

Welcome to **E-XFL.COM**

<u>Embedded - Microcontrollers - Application</u>
<u>Specific</u>: Tailored Solutions for Precision and Performance

Embedded - Microcontrollers - Application Specific represents a category of microcontrollers designed with unique features and capabilities tailored to specific application needs. Unlike general-purpose microcontrollers, application-specific microcontrollers are optimized for particular tasks, offering enhanced performance, efficiency, and functionality to meet the demands of specialized applications.

What Are <u>Embedded - Microcontrollers - Application Specific</u>?

Application charific microcontrollars are angineered to

Details	
Product Status	Active
Applications	USB Type C
Core Processor	ARM® Cortex®-M0
Program Memory Type	FLASH (32KB)
Controller Series	-
RAM Size	4K x 8
Interface	I ² C, SPI, UART/USART, USB
Number of I/O	9
Voltage - Supply	1.71V ~ 5.5V
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-UFBGA, WLCSP
Supplier Device Package	20-WLCSP (1.63x2.03)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cypd2122-20fnxit

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Available Firmware and Software Tools

EZ-PD Configuration Utility

The EZ-PD Configuration Utility is a GUI-based Microsoft Windows application developed by Cypress to guide a CCGx user through the process of configuring and programming the chip. The utility allows users to:

- 1. Select and configure the parameters they want to modify
- 2. Program the resulting configuration onto the target CCGx device.

The utility works with the Cypress supplied CCG1, CCG2, CCG3, and CCG4 kits, which host the CCGx controllers along with a USB interface. This version of the EZ-PD Configuration Utility supports configuration and firmware update operations on CCGx controllers implementing EMCA and Display Dongle applications. Support for other applications, such as Power Adapters and Notebook port controllers, will be provided in later versions of the utility.

You can download the EZ-PD Configuration Utility and its associated documentation at the following link:

http://www.cypress.com/documentation/software-and-drivers/ez-pd-configuration-utility

Contents

Functional Overview	4
CPU and Memory Subsystem	
USB-PD Subsystem (SS)	
System Resources	
Peripherals	6
GPIO	6
Pinouts	7
Power	9
Application Diagrams	10
Electrical Specifications	
Absolute Maximum Ratings	
Device Level Specifications	
Digital Peripherals	
Memory	22
System Resources	

Ordering information	26
Ordering Code Definitions	26
Packaging	
Acronyms	
Document Conventions	
Units of Measure	30
References and Links To Applications Collaterals	31
Document History Page	32
Sales, Solutions, and Legal Information	
Worldwide Sales and Design Support	
Products	
PSoC® Solutions	
Cypress Developer Community	
Technical Support	

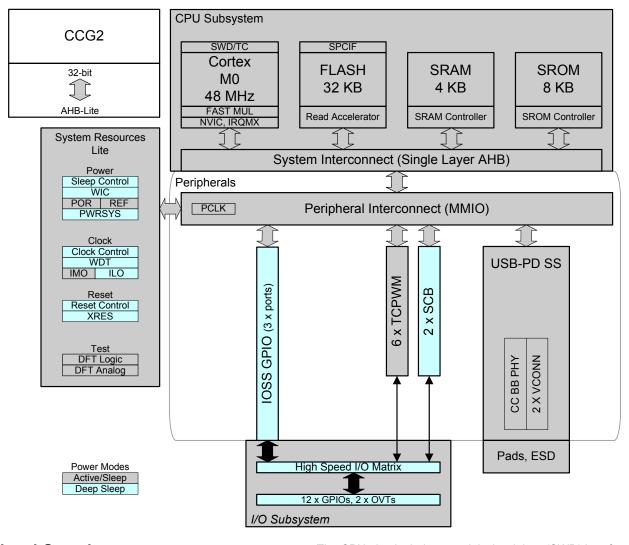


Figure 1. EZ-PD CCG2 Block Diagram

Functional Overview

CPU and Memory Subsystem

CPU

The Cortex-M0 CPU in EZ-PD CCG2 is part of the 32-bit MCU subsystem, which is optimized for low-power operation with extensive clock gating. It mostly uses 16-bit instructions and executes a subset of the Thumb-2 instruction set. This enables fully compatible binary upward migration of the code to higher performance processors such as the Cortex-M3 and M4, thus enabling upward compatibility. The Cypress implementation includes a hardware multiplier that provides a 32-bit result in one cycle. It includes a nested vectored interrupt controller (NVIC) block with 32 interrupt inputs and also includes a Wakeup Interrupt Controller (WIC). The WIC can wake the processor up from the Deep Sleep mode, allowing power to be switched off to the main processor when the chip is in the Deep Sleep mode. The Cortex-M0 CPU provides a Non-Maskable Interrupt (NMI) input, which is made available to the user when it is not in use for system functions requested by the user.

The CPU also includes a serial wire debug (SWD) interface, which is a 2-wire form of JTAG. The debug configuration used for EZ-PD CCG2 has four break-point (address) comparators and two watchpoint (data) comparators.

