

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	51
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	•
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f65j11t-i-pt

Email: info@E-XFL.COM

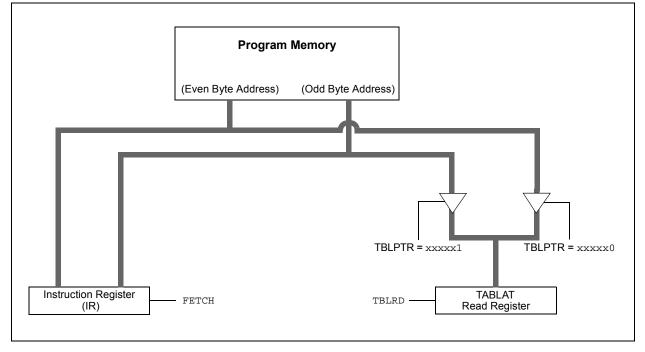
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Di	n Name	Pin Number	Pin	Buffer	Description		
F 11		TQFP	Туре	Туре	Description		
					PORTH is a bidirectional I/O port.		
RH0/A16 RH0 A16		79	I/O I/O	ST TTL	Digital I/O. External memory address/data 16.		
RH1/A17 RH1 A17		80	I/O I/O	ST TTL	Digital I/O. External memory address/data 17.		
RH2/A18 RH2 A18		1	I/O I/O	ST TTL	Digital I/O. External memory address/data 18.		
RH3/A19 RH3 A19		2	I/O I/O	ST TTL	Digital I/O. External memory address/data 19.		
RH4		22	I/O	ST	Digital I/O.		
RH5		21	I/O	ST	Digital I/O.		
RH6		20	I/O	ST	Digital I/O.		
RH7		19	I/O	ST	Digital I/O.		
Legend:			with C	MOS leve	CMOS = CMOS compatible input or output Analog = Analog input O = Output OD = Open-Drain (no P diode to VDD)		

TABLE 1-4: PIC18F8XJ11 PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: Alternate assignment for CCP2 when the CCP2MX Configuration bit is cleared (80-pin devices, Extended Microcontroller mode only).

2: Default assignment for CCP2 when the CCP2MX Configuration bit is set.


3: Alternate assignment for CCP2 when the CCP2MX Configuration bit is cleared.

7.3 Reading the Flash Program Memory

The TBLRD instruction is used to retrieve data from program memory and places it into data RAM. Table reads from program memory are performed one byte at a time.

TBLPTR points to a byte address in program space. Executing TBLRD places the byte pointed to into TABLAT. In addition, TBLPTR can be modified automatically for the next table read operation.

FIGURE 7-4: READS FROM FLASH PROGRAM MEMORY

EXAMPLE 7-1: READING A FLASH PROGRAM MEMORY WORD

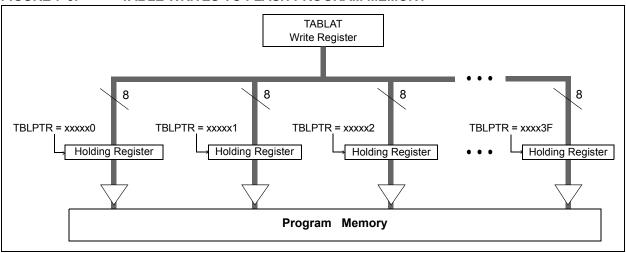
	MOVLW MOVWF	CODE_ADDR_UPPER TBLPTRU	; Load TBLPTR with the base ; address of the word
	MOVLW	CODE ADDR HIGH	, dddrobb or one word
	MOVWF	TBLPTRH	
	MOVLW	CODE_ADDR_LOW	
	MOVWF	TBLPTRL	
READ_WORD			
	TBLRD*+		; read into TABLAT and increment
	MOVF	TABLAT, W	; get data
	MOVWF	WORD_EVEN	
	TBLRD*+		; read into TABLAT and increment
	MOVF	TABLAT, W	; get data
	MOVF	WORD_ODD	

The internal program memory is typically organized by words. The Least Significant bit of the address selects between the high and low bytes of the word. Figure 7-4 shows the interface between the internal program memory and the TABLAT.

7.5 Writing to Flash Program Memory

The minimum programming block is 32 words or 64 bytes. Word or byte programming is not supported.

Table writes are used internally to load the holding registers needed to program the Flash memory. There are 64 holding registers used by the table writes for programming.


Since the Table Latch (TABLAT) is only a single byte, the TBLWT instruction may need to be executed 64 times for each programming operation. All of the table write operations will essentially be short writes because only the holding registers are written. At the end of updating the 64 holding registers, the EECON1 register must be written to in order to start the programming operation with a long write.

The long write is necessary for programming the internal Flash. Instruction execution is halted while in a long write cycle. The long write will be terminated by the internal programming timer.

The on-chip timer controls the write time. The write/erase voltages are generated by an on-chip charge pump, rated to operate over the voltage range of the device.

- Note 1: Unlike previous PIC[®] MCUs, members of the PIC18F85J11 family do not reset the holding registers after a write occurs. The holding registers must be cleared or overwritten before a programming sequence.
 - 2: To maintain the endurance of the program memory cells, each Flash byte should not be programmed more than one time between erase operations. Before attempting to modify the contents of the target cell a second time, a block erase of the target block, or a bulk erase of the entire memory, must be performed.

7.5.1 FLASH PROGRAM MEMORY WRITE SEQUENCE

The sequence of events for programming an internal program memory location should be:

- 1. Read 1024 bytes into RAM.
- 2. Update data values in RAM as necessary.
- 3. Load Table Pointer register with address being erased.
- 4. Execute the block erase procedure.
- 5. Load the Table Pointer register with the address of the first byte being written, minus 1.
- 6. Write the 64 bytes into the holding registers with auto-increment.
- 7. Set the WREN bit (EECON1<2>) to enable byte writes.

- 8. Disable interrupts.
- 9. Write 55h to EECON2.
- 10. Write 0AAh to EECON2.
- 11. Set the WR bit; this will begin the write cycle.
- 12. The CPU will stall for the duration of the write for Tiw (see parameter D133A).
- 13. Re-enable interrupts.
- 14. Repeat steps 6 through 13 until all 1024 bytes are written to program memory.
- 15. Verify the memory (table read).

An example of the required code is shown in Example 7-3.

Note: Before setting the WR bit, the Table Pointer address needs to be within the intended address range of the 64 bytes in the holding register.

8.2 Address and Data Width

The PIC18F85J11 family of devices can be independently configured for different address and data widths on the same memory bus. Both address and data width are set by Configuration bits in the CONFIG3L register. As Configuration bits, this means that these options can only be configured by programming the device and are not controllable in software.

The BW bit selects an 8-bit or 16-bit data bus width. Setting this bit (default) selects a data width of 16 bits.

The EMB<1:0> bits determine both the Program Memory mode and the address bus width. The available options are 20-bit, 16-bit and 12-bit, as well as the default Microcontroller mode (external bus disabled). Selecting a 16-bit or 12-bit width makes a corresponding number of high-order lines available for I/O functions; these pins are no longer affected by the setting of the EBDIS bit. For example, selecting a 16-Bit Address mode (EMB<1:0> = 01) disables A<19:16> and allows PORTH<3:0> to function without interruptions from the bus. Using the smaller address widths allows users to tailor the memory bus to the size of the external memory space for a particular design while freeing up pins for dedicated I/O operation.

