

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	EBI/EMI, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	67
Program Memory Size	8KB (4K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f83j11-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

3.5 Internal Oscillator Block

The PIC18F85J11 family of devices includes an internal oscillator block which generates two different clock signals; either can be used as the microcontroller's clock source. This may eliminate the need for an external oscillator circuit on the OSC1 and/or OSC2 pins.

The main output is the Fast RC oscillator, or INTOSC, an 8 MHz clock source which can be used to directly drive the device clock. It also drives a postscaler which can provide a range of clock frequencies from 31 kHz to 4 MHz. INTOSC is enabled when a clock frequency from 125 kHz to 8 MHz is selected. The INTOSC output can also be enabled when 31 kHz is selected, depending on the INTSRC bit (OSCTUNE<7>).

The other clock source is the Internal RC oscillator (INTRC), which provides a nominal 31 kHz output. INTRC is enabled if it is selected as the device clock source. It is also enabled automatically when any of the following are enabled:

- Power-up Timer
- Fail-Safe Clock Monitor
- · Watchdog Timer
- Two-Speed Start-up

These features are discussed in greater detail in Section 23.0 "Special Features of the CPU".

The clock source frequency (INTOSC direct, INTOSC with postscaler or INTRC direct) is selected by configuring the IRCF bits of the OSCCON register. The default frequency on device Resets is 1 MHz.

3.5.1 OSC1 AND OSC2 PIN CONFIGURATION

Whenever the internal oscillator is configured as the default clock source (FOSC2 = 0), the OSC1 and OSC2 pins are reconfigured automatically as port pins, RA6 and RA7. In this mode, they function as general digital I/O. All oscillator functions on the pins are disabled.

3.5.2 INTERNAL OSCILLATOR OUTPUT FREQUENCY AND TUNING

The internal oscillator block is calibrated at the factory to produce an INTOSC output frequency of 8 MHz. It can be adjusted in the user's application by writing to TUN<5:0> (OSCTUNE<5:0>) in the OSCTUNE register (Register 3-2).

When the OSCTUNE register is modified, the INTOSC frequency will begin shifting to the new frequency. The oscillator will stabilize within 1 ms. Code execution continues during this shift. There is no indication that the shift has occurred.

The INTRC oscillator operates independently of the INTOSC source. Any changes in INTOSC across voltage and temperature are not necessarily reflected by changes in INTRC or vice versa. The frequency of INTRC is not affected by OSCTUNE.

3.5.3 INTOSC FREQUENCY DRIFT

The INTOSC frequency may drift as VDD or temperature changes, and can affect the controller operation in a variety of ways. It is possible to adjust the INTOSC frequency by modifying the value in the OSCTUNE register. This will have no effect on the INTRC clock source frequency.

Tuning INTOSC requires knowing when to make the adjustment, in which direction it should be made, and in some cases, how large a change is needed. Three compensation techniques are shown here.

3.5.3.1 Compensating with the EUSART

An adjustment may be required when the EUSART begins to generate framing errors or receives data with errors while in Asynchronous mode. Framing errors indicate that the device clock frequency is too high. To adjust for this, decrement the value in OSCTUNE to reduce the clock frequency. On the other hand, errors in data may suggest that the clock speed is too low. To compensate, increment OSCTUNE to increase the clock frequency.

3.5.3.2 Compensating with the Timers

This technique compares device clock speed to some reference clock. Two timers may be used; one timer is clocked by the peripheral clock, while the other is clocked by a fixed reference source, such as the Timer1 oscillator.

Both timers are cleared, but the timer clocked by the reference generates interrupts. When an interrupt occurs, the internally clocked timer is read and both timers are cleared. If the internally clocked timer value is much greater than expected, then the internal oscillator block is running too fast. To adjust for this, decrement the OSCTUNE register.

3.5.3.3 Compensating with the CCP Module in Capture Mode

A CCP module can use free-running Timer1 (or Timer3), clocked by the internal oscillator block and an external event with a known period (i.e., AC power frequency). The time of the first event is captured in the CCPRxH:CCPRxL registers and is recorded for use later. When the second event causes a capture, the time of the first event is subtracted from the time of the second event. Since the period of the external event is known, the time difference between events can be calculated.

If the measured time is much greater than the calculated time, the internal oscillator block is running too fast. To compensate, decrement the OSCTUNE register. If the measured time is much less than the calculated time, the internal oscillator block is running too slow. To compensate, increment the OSCTUNE register.