Flash

The EZ-PD CCG2 device has a flash module with a flash accelerator, tightly coupled to the CPU to improve average access times from the flash block. The flash block is designed to deliver 1 wait-state (WS) access time at 48 MHz and with 0-WS access time at 24 MHz. The flash accelerator delivers 85% of single-cycle SRAM access performance on average. Part of the flash module can be used to emulate EEPROM operation if required.

SROM

A supervisory ROM that contains boot and configuration routines is provided.

Peripherals

Serial Communication Blocks (SCB)

EZ-PD CCG2 has two SCBs, which can be configured to implement an I^2 C, SPI, or UART interface. The hardware I^2 C blocks implement full multi-master and slave interfaces capable of multimaster arbitration. In the SPI mode, the SCB blocks can be configured to act as master or slave.

In the I²C mode, the SCB blocks are capable of operating at speeds of up to 1 Mbps (Fast Mode Plus) and have flexible buffering options to reduce interrupt overhead and latency for the CPU. These blocks also support I²C that creates a mailbox address range in the memory of EZ-PD CCG2 and effectively reduce I²C communication to reading from and writing to an array in memory. In addition, the blocks support 8-deep FIFOs for receive and transmit which, by increasing the time given for the CPU to read data, greatly reduce the need for clock stretching caused by the CPU not having read data on time.

The I^2C peripherals are compatible with the I^2C Standard-mode, Fast-mode, and Fast-mode Plus devices as defined in the NXP I^2C -bus specification and user manual (UM10204). The I^2C bus I/Os are implemented with GPIO in open-drain modes.

The I²C port on SCB 1 block of EZ-PD CCG2 is not completely compliant with the I²C spec in the following respects:

- The GPIO cells for SCB 1's I²C port are not overvoltage-tolerant and, therefore, cannot be hot-swapped or powered up independently of the rest of the I²C system.
- Fast-mode Plus has an I_{OL} specification of 20 mA at a V_{OL} of 0.4 V. The GPIO cells can sink a maximum of 8-mA I_{OL} with a V_{OL} maximum of 0.6 V.
- Fast-mode and Fast-mode Plus specify minimum Fall times, which are not met with the GPIO cell; Slow strong mode can help meet this spec depending on the bus load.

Timer/Counter/PWM Block (TCPWM)

EZ-PD CCG2 has six TCPWM blocks. Each implements a 16-bit timer, counter, pulse-width modulator (PWM), and quadrature decoder functionality. The block can be used to measure the period and pulse width of an input signal (timer), find the number of times a particular event occurs (counter), generate PWM signals, or decode quadrature signals.

GPIO

EZ-PD CCG2 has up to 10 GPIOs in addition to the I²C and SWD pins, which can also be used as GPIOs. The I²C pins from SCB 0 are overvoltage-tolerant. The number of available GPIOs vary with the package. The GPIO block implements the following:

- Seven drive strength modes:
 - □ Input only
 - □ Weak pull-up with strong pull-down
 - ☐ Strong pull-up with weak pull-down
 - □ Open drain with strong pull-down
 - $\ensuremath{\square}$ Open drain with strong pull-up
 - $\ensuremath{\square}$ Strong pull-up with strong pull-down
 - □ Weak pull-up with weak pull-down
- Input threshold select (CMOS or LVTTL)
- Individual control of input and output buffer enabling/disabling in addition to the drive strength modes
- Hold mode for latching previous state (used for retaining I/O state in Deep Sleep mode)
- Selectable slew rates for dV/dt related noise control to improve FMI

During power-on and reset, the I/O pins are forced to the disable state so as not to crowbar any inputs and/or cause excess turn-on current. A multiplexing network known as a high-speed I/O matrix is used to multiplex between various signals that may connect to an I/O pin.

Pinouts

Group	Name	Pin Map 24-QFN	Ball Location 20-CSP	Pin Map 14-DFN	Description		
USB Type-C Port	CC1	2	B4	3	USB PD connector detect/Configuration Channel 1		
	CC2	1	A4	N/A	USB PD connector detect/Configuration Channel 2		
	RD1	3	В3	N/A	Dedicated Rd resistor pin for CC1 Must be left open for cable applications and connected together with CC1 ball for UFP or DFP with dead battery applications		
GPIOs and serial interfaces	GPIO	22	C3	N/A	GPIO / SPI_0_CLK / UART_0_ RX		
	GPIO	18	D3	13	GPIO / SPI_0_MOSI / UART_0_TX		
	GPIO	13	C2	10	GPIO / I2C_1_SDA / SPI_1_MISO / UART_1_RX		
	GPIO	10	D2	N/A	GPIO / I2C_1_SCL / SPI_1_CLK / UART_1_TX		
	GPIO	15	B2	11	GPIO / SPI_1_SEL / UART_1_RTS		
	GPIO	14	N/A	N/A	GPIO		
	GPIO	17	N/A	N/A	GPIO		
	GPIO	21	N/A	N/A	GPIO		
	GPIO	23	N/A	N/A	GPIO		
	GPIO	24	N/A	N/A	GPIO		
	I2C_0_SCL	20	A3	1	GPIO / I2C_0_SCL / SPI_0_MISO / UART_0_RTS		
	I2C_0_SDA	19	A2	14	GPIO / I2C_0_SDA / SPI_0_SEL / UART_0_CTS		
	SWD_IO	11	E2	8	SWD IO / GPIO / UART_1_CTS / SPI_1_MOSI		
	SWD_CLK	12	D1	9	SWD clock / GPIO		
RESET	XRES	16	B1	12	Reset input		
POWER	VCONN1	5	E4	5	VCONN 1 input (4.0 V to 5.5 V)		
	VCONN2	4	C4	4	VCONN 2 input (4.0 V to 5.5 V)		
	VDDIO	8	E1	N/A	1.71-V to 5.5-V supply for I/Os		
	VCCD	7	A1	6	1.8-V regulator output for filter capacitor		
	VDDD	9	F0	7	VDDD supply input/output (2.7 V to 5.5 V)		
	VDDD	6	- E3	7	VDDD supply input/output (2.7 V to 5.5 V)		
	VSS		N/A	EPAD	Ground supply		
	VSS	EPAD	D4	2	Ground supply		
	VSS		C1	2	Ground supply		