Because the EMB bits have the effect of disabling pins for memory bus operations, it is important to always select an address width at least equal to the data width. If a 12-bit address width is used with a 16-bit data width, the upper four bits of data will not be available on the bus.

All combinations of address and data widths require multiplexing of address and data information on the same lines. The address and data multiplexing, as well as I/O ports made available by the use of smaller address widths, are summarized in Table 8-2.

8.2.1 ADDRESS SHIFTING ON THE EXTERNAL BUS

By default, the address presented on the external bus is the value of the PC. In practical terms, this means that addresses in the external memory device below the top of on-chip memory are unavailable to the microcontroller. To access these physical locations, the glue logic between the microcontroller and the external memory must somehow translate addresses.

To simplify the interface, the external bus offers an extension of Extended Microcontroller mode that automatically performs address shifting. This feature is controlled by the EASHFT Configuration bit. Setting this bit offsets addresses on the bus by the size of the microcontroller's on-chip program memory and sets the bottom address at 0000h. This allows the device to use the entire range of physical addresses of the external memory.

8.2.2 21-BIT ADDRESSING

As an extension of 20-bit address width operation, the external memory bus can also fully address a 2-Mbyte memory space. This is done by using the Bus Address bit 0 (BA0) control line as the Least Significant bit of the address. The UB and LB control signals may also be used with certain memory devices to select the upper and lower bytes within a 16-bit wide data word.

This addressing mode is available in both 8-bit and certain 16-Bit Data Width modes. Additional details are provided in Section 8.6.3 "16-Bit Byte Select Mode" and Section 8.7 "8-Bit Data Width Mode".

SLE 6-2: ADDRESS AND DATA LINES FOR DIFFERENT ADDRESS AND DATA WIDTHS									
Data Width	Address Width	Multiplexed Data and Address Lines (and Corresponding Ports)	Address-Only Lines (and Corresponding Ports)	Ports Available for I/O					
8-bit	12-bit		AD<11:8> (PORTE<3:0>)	PORTE<7:4>, All of PORTH					
	16-bit	AD<7:0> (PORTD<7:0>)	AD<15:8> (PORTE<7:0>)	All of PORTH					
	20-bit		A<19:16>, AD<15:8> (PORTH<3:0>, PORTE<7:0>)	_					
16-bit	16-bit	AD<15:0>	_	All of PORTH					
	20-bit	(PORTD<7:0>, PORTE<7:0>)	A<19:16> (PORTH<3:0>)	_					

TABLE 8-2: ADDRESS AND DATA LINES FOR DIFFERENT ADDRESS AND DATA WIDTHS

13.0 TIMER1 MODULE

The Timer1 timer/counter module incorporates these features:

- Software selectable operation as a 16-bit timer or counter
- Readable and writable 8-bit registers (TMR1H and TMR1L)
- Selectable clock source (internal or external) with device clock or Timer1 oscillator internal options
- Interrupt on overflow
- Reset on CCPx Special Event Trigger
- Device clock status flag (T1RUN)

A simplified block diagram of the Timer1 module is shown in Figure 13-1. A block diagram of the module's operation in Read/Write mode is shown in Figure 13-2.

The module incorporates its own low-power oscillator to provide an additional clocking option. The Timer1 oscillator can also be used as a low-power clock source for the microcontroller in power-managed operation.

Timer1 can also be used to provide Real-Time Clock (RTC) functionality to applications with only a minimal addition of external components and code overhead.

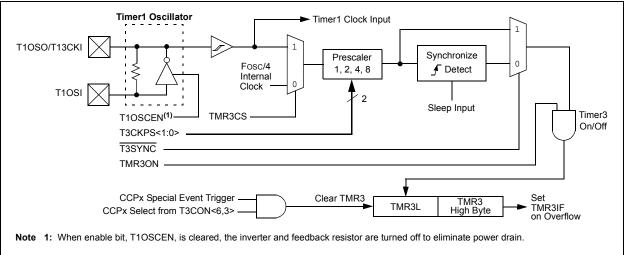
Timer1 is controlled through the T1CON Control register (Register 13-1). It also contains the Timer1 Oscillator Enable bit (T1OSCEN). Timer1 can be enabled or disabled by setting or clearing control bit, TMR1ON (T1CON<0>).

R/W-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
RD16	T1RUN	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N
bit 7							bit 0

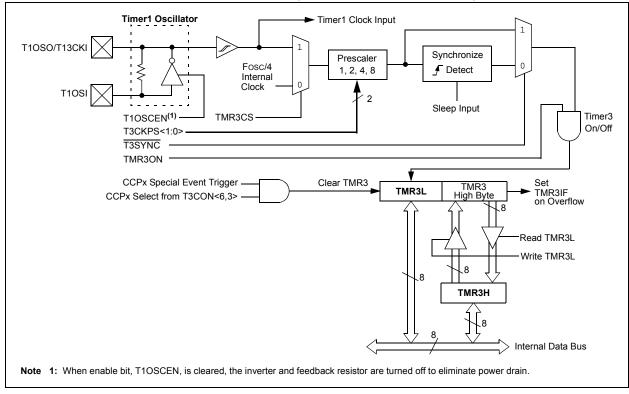
REGISTER 13-1: T1CON: TIMER1 CONTROL REGISTER

Legend:									
R = Reada	able bit	W = Writable bit	U = Unimplemented bit,	read as '0'					
-n = Value	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknow					
bit 7		6-Bit Read/Write Mode Enab							
		bles register read/write of Tlr bles register read/write of Tir	•						
bit 6	T1RUN:	Timer1 System Clock Status	bit						
		ce clock is derived from Tim ce clock is derived from ano							
bit 5-4	T1CKPS	<1:0>: Timer1 Input Clock P	rescale Select bits						
	10 = 1:4 01 = 1:2	Prescale value Prescale value Prescale value Prescale value							
bit 3	T1OSCE	T1OSCEN: Timer1 Oscillator Enable bit							
		r1 oscillator is enabled r1 oscillator is shut off							
	The osci	lator inverter and feedback r	esistor are turned off to elimina	ate power drain.					
bit 2	T1SYNC	: Timer1 External Clock Inpu	t Synchronization Select bit						
	1 = Do n	<u>/IR1CS = 1:</u> ot synchronize external clocł hronize external clock input	< input						
		<u>/IR1CS = 0:</u> s ignored. Timer1 uses the in	iternal clock when TMR1CS =	0.					
bit 1	1 = Exte	Timer1 Clock Source Sele rnal clock from the RC0/T1C nal clock (Fosc/4)	ct bit 0SO/T13CKI pin (on the rising e	edge)					
bit 0	TMR10	I: Timer1 On bit bles Timer1							

15.1 Timer3 Operation


Timer3 can operate in one of three modes:

- Timer
- Synchronous Counter
- Asynchronous Counter

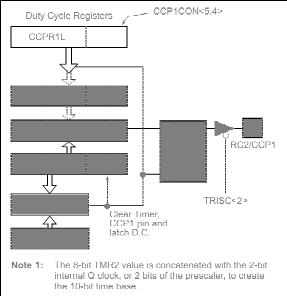

The operating mode is determined by the clock select bit, TMR3CS (T3CON<1>). When TMR3CS is cleared (= 0), Timer3 increments on every internal instruction cycle (Fosc/4). When the bit is set, Timer3 increments on every rising edge of the Timer1 external clock input or the Timer1 oscillator, if enabled.

