

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	51
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f64j11t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
INTSRC	PLLEN ⁽¹⁾	TUN5	TUN4	TUN3	TUN2	TUN1	TUN0
bit 7				·			bit 0
Legend:							
R = Readat	ole bit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7	INTSRC: Inte	ernal Oscillator	Low-Frequence	cy Source Selec	t bit		
	1 = 31.25 k⊦	Iz device clock	derived from 8	B MHz INTOSC	source (divide	-by-256 enable	d)
	0 = 31 kHz c	levice clock der	ived from INT	RC 31 kHz osci	illator	-	
bit 6	PLLEN: Fred	quency Multiplie	r PLL Enable	bit ⁽¹⁾			
	1 = PLL is e	nabled					
	0 = PLL is di	isabled					
bit 5-0	TUN<5:0>: F	ast RC Oscillat	or (INTOSC)	Frequency Tuni	ng bits		
	011111 = M a	aximum frequer	псу				
	•	•					
	•	•					
	000001						
	000000 = C e	enter frequency	. Fast RC osci	illator is running	at the calibrat	ed frequency.	
	111111						
	•	•					
	•	•					
	100000 = M i	inimum frequen	су				

REGISTER 3-2: OSCTUNE: OSCILLATOR TUNING REGISTER

Note 1: Available only for ECPLL and HSPLL oscillator configurations; otherwise, this bit is unavailable and reads as '0'.

3.3 Clock Sources and Oscillator Switching

Essentially, PIC18F85J11 family devices have three independent clock sources:

- · Primary oscillators
- · Secondary oscillators
- Internal oscillator

The **primary oscillators** can be thought of as the main device oscillators. These are any external oscillators connected to the OSC1 and OSC2 pins, and include the External Crystal and Resonator modes and the External Clock modes. In some circumstances, the internal oscillator block may be considered a primary oscillator. The particular mode is defined by the FOSC Configuration bits. The details of these modes are covered in **Section 3.4 "External Oscillator Modes**".

The **secondary oscillators** are external clock sources that are not connected to the OSC1 or OSC2 pins. These sources may continue to operate even after the controller is placed in a power-managed mode. PIC18F85J11 family devices offer the Timer1 oscillator as a secondary oscillator source. This oscillator, in all power-managed modes, is often the time base for functions such as a Real-Time Clock. The Timer1 oscillator is discussed in greater detail in **Section 13.3 "Timer1 Oscillator"**

In addition to being a primary clock source in some circumstances, the **internal oscillator** is available as a power-managed mode clock source. The INTRC source is also used as the clock source for several special features, such as the WDT and Fail-Safe Clock Monitor. The internal oscillator block is discussed in more detail in **Section 3.5** "Internal Oscillator **Block**".

The PIC18F85J11 family includes features that allow the device clock source to be switched from the main oscillator, chosen by device configuration, to one of the alternate clock sources. When an alternate clock source is enabled, various power-managed operating modes are available.

TADLE J-2.					
Register	Applicable Devices		Power-on Reset, Brown-out Reset	MCLR Resets WDT Reset RESET Instruction Stack Resets CM Resets	Wake-up via WDT or Interrupt
ADRESH	PIC18F6XJ11	PIC18F8XJ11	xxxx xxxx	uuuu uuuu	uuuu uuuu
ADRESL	PIC18F6XJ11	PIC18F8XJ11	xxxx xxxx	uuuu uuuu	uuuu uuuu
ADCON0	PIC18F6XJ11	PIC18F8XJ11	0-00 0000	0-00 0000	u-uu uuuu
ADCON1	PIC18F6XJ11	PIC18F8XJ11	00 0000	00 0000	uu uuuu
ADCON2	PIC18F6XJ11	PIC18F8XJ11	0-00 0000	0-00 0000	u-uu uuuu
CVRCON	PIC18F6XJ11	PIC18F8XJ11	0000 0000	0000 0000	uuuu uuuu
CMCON	PIC18F6XJ11	PIC18F8XJ11	0000 0111	0000 0111	uuuu uuuu
TMR3H	PIC18F6XJ11	PIC18F8XJ11	xxxx xxxx	uuuu uuuu	uuuu uuuu
TMR3L	PIC18F6XJ11	PIC18F8XJ11	xxxx xxxx	uuuu uuuu	uuuu uuuu
T3CON	PIC18F6XJ11	PIC18F8XJ11	0000 0000	uuuu uuuu	uuuu uuuu
PSPCON	PIC18F6XJ11	PIC18F8XJ11	0000	0000	uuuu
SPBRG1	PIC18F6XJ11	PIC18F8XJ11	0000 0000	0000 0000	uuuu uuuu
RCREG1	PIC18F6XJ11	PIC18F8XJ11	0000 0000	0000 0000	uuuu uuuu
TXREG1	PIC18F6XJ11	PIC18F8XJ11	0000 0000	0000 0000	uuuu uuuu
TXSTA1	PIC18F6XJ11	PIC18F8XJ11	0000 0010	0000 0010	uuuu uuuu
RCSTA1	PIC18F6XJ11	PIC18F8XJ11	x000 0000x	0000 000x	uuuu uuuu
EECON2	PIC18F6XJ11	PIC18F8XJ11			
EECON1	PIC18F6XJ11	PIC18F8XJ11	0 x00-	0 u00-	0 u00-
IPR3	PIC18F6XJ11	PIC18F8XJ11	00 -11-	00 -11-	uu -uu-
PIR3	PIC18F6XJ11	PIC18F8XJ11	00 -00-	00 -00-	uu -00- (3)
PIE3	PIC18F6XJ11	PIC18F8XJ11	00 -00-	00 -00-	uu -00-
IPR2	PIC18F6XJ11	PIC18F8XJ11	11 111-	11 111-	uu uuu-
PIR2	PIC18F6XJ11	PIC18F8XJ11	00 000-	00 000-	uu uuu- (3)
PIE2	PIC18F6XJ11	PIC18F8XJ11	00 000-	00 000-	uu uuu-
IPR1	PIC18F6XJ11	PIC18F8XJ11	1111 1-11	1111 1-11	uuuu u-uu
PIR1	PIC18F6XJ11	PIC18F8XJ11	0000 0-00	0000 0-00	uuuu u-uu ⁽³⁾
PIE1	PIC18F6XJ11	PIC18F8XJ11	0000 0-00	0000 0-00	uuuu u-uu
MEMCON	PIC18F6XJ11	PIC18F8XJ11	0-0000	0-0000	u-uuuu
OSCTUNE	PIC18F6XJ11	PIC18F8XJ11	0000 0000	0000 0000	uuuu uuuu

TABLE 5-2:	INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition. Shaded cells indicate conditions do not apply for the designated device.