CC2 I2C_0_SCL I2C_0_SDA VCCD Α CC1 GPIO В RD1 XRES VCONN2 С GPIO GPIO VSS GPIO D vss SWD_CLK GPIO Е VCONN1 SWD_IO

Figure 3. 20-ball WLCSP EZ-PD CCG2 Ball Map (Bottom (Balls Up) View)

Figure 4. 14-pin DFN Pin Map (Top View)

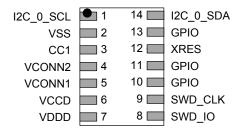


Figure 5. 24-Pin QFN Pin Map (Top View)

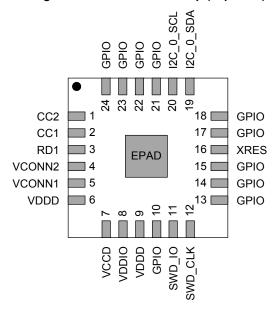


Figure 10 shows a Notebook DRP application diagram using a CCG2 device. The Type-C port can be used as a power provider or a power consumer. The CCG2 device communicates with the Embedded controller (EC) over I²C. It also controls the Data Mux to route the High Speed signals either to the USB chipset (during normal mode) or the DisplayPort Chipset (during Alternate Mode). The SBU lines, SuperSpeed and HighSpeed lines are routed directly from the Display Mux of the notebook to the Type-C receptacle.

Optional FETs are provided for applications that need to provide power for accessories and cables using the VCONN pin of the Type-C receptacle. VBUS FETs are also used for providing power over VBUS and for consuming power over VBUS. A VBUS_DISCHARGE FET controlled by CCG2 device is used to quickly discharge VBUS after the Type-C connection is detached.

Figure 10. Dual Role Port (DRP) Application

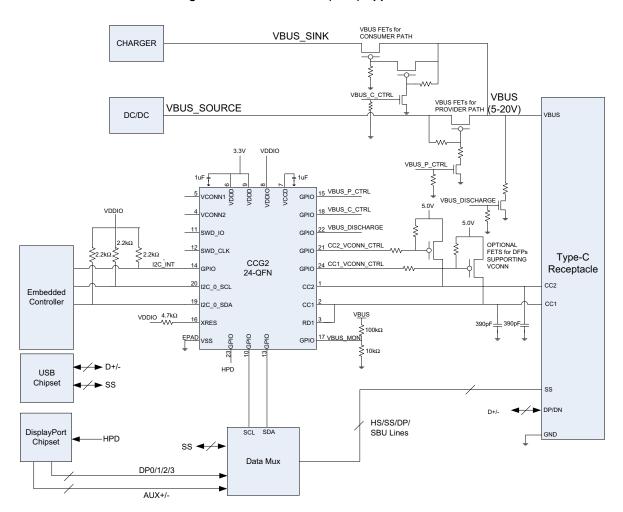
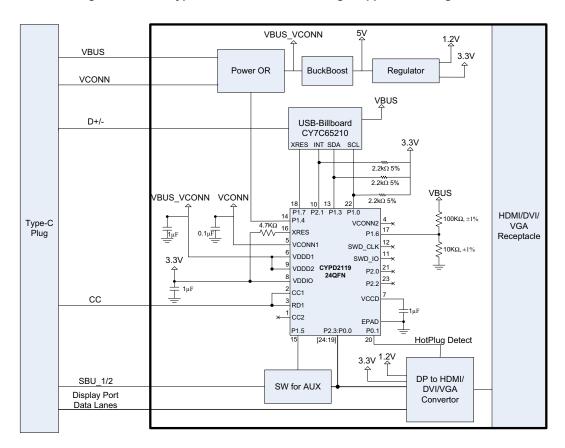


