses registered multiplier input and output stages within the DSP block.
- (5) This application uses registered multiplier input, pipeline, and output stages within the DSP block.

Table 4–50. M-RAM Block Internal Timing Microparameters (Part 2 of 2)											
Sumhal	-5		-	-6		-7		-8			
Symbol	Min	Max	Min	Max	Min	Max	Min	Max	UIII		
t _{MRAMBESU}	25		25		28		33		ps		
t _{MRAMBEH}	18		20		23		27		ps		
t _{MRAMDATAASU}	25		25		28		33		ps		
t _{MRAMDATAAH}	18		20		23		27		ps		
t _{MRAMADDRASU}	25		25		28		33		ps		
t _{MRAMADDRAH}	18		20		23		27		ps		
t _{MRAMDATABSU}	25		25		28		33		ps		
t _{MRAMDATABH}	18		20		23		27		ps		
t _{MRAMADDRBSU}	25		25		28		33		ps		
t _{MRAMADDRBH}	18		20		23		27		ps		
t _{MRAMDATACO1}		1,038		1,053		1,210		1,424	ps		
t _{MRAMDATACO2}		4,362		4,939		5,678		6,681	ps		
t _{MRAMCLKHL}	1,000		1,111		1,190		1,400		ps		
t _{MRAMCLR}	135		150		172		202		ps		

Table 4–51. Routing Delay Internal Timing Parameters												
Symbol		-5	-6		-7		-8		Unit			
	Min	Max	Min	Max	Min	Max	Min	Max				
t _{R4}		268		295		339		390	ps			
t _{R8}		371		349		401		461	ps			
t _{R24}		465		512		588		676	ps			
t _{C4}		440		484		557		641	ps			
t _{C8}		577		634		730		840	ps			
t _{C16}		445		489		563		647	ps			
t _{local}		313		345		396		455	ps			

Routing delays vary depending on the load on that specific routing line. The Quartus II software reports the routing delay information when running the timing analysis for a design.

External Timing Parameters

External timing parameters are specified by device density and speed grade. Figure 4–4 shows the pin-to-pin timing model for bidirectional IOE pin timing. All registers are within the IOE.

All external timing parameters reported in this section are defined with respect to the dedicated clock pin as the starting point. All external I/O timing parameters shown are for 3.3-V LVTTL I/O standard with the 24-mA current strength and fast slew rate. For external I/O timing using standards other than LVTTL or for different current strengths, use the I/O standard input and output delay adders in Tables 4–103 through 4–108.

Table 4–71. EP1S25 External I/O Timing on Row Pins Using Regional Clock Networks										
Parameter	-5 Speed Grade		-6 Speed Grade		-7 Speed Grade		-8 Speed Grade		Unit	
	Min	Max	Min	Max	Min	Max	Min	Max	Unit	
t _{INSU}	1.793		1.927		2.182		2.542		ns	
t _{INH}	0.000		0.000		0.000		0.000		ns	
t _{OUTCO}	2.759	5.457	2.759	5.835	2.759	6.346	2.759	7.024	ns	
t _{xz}	2.786	5.511	2.786	5.891	2.786	6.414	2.786	7.106	ns	
t _{ZX}	2.786	5.511	2.786	5.891	2.786	6.414	2.786	7.106	ns	
t _{INSUPLL}	1.169		1.221		1.373		1.600		ns	
t _{INHPLL}	0.000		0.000		0.000		0.000		ns	
t _{OUTCOPLL}	1.375	2.861	1.375	2.999	1.375	3.082	1.375	3.174	ns	
t _{XZPLL}	1.402	2.915	1.402	3.055	1.402	3.150	1.402	3.256	ns	
t _{ZXPLL}	1.402	2.915	1.402	3.055	1.402	3.150	1.402	3.256	ns	

Table 4–72. EP1S25 External I/O Timing on Row Pins Using Global Clock Networks										
Parameter	-5 Speed Grade		-6 Speed Grade		-7 Speed Grade		-8 Speed Grade		11	
	Min	Max	Min	Max	Min	Max	Min	Max	UNIT	
t _{INSU}	1.665		1.779		2.012		2.372		ns	
t _{INH}	0.000		0.000		0.000		0.000		ns	
t _{outco}	2.834	5.585	2.834	5.983	2.834	6.516	2.834	7.194	ns	
t _{xz}	2.861	5.639	2.861	6.039	2.861	6.584	2.861	7.276	ns	
t _{ZX}	2.861	5.639	2.861	6.039	2.861	6.584	2.861	7.276	ns	
t _{INSUPLL}	1.538		1.606		1.816		2.121		ns	
t _{INHPLL}	0.000		0.000		0.000		0.000		ns	
t _{OUTCOPLL}	1.164	2.492	1.164	2.614	1.164	2.639	1.164	2.653	ns	
t _{XZPLL}	1.191	2.546	1.191	2.670	1.191	2.707	1.191	2.735	ns	
t _{ZXPLL}	1.191	2.546	1.191	2.670	1.191	2.707	1.191	2.735	ns	