As with Timer1, the RC1/T1OSI and RC0/T1OSO/T13CKI pins become inputs when the Timer1 oscillator is enabled. This means the values of TRISC<1:0> are ignored and the pins are read as '0'.

FIGURE 15-1: TIMER3 BLOCK DIAGRAM (8-BIT MODE)

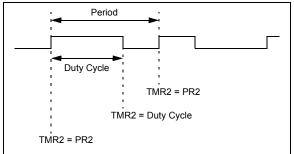
FIGURE 15-2: TIMER3 BLOCK DIAGRAM (16-BIT READ/WRITE MODE)

16.4 PWM Mode

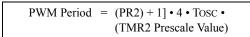

In Pulse-Width Modulation (PWM) mode, the CCP2 pin produces up to a 10-bit resolution PWM output. Since the CCP2 pin is multiplexed with a PORTB, PORTC or PORTE data latch, the appropriate TRIS bit must be cleared to make the CCP2 pin an output.

Note:	Clearing the CCP2CON register will force									
	the RB3, RC1 or RE7 output latch									
	(depending on device configuration) to the									
	default low level. This is not the PORTB,									
	PORTC or PORTE I/O data latch.									

Figure 16-4 shows a simplified block diagram of the CCP1 module in PWM mode.

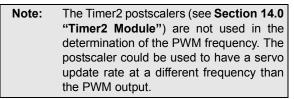

For a step-by-step procedure on how to set up the CCP module for PWM operation, see **Section 16.4.3** "Setup for PWM Operation".

A PWM output (Figure 16-5) has a time base (period) and a time that the output stays high (duty cycle). The frequency of the PWM is the inverse of the period (1/period).


FIGURE 16-5: PWM OUTPUT

16.4.1 PWM PERIOD

The PWM period is specified by writing to the PR2 register. The PWM period can be calculated using the following formula:


EQUATION 16-1:

PWM frequency is defined as 1/[PWM period].

When TMR2 is equal to PR2, the following three events occur on the next increment cycle:

- TMR2 is cleared
- The CCP2 pin is set (exception: if PWM duty cycle = 0%, the CCP2 pin will not be set)
- The PWM duty cycle is latched from CCPR2L into CCPR2H

17.3.6 MASTER MODE

The master can initiate the data transfer at any time because it controls the SCK. The master determines when the slave (Processor 2, Figure 17-2) will broadcast data by the software protocol.

In Master mode, the data is transmitted/received as soon as the SSPBUF register is written to. If the SPI is only going to receive, the SDO output could be disabled (programmed as an input). The SSPSR register will continue to shift in the signal present on the SDI pin at the programmed clock rate. As each byte is received, it will be loaded into the SSPBUF register as if a normal received byte (interrupts and status bits appropriately set). This could be useful in receiver applications as a "Line Activity Monitor" mode. The clock polarity is selected by appropriately programming the CKP bit (SSPCON1<4>). This, then, would give waveforms for SPI communication as shown in Figure 17-3, Figure 17-5 and Figure 17-6, where the MSB is transmitted first. In Master mode, the SPI clock rate (bit rate) is user-programmable to be one of the following:

- Fosc/4 (or Tcy)
- Fosc/16 (or 4 Tcy)
- Fosc/64 (or 16 Tcy)
- Timer2 output/2

This allows a maximum data rate (at 40 MHz) of 10.00 Mbps.

Figure 17-3 shows the waveforms for Master mode. When the CKE bit is set, the SDO data is valid before there is a clock edge on SCK. The change of the input sample is shown based on the state of the SMP bit. The time when the SSPBUF is loaded with the received data is shown.

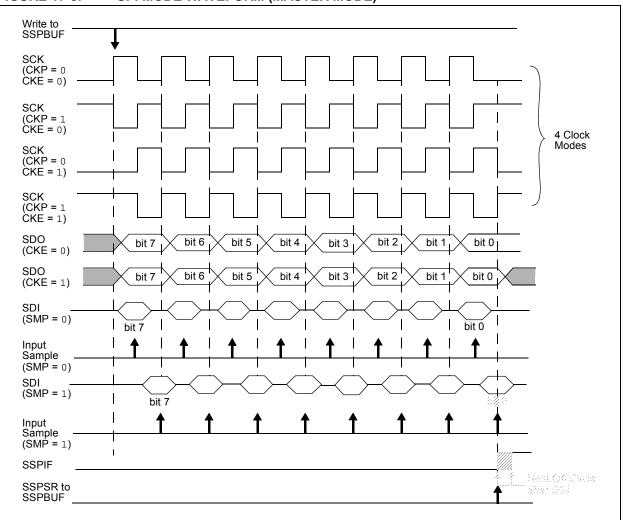


FIGURE 17-3: SPI MODE WAVEFORM (MASTER MODE)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
GCEN	ACKSTAT	ACKDT ⁽¹⁾	ACKEN ⁽²⁾	RCEN ⁽²⁾	PEN ⁽²⁾	RSEN ⁽²⁾	SEN ⁽²⁾					
bit 7							bit					
Legend:												
R = Readab		W = Writable		U = Unimplem		d as '0'						
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own					
bit 7	GCEN: Conc	eral Call Enable	bit									
	Unused in Ma		bit									
bit 6			atus hit (Maste	r Transmit mode	only)							
Sit 0		edge was not re			c only)							
		edge was receiv										
bit 5	ACKDT: Ack	ACKDT: Acknowledge Data bit (Master Receive mode only) ⁽¹⁾										
	1 = Not Ackn											
	0 = Acknowle	•										
bit 4	ACKEN: Acknowledge Sequence Enable bit ⁽²⁾											
		•	quence on SD	A and SCL pins	and transmit	ACKDT data bit;	automatical					
		by hardware. edge sequence	Idle									
bit 3		•		e mode only) ⁽²⁾								
		RCEN: Receive Enable bit (Master Receive mode only) ⁽²⁾ 1 = Enables Receive mode for I ² C										
	0 = Receive											
bit 2	PEN: Stop C	ondition Enable	bit ⁽²⁾									
		•	SDA and SCL	pins; automati	cally cleared l	oy hardware.						
	0 = Stop con			(2)								
bit 1		RSEN: Repeated Start Condition Enable bit ⁽²⁾										
		 1 = Initiate Repeated Start condition on SDA and SCL pins; automatically cleared by hardware. 0 = Repeated Start condition Idle 										
bit 0	•	ondition Enable										
				_ pins; automati	cally cleared l	hy hardware						
	1 = Initiate Si 0 = Start con			- pino, automati	carry ocareu i	oy naraware.						
Noto 1:	/alua that will be	transmitted wh	on the user ini	tiatos an Ackas	wlodao socur	nco at the end of						
	/alue that will be				- ·							

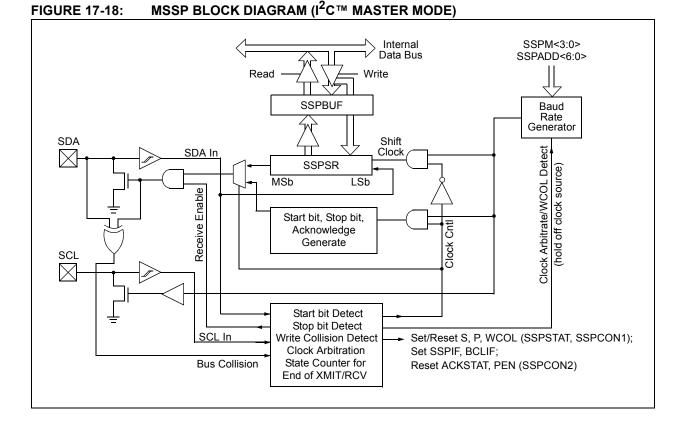
2: If the l²C module is active, these bits may not be set (no spooling) and the SSPBUF may not be written (or writes to the SSPBUF are disabled).