Note 1: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.

2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).

- 3: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).
- 4: See Table 5-1 for Reset value for specific condition.

5: Bits 6 and 7 of PORTA, LATA and TRISA are enabled depending on the oscillator mode selected. When not enabled as PORTA pins, they are disabled and read as '0'.

6.2.3 INSTRUCTIONS IN PROGRAM MEMORY

The program memory is addressed in bytes. Instructions are stored as two bytes or four bytes in program memory. The Least Significant Byte of an instruction word is always stored in a program memory location with an even address (LSB = 0). To maintain alignment with instruction boundaries, the PC increments in steps of 2 and the LSB will always read '0' (see **Section 6.1.5 "Program Counter"**).

Figure 6-6 shows an example of how instruction words are stored in the program memory.

The CALL and GOTO instructions have the absolute program memory address embedded into the instruction. Since instructions are always stored on word boundaries, the data contained in the instruction is a word address. The word address is written to PC<20:1> which accesses the desired byte address in program memory. Instruction #2 in Figure 6-6 shows how the instruction, GOTO 0006h, is encoded in the program memory. Program branch instructions, which encode a relative address offset, operate in the same manner. The offset value stored in a branch instruction represents the number of single-word instructions that the PC will be offset by. Section 25.0 "Instruction Set Summary" provides further details of the instruction set.

FIGURE 6-6:	INSTRUCTIONS IN PROGRAM MEMORY
-------------	--------------------------------

				LSB = 1	LSB = 0	Word Address \downarrow
	Program Memory Byte Locations \rightarrow					000000h
						000002h
						000004h
						000006h
Instruction 1:	MOVLW	055h		0Fh	55h	000008h
Instruction 2:	GOTO	0006h		EFh	03h	00000Ah
				F0h	00h	00000Ch
Instruction 3:	MOVFF	123h, 45	6h	C1h	23h	00000Eh
				F4h	56h	000010h
						000012h
						000014h

6.2.4 TWO-WORD INSTRUCTIONS

The standard PIC18 instruction set has four two-word instructions: CALL, MOVFF, GOTO and LSFR. In all cases, the second word of the instructions always has '1111' as its four Most Significant bits; the other 12 bits are literal data, usually a data memory address.

The use of '1111' in the 4 MSbs of an instruction specifies a special form of NOP. If the instruction is executed in proper sequence – immediately after the first word – the data in the second word is accessed

and used by the instruction sequence. If the first word is skipped for some reason and the second word is executed by itself, a NOP is executed instead. This is necessary for cases when the two-word instruction is preceded by a conditional instruction that changes the PC. Example 6-4 shows how this works.

Note:	See Section 6.5 "Program Memory and
	the Extended Instruction Set" for
	information on two-word instructions in the
	extended instruction set.

EXAMPLE 6-4: TWO-WORD INSTRUCTIONS

CASE 1:			
Object Code	Source Cod	e	
0110 0110 0000 0000	TSTFSZ	REG1	; is RAM location 0?
1100 0001 0010 0011	MOVFF	REG1, REG2	; No, skip this word
1111 0100 0101 0110			; Execute this word as a NOP
0010 0100 0000 0000	ADDWF	REG3	; continue code
CASE 2:			
Object Code	Source Cod	e	
0110 0110 0000 0000	TSTFSZ	REG1	; is RAM location 0?
1100 0001 0010 0011	MOVFF	REG1, REG2	; Yes, execute this word
1111 0100 0101 0110			; 2nd word of instruction
0010 0100 0000 0000	ADDWF	REG3	; continue code

8.1 External Memory Bus Control

The operation of the interface is controlled by the MEMCON register (Register 8-1). This register is available in all Program Memory modes except Micro-controller mode. In this mode, the register is disabled and cannot be written to.

The EBDIS bit (MEMCON<7>) controls the operation of the bus and related port functions. Clearing EBDIS enables the interface and disables the I/O functions of the ports, as well as any other functions multiplexed to those pins. Setting the bit enables the I/O ports and other functions, but allows the interface to override everything else on the pins when an external memory operation is required. By default, the external bus is always enabled and disables all other I/O. The operation of the EBDIS bit is also influenced by the Program Memory mode being used. This is discussed in more detail in Section 8.5 "Program Memory Modes and the External Memory Bus".

The WAIT bits allow for the addition of Wait states to external memory operations. The use of these bits is discussed in **Section 8.3 "Wait States"**.

The WM bits select the particular operating mode used when the bus is operating in 16-Bit Data Width mode. These are discussed in more detail in **Section 8.6 "16-Bit Data Width Modes"**. These bits have no effect when an 8-Bit Data Width mode is selected.