6.0 MEMORY ORGANIZATION

There are two types of memory in PIC18 Flash microcontroller devices:

- Program Memory
- Data RAM

As Harvard architecture devices, the data and program memories use separate busses; this allows for concurrent access of the two memory spaces.

Additional detailed information on the operation of the Flash program memory is provided in **Section 7.0 "Flash Program Memory"**.

6.1 Program Memory Organization

PIC18 microcontrollers implement a 21-bit program counter which is capable of addressing a 2-Mbyte program memory space. Accessing a location between the upper boundary of the physically implemented memory and the 2-Mbyte address will return all '0's (a NOP instruction).

The entire PIC18F85J11 family offers a range of on-chip Flash program memory sizes, from 8 Kbytes (up to 4,096 single-word instructions) to 32 Kbytes (32,768 single-word instructions). The program memory maps for individual family members are shown in Figure 6-1.

FIGURE 6-1: MEMORY MAPS FOR PIC18F85J11 FAMILY DEVICES

PIC18F85J11 FAMILY

REGISTER 10-3: INTCON3: INTERRUPT CONTROL REGISTER 3

R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
INT2IP	INT1IP	INT3IE	INT2IE	INT1IE	INT3IF	INT2IF	INT1IF	
bit 7							bit 0	
Legend:								
R = Reada	able bit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'		
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown	
bit 7	INT2IP: INT2 1 = High pric 0 = Low prio	External Interr prity rity	upt Priority bit					
DIT 6	1 = High pric 0 = Low prio	External Interr prity rity	upt Priority bit					
bit 5	INT3IE: INT3 1 = Enables 0 = Disables	External Interr the INT3 exterr the INT3 exter	upt Enable bit nal interrupt nal interrupt					
bit 4	INT2IE: INT2 1 = Enables 0 = Disables	External Interr the INT2 exterr the INT2 exter	upt Enable bit nal interrupt nal interrupt					
bit 3	INT1IE: INT1 1 = Enables 0 = Disables	External Interr the INT1 exterr the INT1 exter	upt Enable bit nal interrupt nal interrupt					
bit 2	INT3IF: INT3 1 = The INT3 0 = The INT3	External Interr 3 external interr 3 external interr	upt Flag bit upt occurred (upt did not occ	must be cleared	d in software)			
bit 1	INT2IF: INT2 1 = The INT2 0 = The INT2	External Interr 2 external interr 2 external interr	upt Flag bit upt occurred (upt did not occ	must be cleared	d in software)			
bit 0	INT1IF: INT1 External Interrupt Flag bit 1 = The INT1 external interrupt occurred (must be cleared in software) 0 = The INT1 external interrupt did not occur							
Note:	Interrupt flag bits enable bit or the are clear prior to	are set when global interrupt enabling an int	an interrupt co enable bit. Us errupt. This fea	ondition occurs er software sho ature allows for	regardless of ould ensure the software pollir	the state of its appropriate int	corresponding errupt flag bits	

PIC18F85J11 FAMILY

REGISTER 10-11: IPR2: PERIPHERAL INTERRUPT PRIORITY REGISTER 2

R/W-1	R/W-1	U-0	U-0	R/W-1	R/W-1	R/W-1	U-0
OSCFIP	CMIP		_	BCLIP	LVDIP	TMR3IP	_
bit 7	·						bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	nown
bit 7	OSCFIP: Osc	illator Fail Inter	rupt Priority bi	t			
	1 = High prio	rity					
	0 = Low prior	rity					
bit 6	CMIP: Compa	arator Interrupt	Priority bit				
	1 = High prio	rity					
	0 = Low prior	rity					
bit 5-4	Unimplemen	ted: Read as '0)'				
bit 3	BCLIP: Bus (Collision Interru	pt Priority bit				
	1 = High prio	rity					
	0 = Low prior	rity					
bit 2	LVDIP: Low-\	/oltage Detect I	nterrupt Priorit	y bit			
	1 = High prio	rity					
	0 = Low prior	rity					
bit 1	TMR3IP: TM	R3 Overflow Int	errupt Priority	bit			
	1 = High prio	rity					
	0 = Low prior	rity					
bit 0	Unimplemen	ted: Read as '0)'				