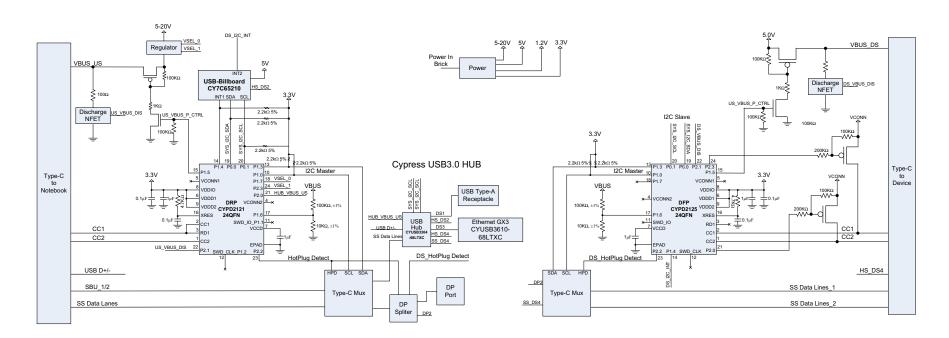
Figure 12 shows a USB Type-C to HDMI/DVI/VGA adapter application, which enables connectivity between a PC that supports a Type-C port with DisplayPort Alternate Mode support and a legacy monitor that has HDMI/DVI/VGA interface. It enables users of any Notebook that implements USB-Type C to connect to other display types.

This application has a Type-C plug on one end and the legacy video (HDMI/DVI/VGA) receptacle on the other end. This appli-

cation meets the requirements described in Section 4.3 of the VESA DisplayPort Alt Mode on USB Type-C Standard Version 1.0. This application supports display output at a resolution of up to 4K Ultra HD (3840x2160) at 60 Hz. It also supports the USB Billboard Device Class, which is required by the USB PD specification for enumeration of any accessories that support Alternate Mode when connected to a host PC.

Figure 12. USB Type-C to HDMI/DVI/VGA Dongle Application Diagram




Figure 14 shows a CCG2 Monitor/Dock application diagram. It enables connectivity between a USB Type-C host system on the Upstream port and multiple Display/Data devices on the Downstream port. This application has a USB Type-C receptacle on the Upstream port, which supports data, power, and display. On the Downstream port, this application supports: USB Type-A, Gigabit Ethernet, DisplayPort, and USB Type-C receptacle.

The main features of this solution are:

- Powered from an external 24-V DC power adapter
- Provides up to 45 W (15 V at 3A) on the Upstream Type-C port and up to 15 W (5 V at 3A) on the Downstream USB Type-C port

- Provides simultaneous 4K display output with USB 3.1 Gen 1 on the USB Type-A port
- Four-lane display on the DisplayPort connector
- Multi-Stream support on DisplayPort and Downstream Type-C port
- USB 3.1 Gen 1 hub for USB port expansion
- Gigabit Ethernet using RJ45 connector
- Supports firmware upgrade of CCG2 controllers, HX3 Hub controller, and Billboard controller

Figure 14. CCG2 in Dock/Monitor Application Diagram

CCG2 connected on the Upstream Port

CCG2 connected on the Downstream Port

Electrical Specifications

Absolute Maximum Ratings

Table 1. Absolute Maximum Ratings^[1]

Parameter	Description	Description Min Typ Max		Units	Details/Conditions	
V _{DDD_MAX}	Digital supply relative to V _{SS}	-0.5	_	6	V	Absolute max
V _{CONN1_MAX}	Max supply voltage relative to V _{SS}	_	_	6	V	Absolute max
V _{CONN2_MAX}	Max supply voltage relative to V _{SS}	_	_	6	V	Absolute max
V _{DDIO_MAX}	Max supply voltage relative to V _{SS}	_	_	6	V	Absolute max
V _{GPIO_ABS}	GPIO voltage	-0.5	_	V _{DDIO} + 0.5	V	Absolute max
V _{CC_ABS}	Absolute max voltage for CC1 and CC2 pins	-	-	6	V	Absolute max
I _{GPIO_ABS}	Maximum current per GPIO	-25	_	25	mA	Absolute max
I _{GPIO_injection}	GPIO injection current, Max for $V_{IH} > V_{DDD}$, and Min for $V_{IL} < V_{SS}$	GPIO injection current, Max for $V_{IH} > V_{DDD}$, and Min for $V_{II} < V_{SS}$ -0.5 -0.5 mA		mA	Absolute max, current injected per pin	
ESD_HBM	Electrostatic discharge human body model	2200	_	-	V	-
ESD_CDM	Electrostatic discharge charged device model	500	_	_	V	-
LU	Pin current for latch-up	-200	_	200	mA	-
ESD_IEC_CON	Electrostatic discharge IEC61000-4-2	8000	-	_	V	Contact discharge on CC1, CC2, VCONN1, and VCONN2 pins
ESD_IEC_AIR	Electrostatic discharge IEC61000-4-2	15000	_	_	٧	Air discharge for pins CC1, CC2, VCONN1, and VCONN2

Note

Usage above the absolute maximum conditions listed in Table 1 may cause permanent damage to the device. Exposure to absolute maximum conditions for extended
periods of time may affect device reliability. The maximum storage temperature is 150 °C in compliance with JEDEC Standard JESD22-A103, High Temperature
Storage Life. When used below absolute maximum conditions but above normal operating conditions, the device may not operate to specification.