REGISTER 8-1: MEMCON: EXTERNAL MEMORY BUS CONTROL REGISTER

R/W-0	U-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0
EBDIS		WAIT1	WAIT0		—	WM1	WM0
bit 15							bit 8
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 7	EBDIS: Extern	nal Bus Disable	e bit				
	1 = External I	bus is enabled	when microco	ontroller access	es external me	emory; otherwis	e, all external
	bus drive	rs are mapped	as I/O ports	orte are disabler	1		
hit C		bus is always e	$\frac{1}{2}$		I		
DILO	Unimplement	ted: Read as	J				
bit 5-4	WAIT<1:0>: Table Reads and Writes Bus Cycle Wait Count bits						
	11 = Table rea	ads and writes	will wait 0 Tcy				
	10 = Table real	ads and writes	will wait 1 TCY				
	01 = Table reads and writes will wait 2 TCY						
	00 = 1 able reads and writes will wait 3 ICY						
bit 3-2	Unimplement	ted: Read as 'o)'				
bit 1-0	WM<1:0>: TB	LWT Operation	with 16-Bit Da	ata Bus Width S	elect bits		
	1x = Word Wr	rite mode: TAB	LAT0 and TAB	LAT1 word outp	out; WRH activ	ve when TABLA	T1 written
	01 = Byte Sel	ect mode: TAB	LAT data copie	ed on both MSB	and LSB; WR	H and (UB or L	B) will activate
	00 = Byte Wri	te mode: TABL	AT data copie	d on both MSB	and LSB; WR	H or WRL will a	ctivate

8.7.1 **8-BIT MODE TIMING**

The presentation of control signals on the external memory bus is different for the various operating modes. Typical signal timing diagrams are shown in Figure 8-7 and Figure 8-8.

FIGURE 8-7: EXTERNAL MEMORY BUS TIMING FOR TBLRD (EXTENDED

FIGURE 8-8: EXTERNAL MEMORY BUS TIMING FOR SLEEP (EXTENDED **MICROCONTROLLER MODE)**

10.2 PIR Registers

The PIR registers contain the individual flag bits for the peripheral interrupts. Due to the number of peripheral interrupt sources, there are three Peripheral Interrupt Request (Flag) registers (PIR1, PIR2, PIR3).

- Note 1: Interrupt flag bits are set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the Global Interrupt Enable bit, GIE (INTCON<7>).
 - 2: User software should ensure the appropriate interrupt flag bits are cleared prior to enabling an interrupt and after servicing that interrupt.

REGISTER 10-4: PIR1: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 1

R/W-0	R/W-0	R-0	R-0	R/W-0	U-0	R/W-0	R/W-0
PSPIF	ADIF	RC1IF	TX1IF	SSPIF		TMR2IF	TMR1IF
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	PSPIF: Parallel Slave Port Read/Write Interrupt Flag bit
	 1 = A read or a write operation has taken place (must be cleared in software) 0 = No read or write has occurred
bit 6	ADIF: A/D Converter Interrupt Flag bit
	1 = An A/D conversion completed (must be cleared in software)0 = The A/D conversion is not complete
bit 5	RC1IF: EUSART Receive Interrupt Flag bit
	1 = The EUSART receive buffer, RCREG1, is full (cleared when RCREG1 is read)0 = The EUSART receive buffer is empty
bit 4	TX1IF: EUSART Transmit Interrupt Flag bit
	 1 = The EUSART transmit buffer, TXREG1, is empty (cleared when TXREG1 is written) 0 = The EUSART transmit buffer is full
bit 3	SSPIF: Master Synchronous Serial Port Interrupt Flag bit
	1 = The transmission/reception is complete (must be cleared in software)0 = Waiting to transmit/receive
bit 2	Unimplemented: Read as '0'
bit 1	TMR2IF: TMR2 to PR2 Match Interrupt Flag bit
	1 = TMR2 to PR2 match occurred (must be cleared in software)0 = No TMR2 to PR2 match occurred
bit 0	TMR1IF: TMR1 Overflow Interrupt Flag bit
	1 = TMR1 register overflowed (must be cleared in software)0 = TMR1 register did not overflow

REGISTER 10-9: PIE3: PERIPHERAL INTERRUPT ENABLE REGISTER 3

U-0	U-0	R-0	R-0	U-0	R/W-0	R/W-0	U-0
_		RC2IE	TX2IE	—	CCP2IE	CCP1IE	—
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable I	oit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 7-6	Unimplemer	nted: Read as 'o)'				
bit 5	RC2IE: AUS	ART Receive In	terrupt Enable	bit			
	1 = Enabled 0 = Disabled						
bit 4	TX2IE: AUS	ART Transmit In	terrupt Enable	bit			
	1 = Enabled 0 = Disabled	l d					
bit 3	Unimplemer	nted: Read as 'o)'				
bit 2	CCP2IE: CC	P2 Interrupt Ena	able bit				
	1 = Enabled 0 = Disabled						
bit 1	CCP1IE: CC	P1 Interrupt Ena	able bit				
	1 = Enabled 0 = Disabled						
bit 0	Unimplemer	nted: Read as 'o)'				

12.1 Timer0 Operation

Timer0 can operate as either a timer or a counter. The mode is selected with the T0CS bit (T0CON<5>). In Timer mode (T0CS = 0), the module increments on every clock by default unless a different prescaler value is selected (see **Section 12.3 "Prescaler"**). If the TMR0 register is written to, the increment is inhibited for the following two instruction cycles. The user can work around this by writing an adjusted value to the TMR0 register.

The Counter mode is selected by setting the T0CS bit (= 1). In this mode, Timer0 increments either on every rising or falling edge of pin RA4/T0CKI. The incrementing edge is determined by the Timer0 Source Edge Select bit, T0SE (T0CON<4>). Clearing this bit selects the rising edge. Restrictions on the external clock input are discussed below.

An external clock source can be used to drive Timer0; however, it must meet certain requirements to ensure that the external clock can be synchronized with the internal phase clock (Tosc). There is a delay between synchronization and the onset of incrementing the timer/counter.

12.2 Timer0 Reads and Writes in 16-Bit Mode

TMR0H is not the actual high byte of Timer0 in 16-bit mode. It is actually a buffered version of the real high byte of Timer0 which is not directly readable nor writable (refer to Figure 12-2). TMR0H is updated with the contents of the high byte of Timer0 during a read of TMR0L. This provides the ability to read all 16 bits of Timer0 without having to verify that the read of the high and low byte were valid, due to a rollover between successive reads of the high and low byte.