Pin Name	Function	TRIS Setting	I/O	l/O Type	Description				
RC0/T1OSO/	RC0	0	0	DIG	LATC<0> data output.				
T13CKI		1	I	ST	PORTC<0> data input.				
	T10S0	x	0	ANA	Timer1 oscillator output; enabled when Timer1 oscillator enabled. Disabled digital I/O.				
	T13CKI	1	Ι	ST	Timer1/Timer3 counter input.				
RC1/T1OSI/	RC1	0	0	DIG	LATC<1> data output.				
CCP2		1	Ι	ST	PORTC<1> data input.				
	T1OSI	x	I	ANA	Timer1 oscillator input; enabled when Timer1 oscillator enabled. Disables digital I/O.				
	CCP2 ⁽¹⁾	0	0	DIG	CCP2 compare output and CCP2 PWM output; takes priority over port data.				
		1	I	ST	CCP2 capture input.				
RC2/CCP1	RC2	0	0	DIG	LATC<2> data output.				
		1	I	ST	PORTC<2> data input.				
	CCP1	0	0	DIG	CCP1 compare output and CCP1 PWM output; takes priority over port data.				
		1	I	ST	CCP1 capture input.				
RC3/SCK/SCL	RC3	0	0	DIG	LATC<3> data output.				
		1	I	ST	PORTC<3> data input.				
	SCK	0	0	DIG	SPI clock output (MSSP module); takes priority over port data.				
		1	I	ST	SPI clock input (MSSP module).				
	SCL	0	0	DIG	I ² C [™] clock output (MSSP module); takes priority over port data.				
		1	I	l ² C	I ² C clock input (MSSP module); input type depends on module setting.				
RC4/SDI/SDA	RC4	0	0	DIG	LATC<4> data output.				
		1	Ι	ST	PORTC<4> data input.				
	SDI	1	Ι	ST	SPI data input (MSSP module).				
	SDA	1	0	DIG	I ² C data output (MSSP module); takes priority over port data.				
		1	I	l ² C	I ² C data input (MSSP module); input type depends on module setting.				
RC5/SDO	RC5	0	0	DIG	LATC<5> data output.				
		1	I	ST	PORTC<5> data input.				
	SDO	0	0	DIG	SPI data output (MSSP module); takes priority over port data.				
RC6/TX1/CK1	RC6	0	0	DIG	LATC<6> data output.				
		1	Ι	ST	PORTC<6> data input.				
	TX1	1	0	DIG	Synchronous serial data output (EUSART module); takes priority over port data.				
	CK1	1	0	DIG	Synchronous serial data input (EUSART module). User must configure as an input.				
		1	I	ST	Synchronous serial clock input (EUSART module).				
RC7/RX1/DT1	RC7	0	0	DIG	LATC<7> data output.				
		1	I	ST	PORTC<7> data input.				
	RX1	1	I	ST	Asynchronous serial receive data input (EUSART module).				
	DT1	1	0	DIG	Synchronous serial data output (EUSART module); takes priority over port data.				
		1	Ι	ST	Synchronous serial data input (EUSART module). User must configure as an input.				

TABLE 11-7: PORTC FUNCTIONS

Legend: O = Output, I = Input, ANA = Analog Signal, DIG = Digital Output, ST = Schmitt Buffer Input, x = Don't care (TRIS bit does not affect port direction or is overridden for this option).

Note 1: Default assignment for CCP2 when CCP2MX Configuration bit is set.