Table 4–83. EP1S40 External I/O Timing on Row Pins Using Regional Clock Networks										
Parameter	-5 Speed Grade		-6 Speed Grade		-7 Speed Grade		-8 Speed Grade		Unit	
	Min	Max	Min	Max	Min	Max	Min	Max	UIII	
t _{INSU}	2.349		2.526		2.898		2.952		ns	
t _{INH}	0.000		0.000		0.000		0.000		ns	
t _{OUTCO}	2.725	5.381	2.725	5.784	2.725	6.290	2.725	7.426	ns	
t _{xz}	2.752	5.435	2.752	5.840	2.752	6.358	2.936	7.508	ns	
t _{ZX}	2.752	5.435	2.752	5.840	2.752	6.358	2.936	7.508	ns	
t _{INSUPLL}	1.328		1.322		1.605		1.883		ns	
t _{INHPLL}	0.000		0.000		0.000		0.000		ns	
t _{OUTCOPLL}	1.169	2.502	1.169	2.698	1.169	2.650	1.169	2.691	ns	
t _{XZPLL}	1.196	2.556	1.196	2.754	1.196	2.718	1.196	2.773	ns	
t _{ZXPLL}	1.196	2.556	1.196	2.754	1.196	2.718	1.196	2.773	ns	

Table 4–84. EP1S40 External I/O Timing on Row Pins Using Global Clock Networks										
Parameter	-5 Speed Grade		-6 Speed Grade		-7 Speed Grade		-8 Speed Grade		1114	
	Min	Max	Min	Max	Min	Max	Min	Max	Unit	
t _{INSU}	2.020		2.171		2.491		2.898		ns	
t _{INH}	0.000		0.000		0.000		0.000		ns	
t _{OUTCO}	2.912	5.710	2.912	6.139	2.912	6.697	2.931	7.480	ns	
t _{xz}	2.939	5.764	2.939	6.195	2.939	6.765	2.958	7.562	ns	
t _{ZX}	2.939	5.764	2.939	6.195	2.939	6.765	2.958	7.562	ns	
t _{INSUPLL}	1.370		1.368		1.654		1.881		ns	
t _{INHPLL}	0.000		0.000		0.000		0.000		ns	
t _{OUTCOPLL}	1.144	2.460	1.144	2.652	1.144	2.601	1.170	2.693	ns	
t _{XZPLL}	1.171	2.514	1.171	2.708	1.171	2.669	1.197	2.775	ns	
t _{ZXPLL}	1.171	2.514	1.171	2.708	1.171	2.669	1.197	2.775	ns	

Table 4–95. EP1S80 External I/O Timing on Row Pins Using Regional Clock Networks Note (1)											
Parameter	-5 Speed Grade		-6 Speed Grade		-7 Speed Grade		-8 Speed Grade		Unit		
	Min	Max	Min	Max	Min	Max	Min	Max			
t _{INSU}	2.295		2.454		2.767		NA		ns		
t _{INH}	0.000		0.000		0.000		NA		ns		
t _{OUTCO}	2.917	5.732	2.917	6.148	2.917	6.705	NA	NA	ns		
t _{XZ}	2.944	5.786	2.944	6.204	2.944	6.773	NA	NA	ns		
t _{ZX}	2.944	5.786	2.944	6.204	2.944	6.773	NA	NA	ns		
t _{INSUPLL}	1.011		1.161		1.372		NA		ns		
t _{INHPLL}	0.000		0.000		0.000		NA		ns		
t _{OUTCOPLL}	1.808	3.169	1.808	3.209	1.808	3.233	NA	NA	ns		
t _{XZPLL}	1.835	3.223	1.835	3.265	1.835	3.301	NA	NA	ns		
t _{ZXPLL}	1.835	3.223	1.835	3.265	1.835	3.301	NA	NA	ns		

Table 4–96. EP1S80 External I/O Timing on Rows Using Pin Global Clock Networks Note (1)										
Symbol	-5 Speed Grade		-6 Speed Grade		-7 Speed Grade		-8 Speed Grade		11	
	Min	Max	Min	Max	Min	Max	Min	Max	Unit	
t _{INSU}	1.362		1.451		1.613		NA		ns	
t _{INH}	0.000		0.000		0.000		NA		ns	
t _{outco}	3.457	6.665	3.457	7.151	3.457	7.859	NA	NA	ns	
t _{xz}	3.484	6.719	3.484	7.207	3.484	7.927	NA	NA	ns	
t _{ZX}	3.484	6.719	3.484	7.207	3.484	7.927	NA	NA	ns	
t _{INSUPLL}	0.994		1.143		1.351		NA		ns	
t _{INHPLL}	0.000		0.000		0.000		NA		ns	
t _{OUTCOPLL}	1.821	3.186	1.821	3.227	1.821	3.254	NA	NA	ns	
t _{XZPLL}	1.848	3.240	1.848	3.283	1.848	3.322	NA	NA	ns	
t _{ZXPLL}	1.848	3.240	1.848	3.283	1.848	3.322	NA	NA	ns	

Note to Tables 4–91 *to* 4–96:

(1) Only EP1S25, EP1S30, and EP1S40 devices have the -8 speed grade.

Figure 5–1. Stratix Device Packaging Ordering Information