Similarly, a write to the high byte of Timer0 must also take place through the TMR0H Buffer register. The high byte is updated with the contents of TMR0H when a write occurs to TMR0L. This allows all 16 bits of Timer0 to be updated at once.

FIGURE 12-1: TIMER0 BLOCK DIAGRAM (8-BIT MODE)

17.3.6 MASTER MODE

The master can initiate the data transfer at any time because it controls the SCK. The master determines when the slave (Processor 2, Figure 17-2) will broadcast data by the software protocol.

In Master mode, the data is transmitted/received as soon as the SSPBUF register is written to. If the SPI is only going to receive, the SDO output could be disabled (programmed as an input). The SSPSR register will continue to shift in the signal present on the SDI pin at the programmed clock rate. As each byte is received, it will be loaded into the SSPBUF register as if a normal received byte (interrupts and status bits appropriately set). This could be useful in receiver applications as a "Line Activity Monitor" mode. The clock polarity is selected by appropriately programming the CKP bit (SSPCON1<4>). This, then, would give waveforms for SPI communication as shown in Figure 17-3, Figure 17-5 and Figure 17-6, where the MSB is transmitted first. In Master mode, the SPI clock rate (bit rate) is user-programmable to be one of the following:

- Fosc/4 (or Tcy)
- Fosc/16 (or 4 Tcy)
- Fosc/64 (or 16 Tcy)
- Timer2 output/2

This allows a maximum data rate (at 40 MHz) of 10.00 Mbps.

Figure 17-3 shows the waveforms for Master mode. When the CKE bit is set, the SDO data is valid before there is a clock edge on SCK. The change of the input sample is shown based on the state of the SMP bit. The time when the SSPBUF is loaded with the received data is shown.

FIGURE 17-3: SPI MODE WAVEFORM (MASTER MODE)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
WCOL	SSPOV	SSPEN ⁽¹⁾	CKP	SSPM3	SSPM2	SSPM1	SSPM0
bit 7							bit 0
							
Legend:							
R = Readable	e bit	W = Writable b	bit	U = Unimplem	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown
bit 7	WCOL: Write	Collision Detec	t bit				
	1 = A write t transmise 0 = No collisi	to the SSPBUF sion to be starte ion	register was d (must be clo	attempted wh eared in softwar	ile the I ² C con e)	nditions were r	not valid for a
	<u>In Slave Tran</u> 1 = The SSP software	<u>smit mode:</u> PBUF register is)	written while	it is still transm	itting the previ	ous word (mus	t be cleared in
	0 = No collisi In Receive m This is a "don	ion <u>ode (Master or S</u> i't care" bit.	<u>Slave modes)</u>	<u>.</u>			
bit 6	SSPOV: Rec	eive Overflow In	dicator bit				
	In Receive mode: 1 = A byte is received while the SSPBUF register is still holding the previous byte (must be cleared in software)						
	In Transmit m This is a "don	n <u>ode:</u> I't care" bit in Tra	ansmit mode.				
bit 5	SSPEN: Mas	ter Synchronous	s Serial Port E	Enable bit ⁽¹⁾			
	1 = Enables t 0 = Disables	he serial port ar serial port and c	nd configures configures the	the SDA and So se pins as I/O p	CL pins as the ort pins	serial port pins	
bit 4	CKP: SCK R	elease Control b	oit				
	In Slave mode 1 = Release of 0 = Holds clo In Master mode Unused in this	<u>e:</u> clock ck low (clock str <u>de:</u> s mode.	etch); used to	ensure data se	etup time		
bit 3-0	SSPM<3:0>:	Synchronous S	erial Port Mod	le Select bits			
	1111 = $I^{2}C S$ 1110 = $I^{2}C S$ 1011 = $I^{2}C F$ 1000 = $I^{2}C M$ 0111 = $I^{2}C S$ 0110 = $I^{2}C S$ Bit combination	lave mode, 10-b lave mode, 7-bit irmware Control laster mode, clo lave mode, 10-b lave mode, 7-bit	bit address with address with led Master m ck = Fosc/(4 bit address address	th Start and Stop Start and Stop ode (slave Idle) * (SSPADD + 1	p bit interrupts bit interrupts e))	enabled mabled	ande only
		ons not specifica	any noted nere				ioue only.

REGISTER 17-4: SSPCON1: MSSP CONTROL REGISTER 1 (I²C[™] MODE)

Note 1: When enabled, the SDA and SCL pins must be configured as inputs.

REGISTE	R 17-5: SSPC	CON2: MSSP	CONTROL F	REGISTER 2	(I ² C™ MAST	ER MODE)	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
GCEN	ACKSTAT	ACKDT ⁽¹⁾	ACKEN ⁽²⁾	RCEN ⁽²⁾	PEN ⁽²⁾	RSEN ⁽²⁾	SEN ⁽²⁾
bit 7							bit
Legend:							
R = Reada	able bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 7	GCEN: Gene	eral Call Enable	bit				
	Unused in Ma	aster mode.					
bit 6	ACKSTAT: A	cknowledge Sta	atus bit (Maste	r Transmit mod	e only)		
	1 = Acknowle	edge was not re	ceived from sl	ave			
	0 = Acknowle	edge was receiv	ed from slave				
bit 5	ACKDT: Ack	nowledge Data	bit (Master Re	ceive mode onl	y)(1)		
	1 = Not Ackn	lowledge					
L:1			anas Enchis I	.:(2)			
DIT 4	1 - Initiato A	nowledge Sequ			and transmit	ACKDT data bit	outomoticall
	cleared b	by hardware.	quence on 3D	A and SCL pins		ACRUT data bit,	automaticali
	0 = Acknowl	edge sequence	Idle				
bit 3	RCEN: Rece	ive Enable bit (Master Receiv	e mode only) ⁽²⁾			
	1 = Enables I	Receive mode t	or I ² C				
	0 = Receive i	is Idle					
bit 2	PEN: Stop C	ondition Enable	bit ⁽²⁾				
	1 = Initiate St	top condition or	SDA and SCI	_ pins; automat	ically cleared b	by hardware.	
	0 = Stop cond	dition is idle					
Dit 1	RSEN: Repe	ated Start Cond	lition Enable b				
	1 = Initiate R 0 = Repeate	d Start condition	ondition on SL	DA and SCL pir	is; automatical	lly cleared by ha	irdware.
hit 0	SEN: Start C	ondition Enable	hit(2)				
	1 = Initiate St	tart condition or	SDA and SCI	pins: automat	ically cleared I	ov hardware	
	0 = Start con	dition is Idle		_ pe, automat			
Nata 1-			on the user ini	tiotoo on Aslas			f a va a si /-
NOTE 1:	value that will be	transmitted wh	en the user ini	uates an Ackno	wieage seque	ence at the end of	or a receive.