Pin Name	Function	TRIS Setting	I/O	l/O Type	Description		
RE0/RD/AD8	RE0	0	0	DIG	LATE<0> data output.		
		1	I	ST	PORTE<0> data input.		
	RD	1	I	TTL	Parallel Slave Port read enable control input.		
	AD8 ⁽¹⁾	x	0	DIG	External memory interface, address/data bit 8 output. ⁽²⁾		
		x	I	TTL	External memory interface, data bit 8 input. ⁽²⁾		
RE1/WR/AD9	RE1	0	0	DIG	LATE<1> data output.		
		1	I	ST	PORTE<1> data input.		
	WR	1	I	TTL	Parallel Slave Port write enable control input.		
	AD9 ⁽¹⁾	x	0	DIG	External memory interface, address/data bit 9 output. ⁽²⁾		
		x	I	TTL	External memory interface, data bit 9 input. ⁽²⁾		
RE2/AD10/CS	RE2	0	0	DIG	LATE<2> data output.		
		1	I	ST	PORTE<2> data input.		
	AD10 ⁽¹⁾	x	0	DIG	External memory interface, address/data bit 10 output. ⁽²⁾		
		x	I	TTL	External memory interface, data bit 10 input. ⁽²⁾		
	CS	1	I	TTL	Parallel Slave Port chip select control input.		
RE3/AD11	RE3	0	0	DIG	LATE<3> data output.		
		1	I	ST	PORTE<3> data input.		
	AD11 ⁽¹⁾	x	0	DIG	External memory interface, address/data bit 11 output. ⁽²⁾		
		x	I	TTL	External memory interface, data bit 11 input. ⁽²⁾		
RE4/AD12	RE4	0	0	DIG	LATE<4> data output.		
		1	Ι	ST	PORTE<4> data input.		
	AD12 ⁽¹⁾	х	0	DIG	External memory interface, address/data bit 12 output. ⁽²⁾		
		х	I	TTL	External memory interface, data bit 12 input. ⁽²⁾		
RE5/AD13	RE5	0	0	DIG	LATE<5> data output.		
		1	I	ST	PORTE<5> data input.		
	AD13 ⁽¹⁾	x	0	DIG	External memory interface, address/data bit 13 output. ⁽²⁾		
		x	I	TTL	External memory interface, data bit 13 input. ⁽²⁾		
RE6/AD14	RE6	0	0	DIG	LATE<6> data output.		
		1	I	ST	PORTE<6> data input.		
	AD14 ⁽¹⁾	x	0	DIG	External memory interface, address/data bit 14 output. ⁽²⁾		
		x	I	TTL	External memory interface, data bit 14 input. ⁽²⁾		
RE7/AD15/	RE7	0	0	DIG	LATE<7> data output.		
CCP2		1	I	ST	PORTE<7> data input.		
	AD15 ⁽¹⁾	x	0	DIG	External memory interface, address/data bit 15 output. ⁽²⁾		
		x	I	TTL	External memory interface, data bit 15 input. ⁽²⁾		
	CCP2 ⁽³⁾	0	0	DIG	CCP2 compare output and CCP2 PWM output; takes priority over port data.		
		1	1	ST	CCP2 capture input.		

TABLE 11-11: PORTE FUNCTIONS

Legend: O = Output, I = Input, DIG = Digital Output, ST = Schmitt Buffer Input, TTL = TTL Buffer Input, x = Don't care (TRIS bit does not affect port direction or is overridden for this option).

Note 1: Available on 80-pin devices only.

2: External memory interface I/O takes priority over all other digital and PSP I/O.

3: Alternate assignment for CCP2 when CCP2MX Configuration bit is cleared (all devices in Microcontroller mode).

11.7 PORTF, LATF and TRISF Registers

PORTF is a 7-bit wide, bidirectional port. The corresponding Data Direction and Output Latch registers are TRISF and LATF. All pins on PORTF are implemented with Schmitt Trigger input buffers. Each pin is individually configurable as an input or output.

PORTF is multiplexed with analog peripheral functions. Pins RF1 through RF6 may be used as comparator inputs or outputs by setting the appropriate bits in the CMCON register. To use RF<6:3> as digital inputs, it is also necessary to turn off the comparators.

- **Note 1:** On device Resets, pins, RF<6:1>, are configured as analog inputs and are read as '0'.
 - **2:** To configure PORTF as digital I/O, turn off comparators and set ADCON1 value.

EXAMPLE 11-6: INITIALIZING PORTF

CLRF	PORTF	; Initialize PORTF by	
		; clearing output	
		; data latches	
CLRF	LATF	; Alternate method	
		; to clear output	
		; data latches	
MOVLW	07h	;	
MOVWF	CMCON	; Turn off comparators	
MOVLW	0Fh;		
MOVWF	ADCON1	; Set PORTF as digital I/O	
MOVLW	OCEh	; Value used to	
		; initialize data	
		; direction	
MOVWF	TRISF	; Set RF3:RF1 as inputs	
		; RF5:RF4 as outputs	
		; RF7:RF6 as inputs	

13.3.2 TIMER1 OSCILLATOR LAYOUT CONSIDERATIONS

The Timer1 oscillator circuit draws very little power during operation. Due to the low-power nature of the oscillator, it may also be sensitive to rapidly changing signals in close proximity.

The oscillator circuit, shown in Figure 13-3, should be located as close as possible to the microcontroller. There should be no circuits passing within the oscillator circuit boundaries other than Vss or VDD.

If a high-speed circuit must be located near the oscillator (such as the CCP1 pin in Output Compare or PWM mode, or the primary oscillator using the OSC2 pin), a grounded guard ring around the oscillator circuit, as shown in Figure 13-4, may be helpful when used on a single-sided PCB or in addition to a ground plane.