17.4.6 MASTER MODE

Master mode is enabled by setting and clearing the appropriate SSPM bits in SSPCON1 and by setting the SSPEN bit. In Master mode, the SCL and SDA lines are manipulated by the MSSP hardware.

Master mode of operation is supported by interrupt generation on the detection of the Start and Stop conditions. The Stop (P) and Start (S) bits are cleared from a Reset or when the MSSP module is disabled. Control of the I^2C bus may be taken when the P bit is set, or the bus is Idle, with both the S and P bits clear.

In Firmware Controlled Master mode, user code conducts all I^2C bus operations based on Start and Stop bit conditions.


Once Master mode is enabled, the user has six options.

- 1. Assert a Start condition on SDA and SCL.
- 2. Assert a Repeated Start condition on SDA and SCL.
- 3. Write to the SSPBUF register initiating transmission of data/address.
- 4. Configure the I²C port to receive data.
- 5. Generate an Acknowledge condition at the end of a received byte of data.
- 6. Generate a Stop condition on SDA and SCL.

Note: The MSSP module, when configured in I²C Master mode, does not allow queueing of events. For instance, the user is not allowed to initiate a Start condition and immediately write the SSPBUF register to initiate transmission before the Start condition is complete. In this case, the SSPBUF will not be written to and the WCOL bit will be set, indicating that a write to the SSPBUF did not occur.

The following events will cause the MSSP Interrupt Flag bit, SSPIF, to be set (and MSSP interrupt, if enabled):

- Start Condition
- Stop Condition
- Data Transfer Byte Transmitted/Received
- Acknowledge Transmit
- Repeated Start

17.4.10 I²C MASTER MODE TRANSMISSION

Transmission of a data byte, a 7-bit address or the other half of a 10-bit address is accomplished by simply writing a value to the SSPBUF register. This action will set the Buffer Full bit, BF, and allow the Baud Rate Generator to begin counting and start the next transmission. Each bit of address/data will be shifted out onto the SDA pin after the falling edge of SCL is asserted (see data hold time specification parameter 106). SCL is held low for one Baud Rate Generator rollover count (TBRG). Data should be valid before SCL is released high (see data setup time specification parameter 107). When the SCL pin is released high, it is held that way for TBRG. The data on the SDA pin must remain stable for that duration and some hold time after the next falling edge of SCL. After the eighth bit is shifted out (the falling edge of the eighth clock), the BF flag is cleared and the master releases SDA. This allows the slave device being addressed to respond with an ACK bit during the ninth bit time if an address match occurred, or if data was received properly. The status of ACK is written into the ACKDT bit on the falling edge of the ninth clock. If the master receives an Acknowledge, the Acknowledge Status bit, ACKSTAT, is cleared; if not, the bit is set. After the ninth clock, the SSPIF bit is set and the master clock (Baud Rate Generator) is suspended until the next data byte is loaded into the SSPBUF, leaving SCL low and SDA unchanged (Figure 17-23).

After the write to the SSPBUF, each bit of the address will be shifted out on the falling edge of SCL until all seven address bits and the R/W bit are completed. On the falling edge of the eighth clock, the master will deassert the SDA pin, allowing the slave to respond with an Acknowledge. On the falling edge of the ninth clock, the master will sample the SDA pin to see if the address was recognized by a slave. The status of the ACK bit is loaded into the ACKSTAT bit (SSPCON2<6>). Following the falling edge of the ninth clock transmission of the address, the SSPIF bit is set, the BF flag is cleared and the Baud Rate Generator is turned off until another write to the SSPBUF takes place, holding SCL low and allowing SDA to float.

17.4.10.1 BF Status Flag

In Transmit mode, the BF bit (SSPSTAT<0>) is set when the CPU writes to SSPBUF and is cleared when all 8 bits are shifted out.

17.4.10.2 WCOL Status Flag

If the user writes to the SSPBUF when a transmit is already in progress (i.e., SSPSR is still shifting out a data byte), the WCOL bit is set and the contents of the buffer are unchanged (the write doesn't occur) 2 TcY after the SSPBUF write. If SSPBUF is rewritten within 2 TcY, the WCOL bit is set and SSPBUF is updated. This may result in a corrupted transfer. The user should verify that the WCOL is clear after each write to SSPBUF to ensure the transfer is correct. In all cases, WCOL must be cleared in software.

17.4.10.3 ACKSTAT Status Flag

In Transmit mode, the ACKSTAT bit (SSPCON2<6>) is cleared when the slave has sent an Acknowledge $(\overline{ACK} = 0)$ and is set when the slave does not Acknowledge $(\overline{ACK} = 1)$. A slave sends an Acknowledge when it has recognized its address (including a general call), or when the slave has properly received its data.

17.4.11 I²C MASTER MODE RECEPTION

Master mode reception is enabled by programming the Receive Enable bit, RCEN (SSPCON2<3>).

Note:	The MSSP module must be in an Idle state
	before the RCEN bit is set or the RCEN bit
	will be disregarded.

The Baud Rate Generator begins counting, and on each rollover, the state of the SCL pin changes (high-to-low/low-to-high) and data is shifted into the SSPSR. After the falling edge of the eighth clock, the receive enable flag is automatically cleared, the contents of the SSPSR are loaded into the SSPBUF, the BF flag bit is set, the SSPIF flag bit is set and the Baud Rate Generator is suspended from counting, holding SCL low. The MSSP is now in Idle state awaiting the next command. When the buffer is read by the CPU, the BF flag bit is automatically cleared. The user can then send an Acknowledge bit at the end of reception by setting the Acknowledge Sequence Enable bit, ACKEN (SSPCON2<4>).

17.4.11.1 BF Status Flag

In receive operation, the BF bit is set when an address or data byte is loaded into SSPBUF from SSPSR. It is cleared when the SSPBUF register is read.

17.4.11.2 SSPOV Status Flag

In receive operation, the SSPOV bit is set when 8 bits are received into the SSPSR and the BF flag bit is already set from a previous reception.

17.4.11.3 WCOL Status Flag

If the user writes the SSPBUF when a receive is already in progress (i.e., SSPSR is still shifting in a data byte), the WCOL bit is set and the contents of the buffer are unchanged (the write doesn't occur).

19.5 AUSART Synchronous Slave Mode

Synchronous Slave mode is entered by clearing bit, CSRC (TXSTA2<7>). This mode differs from the Synchronous Master mode in that the shift clock is supplied externally at the CK2 pin (instead of being supplied internally in Master mode). This allows the device to transfer or receive data while in any low-power mode.

19.5.1 AUSART SYNCHRONOUS SLAVE TRANSMIT

The operation of the Synchronous Master and Slave modes are identical except in the case of the Sleep mode.

If two words are written to the TXREG2 and then the SLEEP instruction is executed, the following will occur:

- a) The first word will immediately transfer to the TSR register and transmit.
- b) The second word will remain in the TXREG2 register.
- c) Flag bit, TX2IF, will not be set.
- d) When the first word has been shifted out of TSR, the TXREG2 register will transfer the second word to the TSR and flag bit, TX2IF, will now be set.
- e) If enable bit, TX2IE, is set, the interrupt will wake the chip from Sleep. If the global interrupt is enabled, the program will branch to the interrupt vector.