2: If the l²C module is active, these bits may not be set (no spooling) and the SSPBUF may not be written (or writes to the SSPBUF are disabled).

17.4.5 GENERAL CALL ADDRESS SUPPORT

The addressing procedure for the I²C bus is such that the first byte after the Start condition usually determines which device will be the slave addressed by the master. The exception is the general call address which can address all devices. When this address is used, all devices should, in theory, respond with an Acknowledge.

The general call address is one of eight addresses reserved for specific purposes by the I²C protocol. It consists of all '0's with R/W = 0.

The general call address is recognized when the General Call Enable bit, GCEN, is enabled (SSPCON2<7> set). Following a Start bit detect, 8 bits are shifted into the SSPSR and the address is compared against the SSPADD. It is also compared to the general call address and fixed in hardware.

If the general call address matches, the SSPSR is transferred to the SSPBUF, the BF flag bit is set (eighth bit), and on the falling edge of the ninth bit (ACK bit), the SSPIF interrupt flag bit is set.

When the interrupt is serviced, the source for the interrupt can be checked by reading the contents of the SSPBUF. The value can be used to determine if the address was device-specific or a general call address.

In 10-Bit Addressing mode, the SSPADD is required to be updated for the second half of the address to match and the UA bit is set (SSPSTAT<1>). If the general call address is sampled when the GCEN bit is set, while the slave is configured in 10-Bit Addressing mode, then the second half of the address is not necessary, the UA bit will not be set and the slave will begin receiving data after the Acknowledge (Figure 17-17).

17.4.6.1 I²C Master Mode Operation

The master device generates all of the serial clock pulses and the Start and Stop conditions. A transfer is ended with a Stop condition or with a Repeated Start condition. Since the Repeated Start condition is also the beginning of the next serial transfer, the I²C bus will not be released.

In Master Transmitter mode, serial data is output through SDA, while SCL outputs the serial clock. The first byte transmitted contains the slave address of the receiving device (7 bits) and the Read/Write (R/W) bit. In this case, the R/W bit will be logic '0'. Serial data is transmitted 8 bits at a time. After each byte is transmitted, an Acknowledge bit is received. Start and Stop conditions are output to indicate the beginning and the end of a serial transfer.

In Master Receive mode, the first byte transmitted contains the slave address of the transmitting device (7 bits) and the R/\overline{W} bit. In this case, the R/\overline{W} bit will be logic '1'. Thus, the first byte transmitted is a 7-bit slave address followed by a '1' to indicate the receive bit. Serial data is received via SDA, while SCL outputs the serial clock. Serial data is received 8 bits at a time. After each byte is received, an Acknowledge bit is transmitted. Start and Stop conditions indicate the beginning and end of transmission.

The Baud Rate Generator used for the SPI mode operation is used to set the SCL clock frequency for either 100 kHz, 400 kHz or 1 MHz I^2 C operation. See **Section 17.4.7 "Baud Rate"** for more detail.

A typical transmit sequence would go as follows:

- 1. The user generates a Start condition by setting the Start Enable bit, SEN (SSPCON2<0>).
- 2. SSPIF is set. The MSSP module will wait the required start time before any other operation takes place.
- 3. The user loads the SSPBUF with the slave address to transmit.
- 4. The address is shifted out of the SDA pin until all 8 bits are transmitted.
- 5. The MSSP module shifts in the ACK bit from the slave device and writes its value into the SSPCON2 register (SSPCON2<6>).
- 6. The MSSP module generates an interrupt at the end of the ninth clock cycle by setting the SSPIF bit.
- 7. The user loads the SSPBUF with eight bits of data.
- 8. Data is shifted out of the SDA pin until all 8 bits are transmitted.
- The MSSP module shifts in the ACK bit from the slave device and writes its value into the SSPCON2 register (SSPCON2<6>).
- 10. The MSSP module generates an interrupt at the end of the ninth clock cycle by setting the SSPIF bit.
- 11. The user generates a Stop condition by setting the Stop Enable bit, PEN (SSPCON2<2>).
- 12. The interrupt is generated once the Stop condition is complete.

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADFM	—	ACQT2	ACQT1	ACQT0	ADCS2	ADCS1	ADCS0
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 7	ADFM: A/D F 1 = Right just 0 = Left justifi	Result Format S ified ied	elect bit				
bit 6	Unimplemen	ted: Read as ')'				
bit 5-3	ACQT<2:0>:	A/D Acquisition	n Time Select	bits			
	111 = 20 TAD 110 = 16 TAD 101 = 12 TAD 100 = 8 TAD 011 = 6 TAD 010 = 4 TAD 001 = 2 TAD 000 = 0 TAD ⁽¹	1)					
bit 2-0	$001 = 2 \text{ IAD}$ $000 = 0 \text{ TAD}^{(1)}$ ADCS<2:0>: A/D Conversion Clock Select bits $111 = \text{FRc (clock derived from A/D RC oscillator)}^{(1)}$ $110 = \text{Fosc/64}$ $101 = \text{Fosc/16}$ $100 = \text{Fosc/4}$ $011 = \text{FRc (clock derived from A/D RC oscillator)}^{(1)}$ $010 = \text{Fosc/32}$ $001 = \text{Fosc/8}$ $000 = \text{Fosc/2}$						

REGISTER 20-3: ADCON2: A/D CONTROL REGISTER 2

Note 1: If the A/D FRC clock source is selected, a delay of one TcY (instruction cycle) is added before the A/D clock starts. This allows the SLEEP instruction to be executed before starting a conversion.