FIGURE 13-4: OSCILLATOR CIRCUIT WITH GROUNDED GUARD RING

13.4 Timer1 Interrupt

The TMR1 register pair (TMR1H:TMR1L) increments from 0000h to FFFFh and rolls over to 0000h. The Timer1 interrupt, if enabled, is generated on overflow which is latched in interrupt flag bit, TMR1IF (PIR1<0>). This interrupt can be enabled or disabled by setting or clearing the Timer1 Interrupt Enable bit, TMR1IE (PIE1<0>).

13.5 Resetting Timer1 Using the CCPx Special Event Trigger

If CCP1 or CCP2 is configured to use Timer1 and to generate a Special Event Trigger in Compare mode (CCPxM<3:0> = 1011), this signal will reset Timer3. The trigger from CCP2 will also start an A/D conversion if the A/D module is enabled (see Section 16.3.4 "Special Event Trigger" for more information).

The module must be configured as either a timer or a synchronous counter to take advantage of this feature. When used this way, the CCPRxH:CCPRxL register pair effectively becomes a Period register for Timer1.

If Timer1 is running in Asynchronous Counter mode, this Reset operation may not work.

In the event that a write to Timer1 coincides with a Special Event Trigger, the write operation will take precedence.

Note:	The Special Event Triggers from the CCPx
	module will not set the TMR1IF interrupt
	flag bit (PIR1<0>).

13.6 Using Timer1 as a Real-Time Clock

Adding an external LP oscillator to Timer1 (such as the one described in **Section 13.3 "Timer1 Oscillator"** above) gives users the option to include RTC functionality to their applications. This is accomplished with an inexpensive watch crystal to provide an accurate time base and several lines of application code to calculate the time. When operating in Sleep mode and using a battery or supercapacitor as a power source, it can completely eliminate the need for a separate RTC device and battery backup.

The application code routine, RTCisr, shown in Example 13-1, demonstrates a simple method to increment a counter at one-second intervals using an Interrupt Service Routine. Incrementing the TMR1 register pair to overflow triggers the interrupt and calls the routine which increments the seconds counter by one. Additional counters for minutes and hours are incremented as the previous counter overflows.

Since the register pair is 16 bits wide, counting up to overflow the register directly from a 32.768 kHz clock would take 2 seconds. To force the overflow at the required one-second intervals, it is necessary to preload it. The simplest method is to set the MSb of TMR1H with a BSF instruction. Note that the TMR1L register is never preloaded or altered; doing so may introduce cumulative error over many cycles.

For this method to be accurate, Timer1 must operate in Asynchronous mode and the Timer1 overflow interrupt must be enabled (PIE1<0> = 1), as shown in the routine, RTCinit. The Timer1 oscillator must also be enabled and running at all times.

PIC18F85J11 FAMILY

R/W-0	R/W-0	R-0	R-0	R-0	R-0	R0	R-0
SMP	CKE	D/Ā	P ⁽¹⁾	S ⁽¹⁾	R/W	UA	BF
bit 7							bit
Legend:							
R = Readable bit		W = Writable	bit	U = Unimplen	nented bit, re	ad as '0'	
-n = Value	e at POR	'1' = Bit is se	t	'0' = Bit is clea	ared	x = Bit is unkn	iown
bit 7	SMP: Slew R	Rate Control bit					
	<u>In Master or S</u> 1 = Slew rate 0 = Slew rate	<u>Slave mode:</u> e control is disa e control is ena	abled for Stan	dard Speed mod Speed mode (40	e (100 kHz a)0 kHz)	nd 1 MHz)	
bit 6	CKE: SMBus In Master or S 1 = Enable S 0 = Disable S	s Select bit <u>Slave mode:</u> MBus specific SMBus specific	inputs inputs	(, , ,		
bit 5	D/A: Data/Ac In Master mo Reserved.	ldress bit ode:					
	In Slave mod 1 = Indicates 0 = Indicates	<u>le:</u> that the last by that the last by	/te received o	r transmitted was r transmitted was	s data s address		
bit 4	P: Stop bit ⁽¹⁾						
	1 = Indicates 0 = Stop bit v	that a Stop bit vas not detecte	has been det d last	ected last			
bit 3	S: Start bit ⁽¹⁾						
	1 = Indicates 0 = Start bit v	that a Start bit vas not detecte	has been det d last	ected last			
bit 2	R/W: Read/W In Slave mod 1 = Read 0 = Write In Master mo 1 = Transmit 0 = Transmit	Vrite Informatio le: ⁽²⁾ ode: ⁽³⁾ is in progress is not in progress	n bit (I ² C mod	e only)			
bit 1	UA: Update	Address bit (10	-Bit Slave mo	de only)			
	1 = Indicates 0 = Address	that the user r does not need	eeds to updat to be updated	te the address in	the SSPADE	D register	
bit 0	BF: Buffer Fu	ull Status bit					
	In Transmit m 1 = SSPBUF 0 = SSPBUF	node: is full is empty					
	In Receive m 1 = SSPBUF 0 = SSPBUF	iode: is full (does no is empty (does	ot include the s not include the	ACK and Stop bine ACK and Stop	ts) o bits)		
Note 1:	This bit is cleared	d on Reset and	when SSPEN	l is cleared.			fan ()
2:	address match to	the next Start	bit, Stop bit o	g the last addres	s match. Thi	s dit is only valid	from the