Device Level Specifications

All specifications are valid for –40 $^{\circ}$ C \leq TA \leq 85 $^{\circ}$ C and TJ \leq 100 $^{\circ}$ C, except where noted. Specifications are valid for 3.0 V to 5.5 V, except where noted.

Table 2. DC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID.PWR#1	V_{DDD}	Power supply input voltage	2.7	_	5.5	V	UFP Applications
SID.PWR#1_A	V_{DDD}	Power supply input voltage	3.0	_	5.5	V	DFP/DRP Applications
SID.PWR#23	V _{CONN1}	Power supply input voltage	4.0	-	5.5	V	-
SID.PWR#23_A	V _{CONN2}	Power supply input voltage	4.0	_	5.5	V	-
SID.PWR#13	V_{DDIO}	GPIO power supply	1.71	_	5.5	V	_
SID.PWR#24	V_{CCD}	Output voltage (for core logic)	-	1.8	_	V	_
SID.PWR#15	C _{EFC}	External regulator voltage bypass on V _{CCD}	1	1.3	1.6	μF	X5R ceramic or better
SID.PWR#16	C _{EXC}	Power supply decoupling capacitor on V_{DDD}	_	1	_	μF	X5R ceramic or better
SID.PWR#25		Power Supply Decoupling Capacitor on V _{CONN1} and V _{CONN2}	_	0.1	_	μF	X5R ceramic or better
Active Mode, V _D	_{DD} = 2.7 to 5	5.5 V. Typical values measured at V	_{DD} = 3.3	V.		•	
SID.PWR#12	I _{DD12}	Supply current	-	7.5	-	mA	V_{CONN1} or V_{CONN2} = 5 V, T_A = 25 °C, CC I/O IN Transmit or Receive, R_A disconnected, no I/O sourcing current, CPU at 12 MHz
Sleep Mode, V _{DE}	_{DD} = 2.7 to 5	.5 V					
SID25A	I _{DD20A}	I ² C wakeup. WDT ON. IMO at 48 MHz	_	2.0	3.0	mA	V _{DDD} = 3.3 V, T _A = 25 °C, all blocks except CPU are ON, CC I/O ON, no I/O sourcing current
Deep Sleep Mod	e, V _{DDD} = 2.	7 to 3.6 V (Regulator on)			I.	I.	•
SID_DS_RA	I _{DD_DS_RA}	V _{CONN1} = 5.0, R _A termination disabled	-	100	-	μА	V _{CONN1} , V _{CONN2} = 5 V, T _A = 25 °C. R _A termination disabled on V _{CONN1} and V _{CONN2} , see SID.PD.7. VCONN leaker circuits turned off during deep sleep
SID34	I _{DD29}	V _{DDD} = 2.7 to 3.6 V. I ² C wakeup and WDT ON	_	50	_	μA	R _A switch disabled on V _{CONN1} and V _{CONN2} . V _{DDD} = 3.3 V, T _A = 25 °C
SID_DS	I _{DD_DS}	V _{DDD} = 2.7 to 3.6 V. CC wakeup ON	-	2.5	-	μA	Power source = V _{DDD} , Type-C not attached, CC enabled for wakeup, R _P disabled
XRES Current							
SID307	I _{DD_XR}	Supply current while XRES asserted	-	1	10	μΑ	_
		l .			·	·	I

Table 5. I/O AC Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID70	T _{RISEF}	Rise time	2	-	12	ns	3.3-V V _{DDIO} , Cload = 25 pF
SID71	T _{FALLF}	Fall time	2	-	12	ns	3.3-V V _{DDIO} , Cload = 25 pF

XRES

Table 6. XRES DC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID.XRES#1	V _{IH}	Input voltage HIGH threshold	0.7 × V _{DDIO}	1	1	٧	CMOS input
SID.XRES#2	V _{IL}	Input voltage LOW threshold	-	_	0.3 × V _{DDIO}	V	CMOS input
SID.XRES#3	C _{IN}	Input capacitance	_	_	7	pF	Guaranteed by characterization
SID.XRES#4	V _{HYSXRES}	Input voltage hysteresis	_	_	0.05 × V _{DDIO}	mV	Guaranteed by characterization

Digital Peripherals

The following specifications apply to the Timer/Counter/PWM peripherals in the Timer mode.

Pulse Width Modulation (PWM) for GPIO Pins

Table 7. PWM AC Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID.TCPWM.3	T _{CPWMFREQ}	Operating frequency	-	Fc	_	MHz	Fc max = CLK_SYS. Maximum = 48 MHz.
SID.TCPWM.4	T _{PWMENEXT}	Input trigger pulse width	1	2/Fc	_	ns	For all Trigger Events
SID.TCPWM.5	T _{PWMEXT}	Output trigger pulse width	-	2/Fc	_	ns	Minimum possible width of Overflow, Underflow, and CC (Counter equals Compare value) outputs
SID.TCPWM.5A	T _{CRES}	Resolution of counter	_	1/Fc	-	ns	Minimum time between successive counts
SID.TCPWM.5B	PWM _{RES}	PWM resolution	ı	1/Fc	-	ns	Minimum pulse width of PWM output
SID.TCPWM.5C	Q _{RES}	Quadrature inputs resolution	-	1/Fc	_	ns	Minimum pulse width between quadrature-phase inputs