21.6 Comparator Interrupts

The comparator interrupt flag is set whenever there is a change in the output value of either comparator. Software will need to maintain information about the status of the output bits, as read from CMCON<7:6>, to determine the actual change that occurred. The CMIF bit (PIR2<6>) is the Comparator Interrupt Flag. The CMIF bit must be reset by clearing it. Since it is also possible to write a '1' to this register, a simulated interrupt may be initiated.

Both the CMIE bit (PIE2<6>) and the PEIE bit (INT-CON<6>) must be set to enable the interrupt. In addition, the GIE bit (INTCON<7>) must also be set. If any of these bits are clear, the interrupt is not enabled, though the CMIF bit will still be set if an interrupt condition occurs.

Note:	If a change in the CMCON register								
	(C1OUT or C2OUT) should occur when a								
	read operation is being executed (start of								
	the Q2 cycle), then the CMIF (PIR2<6>)								
	interrupt flag may not get set.								

The user, in the Interrupt Service Routine, can clear the interrupt in the following manner:

- a) Any read or write of CMCON will end the mismatch condition.
- b) Clear flag bit, CMIF.

A mismatch condition will continue to set flag bit, CMIF. Reading CMCON will end the mismatch condition and allow flag bit, CMIF, to be cleared.

21.7 Comparator Operation During Sleep

When a comparator is active and the device is placed in Sleep mode, the comparator remains active and the interrupt is functional if enabled. This interrupt will wake-up the device from Sleep mode when enabled. Each operational comparator will consume additional current, as shown in the comparator specifications. To minimize power consumption while in Sleep mode, turn off the comparators (CM<2:0> = 111) before entering Sleep. If the device wakes up from Sleep, the contents of the CMCON register are not affected.

21.8 Effects of a Reset

A device Reset forces the CMCON register to its Reset state, causing the comparator modules to be turned off (CM<2:0> = 111). However, the input pins (RF3 through RF6) are configured as analog inputs by default on device Reset. The I/O configuration for these pins is determined by the setting of the PCFG<3:0> bits (ADCON1<3:0>). Therefore, device current is minimized when analog inputs are present at Reset time.

BCF	Bit Clear f	BN	Branch if Negative			
Syntax:	BCF f, b {,a}	Syntax:	BN n			
Operands:	$0 \le f \le 255$	Operands:	-128 ≤ n ≤ 127 if Negative bit is '1', (PC) + 2 + 2n → PC			
	0 ≤ b ≤ 7 a ∈ [0, 1]	Operation:				
Operation:	$0 \rightarrow f \le b >$	Status Affected:	None			
Status Affected:	None	Encoding:	1110	0110 nnr	nn nnnn	
Encoding:	1001 bbba ffff ffff	Description:	If the Negat	ive bit is '1'. th	ien the	
Description:	Bit 'b' in register 'f' is cleared.		program wil	I branch.		
If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing			The 2's complement number, '2n', is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then a two-cycle instruction.			
	mode whenever f \leq 95 (5Fh). See	Words:	1			
Section 25.2.3 "Byte-Oriented and		Cycles:	1(2)			
	Literal Offset Mode" for details.	Q Cycle Activity:				
Words:	1	If Jump:				
Cycles:	1	Q1	Q2	Q3	Q4	
Q Cycle Activity:		Decode	read literal	Data	PC	
Q1	Q2 Q3 Q4	No	No	No	No	
Decode	Read Process Write	operation	operation	operation	operation	
	register 'f' Data register 'f'	If No Jump:				
		Q1	Q2	Q3	Q4	
Example:	BCF FLAG_REG, 7, 0	Decode	read literal	Process Data	N0 operation	
Before Instruc	ction			Bala	oporation	
After Instructio	an	Example:	HERE	BN Jump		
FLAG_R	EG = 47h	Before Instruc	tion			
		PC	= ado	dress (HERE)		
		After Instruction	on			
		If Negati	ve = 1; = ad	dress (Jump)		
		If Negati	ve = 0;			
		PC	= ado	dress (HERE	+ 2)	

DECFSZ	Decrement	t f, Skip if 0		DCFSNZ			
Syntax:	DECFSZ f {	{,d {,a}}		Syntax:			
Operands:	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0, 1] \\ a \in [0, 1] \end{array}$			Operands:			
Operation:	(f) – $1 \rightarrow de$ skip if result	(f) $-1 \rightarrow \text{dest}$, skip if result = 0					
Status Affected:	None			Status Affe			
Encoding:	0010	11da ff	ff ffff	Encoding:			
Description:	The conten decremente placed in W placed back	ts of register ' ed. If 'd' is '0', /. If 'd' is '1', th < in register 'f'	f' are the result is he result is	Description			
	If the result which is alr and a ℕOℙ i it a two-cyc	is '0', the nex eady fetched s executed in le instruction.	tt instruction is discarded stead, making				
	lf 'a' is '0', tl If 'a' is '1', tl GPR bank.	he Access Ba he BSR is use	nk is selected. ed to select the				
	If 'a' is '0' a set is enabl in Indexed I mode when Section 25 Bit-Oriente Literal Offs	nd the extend ed, this instru Literal Offset , lever $f \le 95$ (5 .2.3 "Byte-On ed Instruction set Mode" for	led instruction ction operates Addressing iFh). See riented and ns in Indexed details.				
Words:	1						
Cycles:	1(2) Note: 3 cy by a	rcles if skip ar a 2-word instru	nd followed uction.	Words: Cycles:			
Q Cycle Activity:	02	03	Q4	Q Cycle A			
Decode	Read register 'f'	Process Data	Write to destination	(Dec			
lf skip:			-				
Q1	Q2	Q3	Q4	If skip:			
No	No	No	No				
If skip and followe	d by 2-word in	operation:	operation				
Q1	Q2	Q3	Q4	lf skip and			
No	No	No	No] (
operation	operation	operation	operation	Ν			
No	No	No	No	oper			
operation	operation	operation	operation				
Example:	HERE	DECFSZ GOTO	CNT, 1, 1 LOOP	Example:			
Before Instruc PC	tion = Address	(HERE)		Before			
After Instructio	on = CNT - 1	1		T After I -			
IT CNT PC	= 0; = Address	G (CONTINUE	Ξ)	T II			
If CNT PC	≠ 0; = Address	6 (HERE + 2	2)	11			