3: ORing this bit with SEN, RSEN, PEN, RCEN or ACKEN will indicate if the MSSP is in Active mode.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
WCOL	SSPOV	SSPEN ⁽¹⁾	CKP	SSPM3	SSPM2	SSPM1	SSPM0
bit 7							bit 0
							
Legend:							
R = Readable	e bit	W = Writable b	bit	U = Unimplem	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown
bit 7	WCOL: Write	Collision Detec	t bit				
	1 = A write t transmise 0 = No collisi	to the SSPBUF sion to be starte ion	register was d (must be clo	attempted wh eared in softwar	ile the I ² C con e)	nditions were r	not valid for a
	<u>In Slave Tran</u> 1 = The SSP software	<u>smit mode:</u> PBUF register is)	written while	it is still transm	itting the previ	ous word (mus	t be cleared in
	0 = No collisi In Receive m This is a "don	ion <u>ode (Master or S</u> i't care" bit.	<u>Slave modes)</u>	<u>.</u>			
bit 6	SSPOV: Rec	eive Overflow In	dicator bit				
	<u>In Receive m</u> 1 = A byte is software	<u>ode:</u> received while 1) low	the SSPBUF	register is still h	olding the prev	vious byte (mus	t be cleared in
	In Transmit m This is a "don	n <u>ode:</u> I't care" bit in Tra	ansmit mode.				
bit 5	SSPEN: Mas	ter Synchronous	s Serial Port E	Enable bit ⁽¹⁾			
	1 = Enables t 0 = Disables	he serial port ar serial port and c	nd configures configures the	the SDA and So se pins as I/O p	CL pins as the ort pins	serial port pins	
bit 4	CKP: SCK R	elease Control b	oit				
	In Slave mode 1 = Release of 0 = Holds clo In Master mode Unused in this	<u>e:</u> clock ck low (clock str <u>de:</u> s mode.	etch); used to	ensure data se	etup time		
bit 3-0	SSPM<3:0>:	Synchronous S	erial Port Mod	le Select bits			
	1111 = $I^{2}C S$ 1110 = $I^{2}C S$ 1011 = $I^{2}C F$ 1000 = $I^{2}C M$ 0111 = $I^{2}C S$ 0110 = $I^{2}C S$ Bit combination	lave mode, 10-b lave mode, 7-bit irmware Control laster mode, clo lave mode, 10-b lave mode, 7-bit	bit address with address with led Master m ck = Fosc/(4 bit address address	th Start and Stop Start and Stop ode (slave Idle) * (SSPADD + 1	p bit interrupts bit interrupts e))	enabled mabled	ande only
		ons not specifica	any noted nere				ioue only.

REGISTER 17-4: SSPCON1: MSSP CONTROL REGISTER 1 (I²C[™] MODE)

Note 1: When enabled, the SDA and SCL pins must be configured as inputs.

17.4.3.2 Address Masking

Masking an address bit causes that bit to become a "don't care". When one address bit is masked, two addresses will be Acknowledged and cause an interrupt. It is possible to mask more than one address bit at a time, which makes it possible to Acknowledge up to 31 addresses in 7-Bit Addressing mode and up to 63 addresses in 10-Bit Addressing mode (see Example 17-2).

The I²C Slave behaves the same way, whether address masking is used or not. However, when address masking is used, the I²C slave can Acknowledge multiple addresses and cause interrupts. When this occurs, it is necessary to determine which address caused the interrupt by checking SSPBUF.

In 7-Bit Addressing mode, Address Mask bits, ADMSK<5:1> (SSPCON2<5:1>), mask the corresponding address bits in the SSPADD register. For any ADMSK bits that are set (ADMSK<n> = 1), the corresponding address bit is ignored (SSPADD<n> = x). For the module to issue an address Acknowledge, it is sufficient to match only on addresses that do not have an active address mask.