To set up a Synchronous Slave Transmission:

- Enable the synchronous slave serial port by setting bits, SYNC and SPEN, and clearing bit, CSRC.
- 2. Clear bits, CREN and SREN.
- 3. If interrupts are desired, set enable bit, TX2IE.
- 4. If 9-bit transmission is desired, set bit, TX9.
- 5. Enable the transmission by setting enable bit, TXEN.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit, TX9D.
- 7. Start transmission by loading data to the TXREG2 register.
- If using interrupts, ensure that the GIE and PEIE bits in the INTCON register (INTCON<7:6>) are set.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	57
PIR3	—	—	RC2IF	TX2IF	—	CCP2IF	CCP1IF	—	59
PIE3	—	—	RC2IE	TX2IE	_	CCP2IE	CCP1IE	_	59
IPR3		_	RC2IP	TX2IP	—	CCP2IP	CCP1IP	—	59
RCSTA2	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	61
TXREG2	AUSART T	ransmit Regi	ster						61
TXSTA2	CSRC	TX9	TXEN	SYNC	—	BRGH	TRMT	TX9D	61
SPBRG2	AUSART Baud Rate Generator Register								
LATG	U2OD	U10D		LATG4	LATG3	LATG2	LATG1	LATG0	60

TABLE 19-8: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION

Legend: — = unimplemented, read as '0'. Shaded cells are not used for synchronous slave transmission.

20.2 Selecting and Configuring Automatic Acquisition Time

The ADCON2 register allows the user to select an acquisition time that occurs each time the GO/DONE bit is set.

When the GO/DONE bit is set, sampling is stopped and a conversion begins. The user is responsible for ensuring the required acquisition time has passed between selecting the desired input channel and setting the GO/DONE bit. This occurs when the ACQT<2:0> bits (ADCON2<5:3>) remain in their Reset state ('000') and is compatible with devices that do not offer programmable acquisition times.

If desired, the ACQT bits can be set to select a programmable <u>acquisition</u> time for the A/D module. When the GO/DONE bit is set, the A/D module continues to sample the input for the selected acquisition time, then automatically begins a conversion. Since the acquisition time is programmed, there may be no need to wait for an acquisition time between selecting a channel and setting the GO/DONE bit.

In either case, when the conversion is completed, the GO/DONE bit is cleared, the ADIF flag is set and the A/D begins sampling the currently selected channel again. If an acquisition time is programmed, there is nothing to indicate if the acquisition time has ended or if the conversion has begun.

20.3 Selecting the A/D Conversion Clock

The A/D conversion time per bit is defined as TAD. The A/D conversion requires 11 TAD per 10-bit conversion. The source of the A/D conversion clock is software selectable.

There are seven possible options for TAD:

- 2 Tosc
- 4 Tosc
- 8 Tosc
- 16 Tosc
- 32 Tosc
- 64 Tosc
- Internal RC Oscillator

For correct A/D conversions, the A/D conversion clock (TAD) must be as short as possible but greater than the minimum TAD (see parameter 130 in Table 26-26 for more information).

Table 20-1 shows the resultant TAD times derived from the device operating frequencies and the A/D clock source selected.

TABLE 20-1: TAD vs. DEVICE OPERATING FREQUENCIES

AD Clock S	Maximum	
Operation	ADCS<2:0>	Device Frequency
2 Tosc	000	2.86 MHz
4 Tosc	100	5.71 MHz
8 Tosc	001	11.43 MHz
16 Tosc	101	22.86 MHz
32 Tosc	010	40.0 MHz
64 Tosc	110	40.0 MHz
RC ⁽¹⁾	x11	1.00 MHz ⁽²⁾

Note 1: The RC source has a typical TAD time of $4 \ \mu$ s.

2: For device frequencies above 1 MHz, the device must be in Sleep mode for the entire conversion or the A/D accuracy may be out of specification.

20.4 Configuring Analog Port Pins

The ADCON1, TRISA, TRISF and TRISH registers control the operation of the A/D port pins. The port pins needed as analog inputs must have their corresponding TRIS bits set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) will be converted.

The A/D operation is independent of the state of the CHS<3:0> bits and the TRIS bits.

- Note 1: When reading the PORT register, all pins configured as analog input channels will read as cleared (a low level). Pins configured as digital inputs will convert an analog input. Analog levels on a digitally configured input will be accurately converted.
 - Analog levels on any pin defined as a digital input may cause the digital input buffer to consume current out of the device's specification limits.

TABLE 23-2: CONFIGURATION BITS AND DEVICE IDs

File	e Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default/ Unprogrammed Value ⁽¹⁾
300000h	CONFIG1L	DEBUG	XINST	STVREN	_	_	_	_	WDTEN	1111
300001h	CONFIG1H	_(2)	(2)	_(2)	(2)	_(3)	CP0	_	_	01
300002h	CONFIG2L	IESO	FCMEN	—	_	_	FOSC2	FOSC1	FOSC0	11111
300003h	CONFIG2H	(2)	(2)	(2)	(2)	WDTPS3	WDTPS2	WDTPS1	WDTPS0	1111
300004h	CONFIG3L ⁽⁴⁾	WAIT	BW	EMB1	EMB0	EASHFT	_		_	1111 1
300005h	CONFIG3H	(2)	(2)	(2)	(2)	_	_	_	CCP2MX	1
3FFFFEh	DEVID1	DEV2	DEV1	DEV0	REV4	REV3	REV2	REV1	REV0	xxxx xxxx ⁽⁵⁾
3FFFFFh	DEVID2	DEV10	DEV9	DEV8	DEV7	DEV6	DEV5	DEV4	DEV3	0000 10x1 ⁽⁵⁾

Legend: x = unknown, — = unimplemented. Shaded cells are unimplemented, read as '0'.

Note 1: Values reflect the unprogrammed state as received from the factory and following Power-on Resets. In all other Reset states, the configuration bytes maintain their previously programmed states.

2: The value of these bits in program memory should always be 'l'. This ensures that the location is executed as a NOP if it is accidentally executed.

3: This bit should always be maintained as '0'.

4: CONFIG3L is implemented in 80-pin devices only.

5: See Register 23-7 and Register 23-8 for DEVID values. These registers are read-only and cannot be programmed by the user.