SNZ	Decrement f, Skip if Not 0					
tax:	DCFSNZ f {	{,d {,a}}				
erands:	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0, 1] \\ a \in [0, 1] \end{array}$					
eration:	(f) – $1 \rightarrow de$ skip if result	est, t ≠ 0				
us Affected:	None					
oding:	0100	11da fff	f ffff			
cription:	The content decremente placed in W placed back	The contents of register 'f' are decremented. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed back in register 'f'.				
	If the result instruction v discarded a instead, ma instruction.	is not '0', the r which is alread and a NOP is e king it a two-c	next ly fetched is kecuted ycle			
	lf 'a' is '0', th If 'a' is '1', th GPR bank.	ne Access Ban ne BSR is used	k is selected. I to select the			
	If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 25.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.					
ds:	1					
les:	1(2) Note: 3 c by :	ycles if skip ar a 2-word instru	nd followed uction.			
Cycle Activity:						
Q1	Q2	Q3	Q4			
Decode	register 'f'	Data	destination			
kip:	-					
Q1	Q2	Q3	Q4			
No	No	No	No			
vperation	by 2-word in	operation	operation			
Q1	02	Q3	Q4			
No	No	No	No.			
operation	operation	operation	operation			
No	No	No	No			
operation	operation	operation	operation			
mple:	HERE I ZERO : NZERO :	OCFSNZ TEM : :	P, 1, 0			
After Instruction TEMP After Instruction TEMP If TEMP	= on = =	? TEMP – 1 0; Address (7	VER ()			
	 ≠	0; Address (1)	17ED()			
гU	-	AUUIE33 (1	NULLINO /			

	INCFSZ Increment f, Skip if 0						
Syntax:		Sy					
Operands:	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0, 1] \\ a \in [0, 1] \end{array}$	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0, 1] \\ a \in [0, 1] \end{array}$					
Operation:	(f) + 1 \rightarrow de skip if result	est, t = 0		Oţ			
Status Affected:	ted: None						
Encoding:	0011	11da ff	ff ffff	Er			
Description:	The content incremented placed in W placed back	The contents of register 'f' are incremented. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed back in register 'f'.					
	If the result which is alre and a NOP i it a two-cyc	is '0', the nex eady fetched i s executed ins le instruction.	t instruction s discarded stead, making				
	lf 'a' is '0', tl If 'a' is '1', tl GPR bank.	he Access Ba he BSR is use	nk is selected. d to select the				
	If 'a' is '0' au set is enabl in Indexed I mode when Section 25 Bit-Oriente Literal Offs	If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 25.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details					
Words:	1			W			
Cycles:	1(2) Note: 3 c by	ycles if skip a a 2-word insti	nd followed	Су			
Q Cycle Activity:	,			Q			
Q1	Q2	Q3	Q4				
Decode	Read register 'f'	Process Data	Write to destination				
lf skip:				lf			
Q1	Q2	Q3	Q4				
No	N0 operation	N0 operation	No				
If skip and followed	by 2-word in	struction:	operation	If			
Q1	Q2	Q3	Q4				
No	No	No	No				
operation	operation	operation	operation				
No	No	No	No				
operation	operation	operation	operation				
	HERE I NZERO :	INCFSZ CI	VT, 1, 0	Ex			
<u>Example:</u>	ZERO :	•					
Example: Before Instruct PC	ZERO : ion = Address	; (HERE)					
Example: Before Instruct PC After Instructio	ZERO : ion = Address n	(HERE)					
Example: Before Instruct PC After Instructio CNT If CNT	ZERO : ion = Address n = CNT + 1 = 0;	G (HERE)					
Example: Before Instruct PC After Instructio CNT If CNT PC If CNT	ZERO :: ion = Address n = CNT + 1 = 0; = Address # 0:	G (HERE)					

NFS	-SNZ Increment f, Skip if Not 0						
Synta	ax:	INFSNZ f {,	d {,a}}				
Oper	ands:	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0, 1] \\ a \in [0, 1] \end{array}$	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0, 1] \\ a \in [0, 1] \end{array}$				
Oper	ation:	(f) + 1 \rightarrow description of the skip if result	est, t ≠ 0				
Statu	s Affected:	None					
Enco	ding:	0100	10da fff	f ffff			
Desc	escription: The contents of register 'f' are incremented. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed back in register 'f'.						
If the result is not '0', the next instruction which is already fetched i discarded and a NOP is executed instead, making it a two-cycle instruction.							
		lf 'a' is '0', tl If 'a' is '1', tl GPR bank.	he Access Bar he BSR is use	nk is selected. d to select the			
	If 'a' is '0' and the extended instruction set is enabled, this instruction operate in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 25.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed						
Nord	s:	1					
Cycle	es:	1(2) Note: 3 cy by a	rcles if skip and 2-word instru	d followed ction.			
QC	vcle Activity:	, , ,					
	Q1	Q2	Q3	Q4			
	Decode	Read	Process	Write to			
lf ald	· .	register 'f'	Data	destination			
II SK	ιp. Ο1	02	03	04			
	No	No	No	No			
	operation	operation	operation	operation			
lf ski	ip and followe	d by 2-word ins	struction:				
1	Q1	Q2	Q3	Q4			
	No	No	No	No			
	No	operation	No	No			
	operation	operation	operation	operation			
Exam	nple:	HERE] ZERO NZERO	INFSNZ REG	, 1, 0			
	Before Instruc PC	tion = Address	(HERE)				
	After Instructic REG If REG PC If REG PC	on = REG + ² ≠ 0; = Address = 0; = Address	1 G (NZERO) G (ZERO)				