In 10-Bit Addressing mode, ADMSK<5:2> bits mask the corresponding address bits in the SSPADD register. In addition, ADMSK1 simultaneously masks the two LSbs of the address (SSPADD<1:0>). For any ADMSK bits that are active (ADMSK<n> = 1), the corresponding address bit is ignored (SSPADD<n> = x). Also note that although in 10-Bit Addressing mode, the upper address bits reuse part of the SSPADD register bits, the address mask bits do not interact with those bits. They only affect the lower address bits.

Note 1: ADMSK1 masks the two Least Significant bits of the address.

2: The two Most Significant bits of the address are not affected by address masking.

EXAMPLE 17-2: ADDRESS MASKING EXAMPLES

7-Bit Addressing:

SSPADD<7:1> = A0h (1010000) (SSPADD<0> is assumed to be '0')

ADMSK<5:1> = 00111

Addresses Acknowledged: A0h, A2h, A4h, A6h, A8h, AAh, ACh, AEh

10-Bit Addressing:

SSPADD<7:0> = A0h (10100000) (the two MSbs of the address are ignored in this example, since they are not affected by masking)

ADMSK<5:1> = 00111

Addresses Acknowledged: A0h, A1h, A2h, A3h, A4h, A5h, A6h, A7h, A8h, A9h, AAh, ABh, ACh, ADh, AEh, AFh

PIC18F85J11 FAMILY

17.4.17.2 Bus Collision During a Repeated Start Condition

During a Repeated Start condition, a bus collision occurs if:

- a) A low level is sampled on SDA when SCL goes from a low level to a high level.
- SCL goes low before SDA is asserted low, indicating that another master is attempting to transmit a data '1'.

When the user deasserts SDA and the pin is allowed to float high, the BRG is loaded with SSPADD<6:0> and counts down to 0. The SCL pin is then deasserted and when sampled high, the SDA pin is sampled.

If SDA is low, a bus collision has occurred (i.e., another master is attempting to transmit a data '0', see Figure 17-31). If SDA is sampled high, the BRG is reloaded and begins counting. If SDA goes from high-to-low before the BRG times out, no bus collision occurs because no two masters can assert SDA at exactly the same time.

If SCL goes from high-to-low before the BRG times out and SDA has not already been asserted, a bus collision occurs. In this case, another master is attempting to transmit a data '1' during the Repeated Start condition (see Figure 17-32).

If, at the end of the BRG time-out, both SCL and SDA are still high, the SDA pin is driven low and the BRG is reloaded and begins counting. At the end of the count, regardless of the status of the SCL pin, the SCL pin is driven low and the Repeated Start condition is complete.

FIGURE 17-31: BUS COLLISION DURING A REPEATED START CONDITION (CASE 1)

FIGURE 17-32: BUS COLLISION DURING REPEATED START CONDITION (CASE 2)

18.0 ENHANCED UNIVERSAL SYNCHRONOUS ASYNCHRONOUS RECEIVER TRANSMITTER (EUSART)

PIC18F85J11 family devices have three serial I/O modules: the MSSP module, discussed in the previous chapter and two Universal Synchronous Asynchronous Receiver Transmitter (USART) modules. (Generically, the USART is also known as a Serial Communications Interface or SCI.) The EUSART can be configured as a full-duplex, asynchronous system that can communicate with peripheral devices, such as CRT terminals and personal computers. It can also be configured as a half-duplex, synchronous system that can communicate with peripheral devices, such as A/D or D/A integrated circuits, serial EEPROMs, etc.

There are two distinct implementations of the USART module in these devices: the Enhanced USART (EUSART) discussed here and the Addressable USART discussed in the next chapter. For this device family, USART1 always refers to the EUSART, while USART2 is always the AUSART.

The EUSART and AUSART modules implement the same core features for serial communications; their basic operation is essentially the same. The EUSART module provides additional features, including Automatic Baud Rate Detection and calibration, automatic wake-up on Sync Break reception and 12-bit Break character transmit. These features make it ideally suited for use in Local Interconnect Network bus (LIN/J2602 bus) systems.