TABLE 25-2:	PIC18F85J11 FAMILY INSTRUCTION SET
-------------	------------------------------------

Mnemonic,		Description		16-bit Instruction Word			Vord	Status	
Opera	nds	Description	Cycles	MSb			LSb	Affected	Notes
BYTE-OR	ENTED	OPERATIONS							
ADDWF	f, d, a	Add WREG and f	1	0010	01da	ffff	ffff	C, DC, Z, OV, N	1, 2
ADDWFC	f, d, a	Add WREG and Carry bit to f	1	0010	00da	ffff	ffff	C, DC, Z, OV, N	1, 2
ANDWF	f, d, a	AND WREG with f	1	0001	01da	ffff	ffff	Z, N	1,2
CLRF	f, a	Clear f	1	0110	101a	ffff	ffff	Z	2
COMF	f, d, a	Complement f	1	0001	11da	ffff	ffff	Z, N	1, 2
CPFSEQ	f, a	Compare f with WREG, Skip =	1 (2 or 3)	0110	001a	ffff	ffff	None	4
CPFSGT	f, a	Compare f with WREG, Skip >	1 (2 or 3)	0110	010a	ffff	ffff	None	4
CPFSLT	f, a	Compare f with WREG, Skip <	1 (2 or 3)	0110	000a	ffff	ffff	None	1, 2
DECF	f, d, a	Decrement f	1	0000	01da	ffff	ffff	C, DC, Z, OV, N	1, 2, 3, 4
DECFSZ	f, d, a	Decrement f, Skip if 0	1 (2 or 3)	0010	11da	ffff	ffff	None	1, 2, 3, 4
DCFSNZ	f, d, a	Decrement f, Skip if Not 0	1 (2 or 3)	0100	11da	ffff	ffff	None	1, 2
INCF	f, d, a	Increment f	1	0010	10da	ffff	ffff	C, DC, Z, OV, N	1, 2, 3, 4
INCFSZ	f, d, a	Increment f, Skip if 0	1 (2 or 3)	0011	11da	ffff	ffff	None	4
INFSNZ	f, d, a	Increment f, Skip if Not 0	1 (2 or 3)	0100	10da	ffff	ffff	None	1, 2
IORWF	f, d, a	Inclusive OR WREG with f	1	0001	00da	ffff	ffff	Z, N	1, 2
MOVF	f, d, a	Move f	1	0101	00da	ffff	ffff	Z, N	1
MOVFF	f _s , f _d	Move f _s (source) to 1st word	2	1100	ffff	ffff	ffff	None	
		f _d (destination) 2nd word		1111	ffff	ffff	ffff		
MOVWF	f, a	Move WREG to f	1	0110	111a	ffff	ffff	None	
MULWF	f, a	Multiply WREG with f	1	0000	001a	ffff	ffff	None	1, 2
NEGF	f, a	Negate f	1	0110	110a	ffff	ffff	C, DC, Z, OV, N	
RLCF	f, d, a	Rotate Left f through Carry	1	0011	01da	ffff	ffff	C, Z, N	1, 2
RLNCF	f, d, a	Rotate Left f (No Carry)	1	0100	01da	ffff	ffff	Z, N	
RRCF	f, d, a	Rotate Right f through Carry	1	0011	00da	ffff	ffff	C, Z, N	
RRNCF	f, d, a	Rotate Right f (No Carry)	1	0100	00da	ffff	ffff	Z, N	
SETF	f, a	Set f	1	0110	100a	ffff	ffff	None	1, 2
SUBFWB	f, d, a	Subtract f from WREG with Borrow	1	0101	01da	ffff	ffff	C, DC, Z, OV, N	
SUBWF	f, d, a	Subtract WREG from f	1	0101	11da	ffff	ffff	C, DC, Z, OV, N	1, 2
SUBWFB		Subtract WREG from f with	1	0101	10da	ffff		C, DC, Z, OV, N	
		Borrow							_
SWAPF	f, d, a	Swap Nibbles in f	1	0011		ffff	ffff	None	4
TSTFSZ	f, a	Test f, Skip if 0	1 (2 or 3)	0110	011a	ffff	ffff	None	1, 2
XORWF	f, d, a	Exclusive OR WREG with f	1	0001	10da	ffff	ffff	Z, N	

Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and where applicable, d = 1), the prescaler will be cleared if assigned.

3: If the Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

4: Some instructions are two-word instructions. The second word of these instructions will be executed as a NOP unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all program memory locations have a valid instruction.

PIC18F85J11 FAMILY

CPFS	SGT	Compare f	npare f with W, Skip if f > W					
Synta	ax:	CPFSGT f	{,a}					
-	ands:	$0 \leq f \leq 255$	$0 \le f \le 255$					
Oper	ation:	a ∈ [0, 1] (f) – (W), skip if (f) > (unsigned o	(W) comparison)					
Statu	s Affected:	None	• •					
Enco		0110	010a fff	f ffff				
	ription:							
Desc		location 'f' t	the contents of to the contents an unsigned s	of the W by				
		contents of instruction i	nts of 'f' are gro WREG, then t is discarded ar istead, making istruction.	he fetched				
			he Access Bar he BSR is use					
		set is enabl in Indexed mode wher Section 25	If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 25.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed					
10/0	I		Set Would Tor	uetalis.				
Word		1						
Cycle			cycles if skip ar a 2-word instru					
QC	ycle Activity:	-						
	Q1	Q2	Q3	Q4				
	Decode	Read	Process	No				
	-	register 'f'	Data	operation				
lf sk		00	00	04				
1	Q1 No	Q2 No	Q3 No	Q4 No				
	operation	operation	operation	operation				
lf sk	ip and followe			oporation				
	Q1	Q2	Q3	Q4				
	No	No	No	No				
	operation	operation	operation	operation				
	No	No	No	No				
	operation	operation	operation	operation				
<u>Exan</u>		HERE NGREATER GREATER	CPFSGT RE : :	G, 0				
	Before Instruc			, ,				
	PC W	= Ad = ?	dress (HERE)				
	After Instructio	-						
	If REG	> W;						
	PC If REG PC	≤ W;	dress (GREAT					