26.1	DC Characteristics:	Supply Voltage
		PIC18F85J11 Family (Industrial)

PIC18F85J11 Family (Industrial)			Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial				
Param No.	Symbol	Characteristic	Min	Тур	Мах	Units	Conditions
D001	Vdd	Supply Voltage	VDDCORE 2.0		3.6 3.6	V V	ENVREG tied to Vss ENVREG tied to VDD
D001B	VDDCORE	External Supply for Microcontroller Core	2.0	_	2.70	V	ENVREG tied to Vss
D001C	AVdd	Analog Supply Voltage	Vdd - 0.3	_	VDD + 0.3	V	
D001D	AVss	Analog Ground Potential	Vss – 0.3	_	Vss + 0.3	V	
D002	Vdr	RAM Data Retention Voltage ⁽¹⁾	1.5	_	—	V	
D003	VPOR	VDD Start Voltage to Ensure Internal Power-on Reset Signal		_	0.7	V	See Section 5.3 "Power-on Reset (POR)" for details
D004	Svdd	VDD Rise Rate to Ensure Internal Power-on Reset Signal	0.05		_	V/ms	See Section 5.3 "Power-on Reset (POR)" for details
D005	VBOR	Brown-out Reset Voltage	_	1.9	_	V	

Note 1: This is the limit to which VDD can be lowered in Sleep mode, or during a device Reset, without losing RAM data.

MPLAB Integrated Development Environment	
Software2	95
MPLAB PM3 Device Programmer2	98
MPLAB REAL ICE In-Circuit Emulator System2	97
MPLINK Object Linker/MPLIB Object Librarian2	96
MSSP	
ACK Pulse	95
Control Registers (general)1	79
Module Overview1	79
SPI Master/Slave Connection1	83
SSPBUF Register1	84
SSPSR Register1	84
MULLW	26
MULWF	26
N	
N	
NEGF	27
NOP	27

0

Oscillator	
Switching	
Timer1 as Secondary Clock	
Transitions	
Oscillator Configuration	
EC	
ECPLL	
HS	
HSPLL	
Internal Oscillator Block	41
INTOSC	
INTRC	
Oscillator Selection	
Oscillator Start-up Timer (OST)	
Oscillator, Timer1	157, 167
Oscillator, Timer3	

Ρ

Packaging	387
Details	388
Marking	387
Parallel Slave Port (PSP)	150
Associated Registers	152
RE0/RD Pin	150
RE1/WR Pin	150
RE2/CS Pin	150
PIE Registers	121
Pin Functions	
AVDD	29, 20
AVss	20, 29
ENVREG	20, 29
MCLR	14, 21
RA0/AN0	14, 21
RA1/AN1	14, 21
RA2/AN2/VREF	14, 21
RA3/AN3/VREF+	14, 21
RA4/T0CKI	14, 21
RA5/AN4	14, 21
RA6/OSC2/CLKO	14, 21
RA7/OSC1/CLKI	14, 21
RB0/INT0	15. 22
RB1/INT1	15, 22
RB2/INT2	15. 22
RB3/INT3	
RB3/INT3/CCP2	
RB4/KBI0	15, 22

RB5/KBI1	15,	22
RB6/KBI2/PGC	15,	22
RB7/KBI3/PGD	15,	22
RC0/T1OSO/T13CKI	16,	23
RC1/T1OSI/CCP2	16,	23
RC2/CCP1	16,	23
RC3/SCK/SCL	16,	23
RC4/SDI/SDA	16,	23
RC5/SDO	16,	23
RC6/TX1/CK1	16,	23
RC7/RX1/DT1	16,	23
RD0/AD0/PSP0		24
RD0/PSP0		17
RD1/AD1/PSP1		24
RD1/PSP1		17
RD2/AD2/PSP2		24
RD2/PSP2		17
RD3/AD3/PSP3		24
RD3/PSP3		17
RD4/AD4/PSP4		24
RD4/PSP4		17
RD5/AD5/PSP5		24
RD5/PSP5		17
RD6/AD6/PSP6		24
RD6/PSP6		17
RD7/AD7/PSP7		24
RD7/PSP7		17
RE0/RD		18
RE0/RD/AD8		25
RE1/WR		18
RE1/WR/AD9		25
RE2/AD10/CS		25
RE2/CS		18
RE3		18
RE3/AD11		25
RE4		18
RE4/AD12		25
RE5		18
RE5/AD13		25
RE6		18
RE6/AD14		25
RE7/AD15/CCP2		25
RE7/CCP2		18
RF1/AN6/C2OUT	19,	26
RF2/AN7/C1OUT	19,	26
RF3/AN8	19,	26
RF4/AN9	19,	26
RF5/AN10/CVREF	19,	26
RF6/AN11	19,	26
RF7/AN5/SS	26,	19
RG0	20,	27
RG1/TX2/CK2	20,	27
RG2/RX2/DT2	20,	27
RG3	20,	27
RG4	20,	27
RH0/A16		28
RH1/A17		28
RH2/A18		28
RH3/A19		28
RH4		28
RH5		28
RH6		28
RH7		28
		~~
RJU/ALE		29