 I^2C

Table 8. Fixed I²C DC Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID149	I _{I2C1}	Block current consumption at 100 kbps	_	_	60	μΑ	_
SID150	I _{I2C2}	Block current consumption at 400 kbps	_	-	185	μΑ	-
SID151	I _{I2C3}	Block current consumption at 1 Mbps	_	_	390	μA	-
SID152	I _{I2C4}	I ² C enabled in Deep Sleep mode	_	_	1.4	μA	-

Table 9. Fixed I²C AC Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID153	F _{I2C1}	Bit rate	_	_	1	Mbps	-

Table 10. Fixed UART DC Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID160	I _{UART1}	Block current consumption at 100 Kbps	-	1	125	Ι ΙΙΔ	Guaranteed by characterization
SID161	I _{UART2}	Block current consumption at 1000 Kbps	-	-	312	μΑ	Guaranteed by characterization

Table 11. Fixed UART AC Specifications

(Guaranteed by Characterization)

Spec ID	Parameter Description		Min	Тур	Max	Units	Details/Conditions
SID162	F _{UART}	Bit rate	_	-	1	i ivinne	Guaranteed by characterization

Table 12. Fixed SPI DC Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID163	I _{SPI1}	Block current consumption at 1 Mbps	-	-	360	Ι ΙΙΔ	Guaranteed by characterization
SID164	I _{SPI2} Block current consumption at 4 Mbps		-	_	560	Ι ΙΙΔ	Guaranteed by characterization
SID165	I _{SPI3}	Block current consumption at 8 Mbps	_	_	600	Ι ΙΙΔ	Guaranteed by characterization

Table 13. Fixed SPI AC Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description		Тур	Max	Units	Details/Conditions
SID166	F _{SPI}	SPI Operating frequency (Master; 6X oversampling)	_	-	8	MHz	Guaranteed by characterization

Internal Low-Speed Oscillator

Table 22. ILO DC Specifications

(Guaranteed by Design)

Spec ID	Parameter	Description		Тур	Max	Units	Details/Conditions
SID231	I _{ILO}	ILO operating current at 32 kHz	-	0.3	1.05	ΠΔ	Guaranteed by Characterization
SID233	I _{ILOLEAK}	ILO leakage current	_	2	15	nA	Guaranteed by Design

Table 23. ILO AC Specifications

Spec ID	Parameter	er Description		Тур	Max	Units	Details/Conditions
SID234	T _{STARTILO}	ILO startup time	1	1	2	ms	Guaranteed by characterization
SID236	T _{ILODUTY}	ILO duty cycle	40	50	60	%	Guaranteed by characterization
SID.CLK#5	F _{ILO}	ILO Frequency	20	40	80	kHz	-

Power Down

Table 24. PD DC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID.PD.1	Rp_std	DFP CC termination for default USB Power	64	80	96	μA	-
SID.PD.2	Rp_1.5A	DFP CC termination for 1.5A power	166	180	194	μA	-
SID.PD.3	Rp_3.0A	DFP CC termination for 3.0A power	304	330	356	μA	-
SID.PD.4	Rd	UFP CC termination	4.59	5.1	5.61	kΩ	-
SID.PD.5	Rd_DB	UFP Dead Battery CC termi- nation on RD1 and CC2	4.08	5.1	6.12	kΩ	All supplies forced to 0 V and 0.6 V applied at RD1 or CC2
SID.PD.6	R _A	Power cable termination	0.8	1.0	1.2	kΩ	All supplies forced to 0 V and 0.2 V applied at V _{CONN1} or V _{CONN2}
SID.PD.7	Ra_OFF	Power cable termination - Disabled	0.4	0.75	_	МΩ	2.7 V applied at V _{CONN1} or V _{CONN2} with R _A disabled
SID.PD.8	Rleak_1	V _{CONN} leaker for 0.1-μF load	_	_	216	kΩ	
SID.PD.9	Rleak_2	V _{CONN} leaker for 0.5-μF load	-	_	41.2	kΩ	
SID.PD.10	SID.PD.10 Rleak_3 V _{CONN} leake		-	_	19.6	kΩ	Managed Active Cable
SID.PD.11 Rleak_4 V _{CONN} leak		V _{CONN} leaker for 2.0-μF load	_	_	9.8	kΩ	(MAC) discharge
SID.PD.12			_	_	4.1	kΩ	
SID.PD.13	Rleak_6	V _{CONN} leaker for 10-μF load			2.0	kΩ	
SID.PD.14	lleak	Leaker on V _{CONN1} and V _{CONN2} for discharge upon cable detach	150	_	-	μA	-