Syntax:CPFSLT f {.a}Operands: $0 \le f \le 255$ $a \in [0, 1]$ Operation:(f) - (W), skip if (f) < (W) (unsigned comparison)Status Affected:NoneEncoding: 0110 $000a$ ffffDescription:Compares the contents of data memory location 'f' to the contents of W by performing an unsigned subtraction. If the contents of 'f are less than the contents of W, then the fetched instruction is discarded and a NOP is executed instead, making this a two-cycle instruction. If 'a' is '0', the Access Bank is selected If 'a' is '1', the BSR is used to select the GPR bank.Words:1Cycles:1(2) Note:Q Cycle Activity:Q1Q1Q2Q3Q4NoQ1Q2Q3Q4NoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoQ1Q2Q3Q4NoQ1Q2Q3Q4				
a $\in [0, 1]$ Operation: $(f) - (W)$, skip if $(f) < (W)$ (unsigned comparison)Status Affected:NoneEncoding: 0110 $000a$ ffffDescription:Compares the contents of data memory location 'f' to the contents of W by performing an unsigned subtraction. If the contents of 'f' are less than the contents of W, then the fetched instruction is discarded and a NOP is executed instruction. If 'a' is '0', the Access Bank is selected If 'a' is '1', the BSR is used to select the GPR bank.Words:1Cycles:1(2) Note:Q Cycle Activity:Q1Q2Q3Q4DecodeReadProcess No operationIf skip:Q1Q1Q2Q3Q4NoNo operationIf skip and followed by 2-word instruction: Q1Q1Q2Q3Q4No operationNo operationNo operationIf skip and followed by 2-word instruction: Q1Q1Q2Q3Q4				
Operation: $(f) - (W)$, skip if $(f) < (W)$ (unsigned comparison)Status Affected:NoneEncoding: 0110 $000a$ ffffDescription:Compares the contents of data memory location 'f' to the contents of W by performing an unsigned subtraction.If the contents of 'f' are less than the contents of W, then the fetched instruction is discarded and a NOP is executed instruction.If 'a' is '0', the Access Bank is selected If 'a' is '1', the BSR is used to select the GPR bank.Words:1Cycles:1(2)Note:3 cycles if skip and followed by a 2-word instruction.Q1Q2Q3Q4 $Q1$ Q2Q3Q4NoQ1Q2Q3Q4No<				
Encoding: 0110 000a ffff ffff Description: Compares the contents of data memory location 'f' to the contents of W by performing an unsigned subtraction. If the contents of 'f' are less than the contents of W, then the fetched instruction is discarded and a NOP is executed instruction. If 'a' is '0', the Access Bank is selected If 'a' is '1', the BSR is used to select the GPR bank. Words: 1 Cycles: 1(2) Note: 3 cycles if skip and followed by a 2-word instruction. Q Cycle Activity: Q1 Q2 Q3 Q4 Decode Read Process No operation operation If skip: Q1 Q2 Q3 Q4 If skip and followed by 2-word instruction: Q1 Q2 Q3 Q4				
Description: Compares the contents of data memory location 'f' to the contents of W by performing an unsigned subtraction. If the contents of 'f' are less than the contents of W, then the fetched instruction is discarded and a NOP is executed instead, making this a two-cycle instruction. If 'a' is '0', the Access Bank is selected If 'a' is '1', the BSR is used to select the GPR bank. Words: 1 Cycles: 1(2) Note: 3 cycles if skip and followed by a 2-word instruction. Q Cycle Activity: Q1 Q2 Q3 Q4 Decode Read Process No If skip: Q1 Q2 Q3 Q4 No No No No No If skip and followed by 2-word instruction: Q1 Q2 Q3 Q4				
Iocation 'f' to the contents of W by performing an unsigned subtraction. If the contents of 'f' are less than the contents of W, then the fetched instruction is discarded and a NOP is executed instead, making this a two-cycle instruction. If 'a' is '0', the Access Bank is selected If 'a' is '1', the BSR is used to select the GPR bank. Words: 1 Cycles: 1(2) Note: 3 cycles if skip and followed by a 2-word instruction. Q Cycle Activity: Q1 Q2 Q3 Q4 Decode Read Process No If skip: Q1 Q2 Q3 Q4 If skip and followed by 2-word instruction: Q1 Q2 Q3 Q4				
contents of W, then the fetched instruction is discarded and a NOP is executed instead, making this a two-cycle instruction. If 'a' is '0', the Access Bank is selected If 'a' is '1', the BSR is used to select the GPR bank. Words: 1 Cycles: 1(2) Note: 3 cycles if skip and followed by a 2-word instruction. Q Cycle Activity: Q1 Q2 Q3 Q4 Decode Read Process No If skip: Q1 Q2 Q3 Q4 No No No operation If skip: Q1 Q2 Q3 Q4 No No No No operation operation operation operation operation If skip and followed by 2-word instruction: Q1 Q2 Q3 Q4				
If 'a' is '1', the BSR is used to select the GPR bank. Words: 1 Cycles: 1(2) Note: 3 cycles if skip and followed by a 2-word instruction. Q Cycle Activity: Q1 Q2 Q3 Q4 Decode Read Process No register 'f' Data operation If skip: Q1 Q2 Q3 Q4 No No No No operation operation operation If skip and followed by 2-word instruction: Q1 Q2 Q3 Q4				
Cycles: 1(2) Note: 3 cycles if skip and followed by a 2-word instruction. Q Cycle Activity: Q1 Q2 Q3 Q4 Decode Read Process No If skip: Q1 Q2 Q3 Q4 If skip: Q1 Q2 Q3 Q4 If skip: Q1 Q2 Q3 Q4 If skip and followed by 2-word instruction: Operation Operation Operation If skip and followed by 2-word instruction: Q1 Q2 Q3 Q4				
Note: 3 cycles if skip and followed by a 2-word instruction. Q Cycle Activity: Q1 Q2 Q3 Q4 Decode Read Process No If skip: Q1 Q2 Q3 Q4 If skip: Q1 Q2 Q3 Q4 No No No operation If skip: Q1 Q2 Q3 Q4 If skip: Q1 Q2 Q3 Q4 If skip and followed by 2-word instruction: Q1 Q2 Q3 Q4				
Q1 Q2 Q3 Q4 Decode Read register 'f' Process No operation If skip: Q1 Q2 Q3 Q4 No No No operation No operation No If skip and followed by 2-word instruction: Q1 Q2 Q3 Q4				
Decode Read register 'f' Process Data No operation If skip: Q1 Q2 Q3 Q4 No No No No operation operation operation operation If skip and followed by 2-word instruction: Q1 Q2 Q3				
register 'f' Data operation If skip: Q1 Q2 Q3 Q4 No No No No operation operation operation operation If skip and followed by 2-word instruction: Q1 Q2 Q3				
Q1Q2Q3Q4NoNoNoNooperationoperationoperationoperationIf skip and followed by 2-word instruction:Q1Q2Q3Q4				
No operationNo operationNo operationIf skip and followed by 2-word instruction: Q1Q2Q3Q4				
operation operation operation operation If skip and followed by 2-word instruction: Q1 Q2 Q3 Q4				
If skip and followed by 2-word instruction: Q1 Q2 Q3 Q4				
Q1 Q2 Q3 Q4				
No No No No				
operation operation operation				
NoNoNooperationoperationoperation				
Example: HERE CPFSLT REG, 1 NLESS : LESS :				
Before Instruction				
PC = Address (HERE)				
W = ? After Instruction				
If REG < W:				
- ,				
PC = Address (LESS) If REG \geq W;				

PIC18F85J11 FAMILY

TBLRD *+ ;

Table Read (Continued)

=

=

34h 01A358h

TBL	LRD Table Read							
Synta	ax:	TBLRD (*; *+; *-; +*)						
Oper	ands:	None						
Oper	ation:	if TBLRD *, (Prog Mem (TBLPTR)) \rightarrow TABLAT; TBLPTR – No Change if TBLRD *+, (Prog Mem (TBLPTR)) \rightarrow TABLAT; (TBLPTR) + 1 \rightarrow TBLPTR if TBLRD *-, (Prog Mem (TBLPTR)) \rightarrow TABLAT; (TBLPTR) – 1 \rightarrow TBLPTR if TBLRD +*, (TBLPTR) + 1 \rightarrow TBLPTR; (Prog Mem (TBLPTR)) \rightarrow TABLAT						
Statu	s Affected:	None						
Enco	ding:	0000	0000		000	00	10nn nn=0 * =1 *+ =2 *- =3 +*	
Description: This instruction is used to read the conten of Program Memory (P.M.). To address th program memory, a pointer called Table Pointer (TBLPTR) is used. The TBLPTR (a 21-bit pointer) points to each byte in the program memory. TBLPT						dress the I Table bints to		
		has a 2-Mby						
		TBLPTR<		рі	rogram	ĭmen	ant Byte of nory word ant Byte of	
				рі	rogram	n men	nory word	
		The TBLRD of TBLPTR				nodify	the value	
		no change						
		post-increment						
		post-decrement						
		pre-increment						
Word	ls:	1						
Cycle	es:	2						
QC	ycle Activity	:						
	Q1	Q2			13	1	Q4	
	Decode	No		N opera		00	No	
	No operation	operation No operation (Read Progra Memory)		opera opera	0	No o	eration operation Write ABLAT)	

Before Instruction TABLAT TBLPTR MEMORY()	= = =	55h 00A356h 34h	
After Instruction TABLAT TBLPTR				34h 00A357h
Example 2:	TBLRD	+*	;	
Before Instructio TABLAT TBLPTR MEMORY(MEMORY))	= = =	AAh 01A357h 12h 34h	

TBLRD

Example 1:

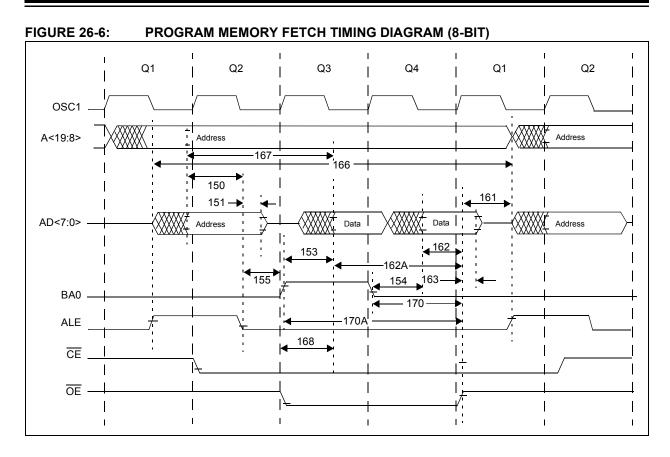
After Instruction TABLAT TBLPTR

Operating	Dperating Conditions: $3.0V \le VDD \le 3.6V$, -40°C $\le TA \le +85$ °C (unless otherwise stated)							
Param No.	Sym	Characteristics	Min	Тур	Мах	Units	Comments	
D300	VIOFF	Input Offset Voltage	—	±5.0	±25	mV		
D301	VICM	Input Common Mode Voltage	0	_	AVDD - 1.5	V		
D302	CMRR	Common Mode Rejection Ratio	55	_	_	dB		
D303	TRESP	Response Time ⁽¹⁾	_	150	400	ns		
D304	TMC20V	Comparator Mode Change to Output Valid	—	—	10	μS		
D305	VIRV	Internal Reference Voltage	—	1.2	—	V		

TABLE 26-2: COMPARATOR SPECIFICATIONS

Note 1: Response time measured with one comparator input at (AVDD – 1.5)/2, while the other input transitions from Vss to VDD.

TABLE 26-3: VOLTAGE REFERENCE SPECIFICATIONS


Operating Conditions: $3.0V \le V_{DD} \le 3.6V$, $-40^{\circ}C \le T_A \le +85^{\circ}C$ (unless otherwise stated)							
Param No.	Sym	Characteristics	Min	Тур	Max	Units	Comments
D310	VRES	Resolution	VDD/24	_	VDD/32	LSb	
D311	VRAA	Absolute Accuracy	—	_	1/2	LSb	
D312	VRur	Unit Resistor Value (R)	_	2k	_	Ω	
D313	TSET	Settling Time ⁽¹⁾	—	—	10	μS	

Note 1: Settling time measured while CVRR = 1 and CVR<3:0> bits transition from '0000' to '1111'.

TABLE 26-4: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS

Operatir	Operating Conditions: $-40^{\circ}C \le TA \le +85^{\circ}C$ (unless otherwise stated)									
Param No.	Sym	Characteristics	Min	Тур	Мах	Units	Comments			
	VRGOUT	Regulator Output Voltage	_	2.5	_	V				
	CEFC	External Filter Capacitor Value	4.7	10	_	μF	Capacitor must be low series resistance (<5 Ohms)			

PIC18F85J11 FAMILY

TABLE 26-7 :	PROGRAM MEMORY FETCH TIMING REQUIREMENTS (8-B	SIT)

Param No	Symbol	Characteristics	Min	Тур	Мах	Units
150	TadV2alL	Address Out Valid to ALE \downarrow (address setup time)	0.25 Tcy – 10		_	ns
151	TalL2adl	ALE \downarrow to Address Out Invalid (address hold time)	5	_	—	ns
153	BA01	BA0 \uparrow to Most Significant Data Valid	0.125 TCY	_	—	ns
154	BA02	BA0 \downarrow to Least Significant Data Valid	0.125 TCY	_	—	ns
155	TalL2oeL	ALE \downarrow to $\overline{OE} \downarrow$	0.125 Tcy	_	—	ns
161	ToeH2adD	OE ↑ to A/D Driven	0.125 Tcy – 5	_	—	ns
162	TadV2oeH	Least Significant Data Valid Before \overline{OE} \uparrow (data setup time	20	_	—	ns
162A	TadV2oeH	Most Significant Data Valid Before OE ↑ (data setup time)	0.25 Tcy + 20		—	ns
163	ToeH2adI	OE ↑ to Data in Invalid (data Hold Time)	0	_	_	ns
166	TalH2alH	ALE \uparrow to ALE \uparrow (cycle time)	—	TCY	—	ns
167	TACC	Address Valid to Data Valid	0.5 Tcy – 10	_	—	ns
168	Тое	OE ↓ to Data Valid	—	_	0.125 Tcy + 5	ns
170	TubH2oeH	BA0 = 0 Valid Before OE ↑	0.25 TCY		_	ns
170A	TubL2oeH	BA0 = 1 Valid Before \overline{OE} \uparrow	0.5 TCY		—	ns

APPENDIX A: REVISION HISTORY

Revision A (October 2006)

Original data sheet for PIC18F85J11 family devices.

Revision B (March 2007)

Updated power-down and supply current electrical characteristics and package detail drawings.

Revision C (April 2007)

Updated electrical characteristics.

Revision D (February 2010)

Updated electrical characteristics and package detail illustrations. Minor text edits throughout document.

APPENDIX B: MIGRATION BETWEEN HIGH-END DEVICE FAMILIES

Devices in the PIC18F85J11 and PIC18F8722 families are very similar in their functions and feature sets. However, there are some potentially important differences which should be considered when migrating an application across device families to achieve a new design goal. These are summarized in Table B-1. The areas of difference which could have a major impact on migration are discussed in greater detail later in this section.

Characteristic	PIC18F85J11 Family	PIC18F8722 Family
Operating Frequency	40 MHz @ 2.35V	40 MHz @ 4.2V
Supply Voltage	2.0V-3.6V, dual voltage requirement	2.0V-5.5V
Operating Current	Low	Lower
Program Memory Endurance	1,000 write/erase cycles (typical)	100,000 write/erase cycles (typical)
I/O Sink/Source at 25 mA	PORTB and PORTC only	All ports
Input Voltage Tolerance on I/O pins	5.5V on digital only pins	VDD on all I/O pins
I/O	68 (RF0 is not available)	70
Pull-ups	PORTB, PORTD, PORTE and PORTJ	PORTB
Oscillator Options	Limited options (EC, HS, PLL, flexible INTRC)	More options (EC, HS, XT, LP, RC, PLL, flexible INTRC)
Program Memory Retention	20 years (minimum)	40 years (minimum)
Self-Writes to Program Memory	Available	Available
Programming Time (normalized)	156 µs/byte (10 ms/64-byte block)	15.6 µs/byte (1 ms/64)
Programming Entry	Low voltage, key sequence	VPP and LVP
Code Protection	Single block, all or nothing	Multiple code protection blocks
Configuration Words	Stored in last 4 words of program memory space	Stored in configuration space, starting at 300000h
Power-up Timer	Always on	Configurable
Data EEPROM	Use self-programming	Available
BOR	Simple BOR with voltage regulator	Programmable BOR
LVD	Simple LVD with voltage regulator	Available
A/D Channels	12	16
A/D Calibration	Required	Not required
Microprocessor mode (EMB)	Self-calibration feature	Available
External Memory Addressing	Address shifting available	Address shifting not available
In-Circuit Emulation	Not available	Available

TABLE B-1: NOTABLE DIFFERENCES BETWEEN PIC18F85J11 AND PIC18F8722 FAMILIES