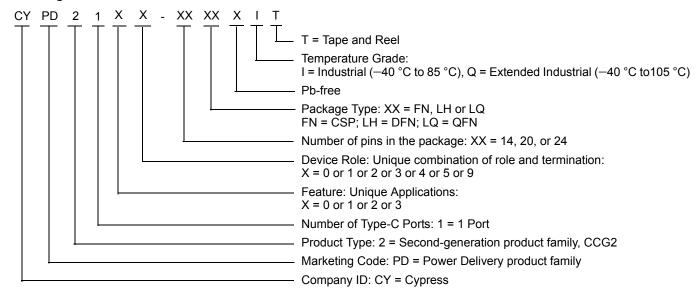
Analog-to-Digital Converter

Table 25. ADC DC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID.ADC.1	Resolution	ADC resolution	_	8	_	bits	Guaranteed by characterization
SID.ADC.2	INL	Integral non-linearity	-1.5	-	1.5	LSB	Guaranteed by characterization
SID.ADC.3	DNL	Differential non-linearity	-2.5	_	2.5	LSB	Guaranteed by characterization
SID.ADC.4	Gain Error	Gain error	-1	_	1	LSB	Guaranteed by characterization

Table 26. ADC AC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID.ADC.5		Rate of change of sampled voltage signal	_	_	3	V/ms	Guaranteed by characterization

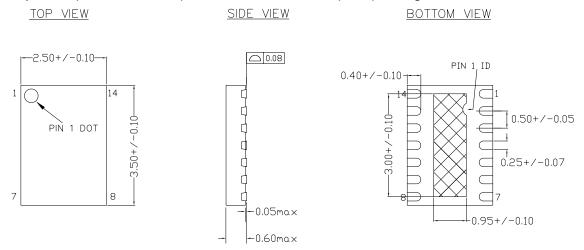

Ordering Information

The EZ-PD CCG2 part numbers and features are listed in Table 27.

Table 27. EZ-PD CCG2 Ordering Information

Part Number	Application	Type-C Ports	Termination Resistor	Role	Package
CYPD2103-20FNXIT	Cable	1	R _A ^[4]	Cable	20-ball CSP
CYPD2103-14LHXIT	Cable	1	R _A ^[4]	Cable	14-pin DFN
CYPD2104-20FNXIT	Accessory	1	R _D ^[5]	Accessory	20-ball CSP
CYPD2105-20FNXIT	Active Cable	1	R _A ^[4]	Active Cable	20-ball CSP
CYPD2119-24LQXIT	C-DP	1	R _D ^[5]	UFP	24-pin QFN
CYPD2120-24LQXIT	C-HDMI	1	R _D ^[5]	UFP	24-pin QFN
CYPD2121-24LQXIT	Dock/Monitor Upstream port	1	R _P ^[6] , R _D ^[5]	DRP	24-pin QFN
CYPD2122-20FNXIT	Tablet	1	R _P ^[6] , R _D ^[5]	DRP	20-ball CSP
CYPD2122-24LQXI	Notebook	1	R _P ^[6] , R _D ^[5]	DRP	24-pin QFN
CYPD2122-24LQXIT	Notebook	1	R _P ^[6] , R _D ^[5]	DRP	24-pin QFN
CYPD2125-24LQXIT	Dock/Monitor Downstream port	1	R _P ^[6]	DFP	24-pin QFN
CYPD2134-24LQXIT	DFP	1	R _P ^[6]	DFP	24-pin QFN
CYPD2134-24LQXQT	DFP	1	R _P ^[6]	DFP	24-pin QFN

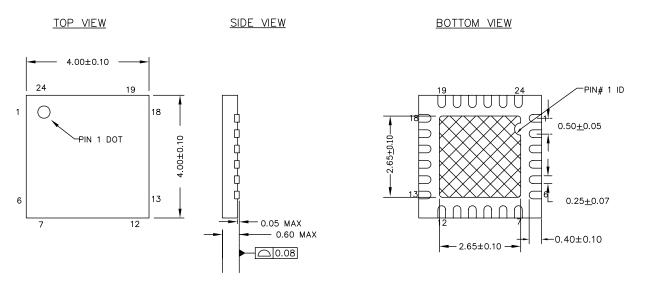
Ordering Code Definitions



Notes

- Termination resistor denoting an EMCA.
- Termination resistor denoting an accessory or upstream facing port. Termination resistor denoting an accessory or upstream facing port.

Figure 16. 14-pin DFN (2.5 × 3.5 × 0.6 mm), LH14A, 0.95 × 3.00 E-Pad (Sawn) Package Outline, 001-96312



NOTES:

- 1. HATCH AREA IS SOLDERABLE EXPOSED METAL
- 2. ALL DIMENSIONS ARE IN MILLIMETERS

001-96312 **

Figure 17. 24-Pin QFN (4 × 4 × 0.55 mm), LQ24A, 2.65 × 2.65 E-Pad (Sawn) Package Outline, 001-13937

NOTES:

- 1. M HATCH IS SOLDERABLE EXPOSED METAL.
- 2. REFERENCE JEDEC # MO-248
- 3. PACKAGE WEIGHT: $29 \pm 3 \text{ mg}$
- 4. ALL DIMENSIONS ARE IN MILLIMETERS

001-13937 *F

Acronyms

Table 31. Acronyms Used in this Document

Acronym	Description			
ADC	analog-to-digital converter			
API	application programming interface			
ARM [®]	advanced RISC machine, a CPU architecture			
CC	configuration channel			
CCG2	Cable Controller Generation 2			
CPU	central processing unit			
CRC	cyclic redundancy check, an error-checking protocol			
CS	current sense			
DFP	downstream facing port			
DIO	digital input/output, GPIO with only digital capabilities, no analog. See GPIO.			
DRP	dual role port			
EEPROM	electrically erasable programmable read-only memory			
a USB cable that includes an IC that reports ca characteristics (e.g., current rating) to the Type ports				
EMI	electromagnetic interference			
ESD	electrostatic discharge			
FPB	flash patch and breakpoint			
FS	full-speed			
GPIO	general-purpose input/output			
IC	integrated circuit			
IDE	integrated development environment			
I ² C, or IIC	Inter-Integrated Circuit, a communications protocol			
ILO	internal low-speed oscillator, see also IMO			
IMO	internal main oscillator, see also ILO			
I/O	input/output, see also GPIO			
LVD	low-voltage detect			
LVTTL	low-voltage transistor-transistor logic			
MCU	microcontroller unit			
NC	no connect			
NMI	nonmaskable interrupt			

Table 31. Acronyms Used in this Document (continued)

Acronym	Description			
NVIC	nested vectored interrupt controller			
opamp	operational amplifier			
OCP	overcurrent protection			
OVP	overvoltage protection			
РСВ	printed circuit board			
PD	power delivery			
PGA	programmable gain amplifier			
PHY	physical layer			
POR	power-on reset			
PRES	precise power-on reset			
PSoC [®]	Programmable System-on-Chip™			
PWM	pulse-width modulator			
RAM	random-access memory			
RISC	reduced-instruction-set computing			
RMS	root-mean-square			
RTC	real-time clock			
RX	receive			
SAR	successive approximation register			
SCL	I ² C serial clock			
SDA	I ² C serial data			
S/H	sample and hold			
SPI	Serial Peripheral Interface, a communications protocol			
SRAM	static random access memory			
SWD	serial wire debug, a test protocol			
TX	transmit			
Type-C a new standard with a slimmer USB connector a reversible cable, capable of sourcing up to 100 W of power				
UART	Universal Asynchronous Transmitter Receiver, a communications protocol			
USB	Universal Serial Bus			
USBIO	USB input/output, CCG2 pins used to connect to a USB port			
XRES	external reset I/O pin			

Document History Page

-	n Title: EZ-F Number: 00		Datasheet US	B Type-C Port Controller
Revision	ECN	Orig. of Change	Submission Date	Description of Change
*E	4680071	GAYA	03/07/2015	Release to web
*F	4718374	AKN	04/09/2015	Added 24-pin QFN pin and package information. Added DRP and DFP Application diagrams
*G	4774142	AKN	06/15/2015	Changed datasheet status from Preliminary to Final. Updated Logic Block Diagram. Changed number of GPIOs to 10 and added a note about the number of GPIOs varying depending on the package. Updated Power and Digital Peripherals section. Updated Application diagrams. Added SID.PWR#1_A parameter. Added CYPD2122-20FNXIT part in Ordering Information. Removed Errata.
*H	4979175	VGT	10/23/2015	Updated Figure 1 and Figure 5. Added VCC_ABS spec and updated the SID.ADC.4 parameter. Added "Guaranteed by characterization" note for the following specs: SID.GIO#16, SID.GIO#17, SID.XRES#3, SID 160 to SID 172A, SID 2226, SID 229, SID.ADC.1 to SID.ADC.5.
*	5028128	VGT	12/04/2015	Updated Application Diagrams: Added Figure 12. Added Figure 13. Added Figure 14. Updated Ordering Information. Added part numbers CYPD2119-24LQXIT, CYPD2120-24LQXIT, CYPD2121-24LQXIT, CYPD2125-24LQXIT.
*J	5186972	VGT	03/28/2016	Updated temperature ranges in Features. Updated Table 28. Updated Ordering Information.
*K	5303957	VGT	06/13/2016	Added Available Firmware and Software Tools. Updated Figure 8: Per the USB PD3.0 spec, SOP" implementation is no longer valid for passive cables. Updated Figure 9, Figure 10, and Figure 11. Added descriptive notes for the application diagrams. Added References and Links To Applications Collaterals. Updated Ordering Information. Updated Cypress logo and copyright information.
*L	5387677	VGT	08/02/2016	Added CYPD2122-24LQXI part number in Ordering Information.

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

USB Controllers

Wireless/RF

ARM® Cortex® Microcontrollers cypress.com/arm Automotive cypress.com/automotive Clocks & Buffers cypress.com/clocks Interface cypress.com/interface Lighting & Power Control cypress.com/powerpsoc Memory cypress.com/memory **PSoC** cypress.com/psoc Touch Sensing cypress.com/touch

m cypress.com/psoc e PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

PSoC® Solutions

Community | Forums | Blogs | Video | Training

Cypress Developer Community

Technical Support cypress.com/support

cypress.com/usb cypress.com/wireless

© Cypress Semiconductor Corporation 2014-2016. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the aliure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.