The EUSART can be configured in the following modes:

- · Asynchronous (full-duplex) with:
 - Auto-wake-up on character reception
 - Auto-baud calibration
 - 12-bit Break character transmission
- Synchronous Master (half-duplex) with selectable clock polarity
- Synchronous Slave (half-duplex) with selectable clock polarity

The pins of the EUSART are multiplexed with the functions of PORTC (RC6/TX1/CK1 and RC7/RX1/DT1). In order to configure these pins as a EUSART:

- SPEN bit (RCSTA1<7>) must be set (= 1)
- TRISC<7> bit must be set (= 1)
- TRISC<6> bit must be set (= 1)

Note:	The EUSART control will automatically
	reconfigure the pin from input to output as
	needed.

The driver for the TX1 output pin can also be optionally configured as an open-drain output. This feature allows the voltage level on the pin to be pulled to a higher level through an external pull-up resistor, and allows the output to communicate with external circuits without the need for additional level shifters.

The open-drain output option is controlled by the U1OD bit (LATG<6>). Setting the bit configures the pin for open-drain operation.

18.1 Control Registers

The operation of the Enhanced USART module is controlled through three registers:

- Transmit Status and Control Register 1 (TXSTA1)
- Receive Status and Control Register 1 (RCSTA1)
- Baud Rate Control Register 1 (BAUDCON1)

The registers are described in Register 18-1, Register 18-2 and Register 18-3.

18.4.2 **EUSART SYNCHRONOUS** MASTER RECEPTION

Once Synchronous mode is selected, reception is enabled by setting either the Single Receive Enable bit, SREN (RCSTA1<5>), or the Continuous Receive Enable bit, CREN (RCSTA1<4>). Data is sampled on the RX1 pin on the falling edge of the clock.

If enable bit, SREN, is set, only a single word is received. If enable bit, CREN, is set, the reception is continuous until CREN is cleared. If both bits are set, then CREN takes precedence.

To set up a Synchronous Master Reception:

- 1. Initialize the SPBRGH1:SPBRG1 registers for the appropriate baud rate. Set or clear the BRG16 bit, as required, to achieve the desired baud rate.
- 2. Enable the synchronous master serial port by setting bits, SYNC, SPEN and CSRC.

- 3. Ensure bits, CREN and SREN, are clear.
- 4. If interrupts are desired, set enable bit, RC1IE.
- 5. If 9-bit reception is desired, set bit, RX9.
- 6. If a single reception is required, set bit, SREN. For continuous reception, set bit, CREN.
- 7. Interrupt flag bit, RC1IF, will be set when reception is complete and an interrupt will be generated if the enable bit, RC1IE, was set.
- 8. Read the RCSTA1 register to get the 9th bit (if enabled) and determine if any error occurred during reception.
- 9. Read the 8-bit received data by reading the RCREG1 register.
- 10. If any error occurred, clear the error by clearing bit, CREN.
- 11. If using interrupts, ensure that the GIE and PEIE bits in the INTCON register (INTCON<7:6>) are set.

FIGURE 18-13:	SYNCHRONOUS RECEPTION (MASTER MODE, SREN)	
Q2Q3Q4	• □1 □2 □3 □4 □1 02 □3 □4 □1 □2 □3 □4 □4 □4 □4 □4 □4 □4 □4 □4 □4 □4 □4 □4	2 4
RC7/RX1/DT1 Pin	bit 0 bit 1 bit 2 bit 3 bit 4 bit 5 bit 6 bit 7	_
RC6/TX1/CK1 Pin (TXCKP = 0)		_
RC6/TX1/CK1 Pin (TXCKP = 1)		_
Write to SREN bit		
SREN bit		
CREN bit '0'		ינ
RC1IF bit (Interrupt)		
Read RCREG1		
Note: Timing diagram d	demonstrates Sync Master mode with bit SREN = 1 and bit BRGH = 0.	

TABLE 18-8: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page	
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	57	
PIR1	PSPIF	ADIF	RC1IF	TX1IF	SSPIF	—	TMR2IF	TMR1IF	59	
PIE1	PSPIE	ADIE	RC1IE	TX1IE	SSPIE	—	TMR2IE	TMR1IE	59	
IPR1	PSPIP	ADIP	RC1IP	TX1IP	SSPIP	—	TMR2IP	TMR1IP	59	
RCSTA1	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	59	
RCREG1	EUSART R	Receive Regi	ster						59	
TXSTA1	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	59	
BAUDCON1	ABDOVF	RCIDL	RXDTP	TXCKP	BRG16	—	WUE	ABDEN	60	
SPBRGH1	EUSART Baud Rate Generator Register High Byte									
SPBRG1	EUSART B	aud Rate Ge	enerator Re	gister Low E	Byte				59	
Logond:		nented read	as '0' Sha	had calls are	a not used fo	or synchron	nus master	recention		

unimplemented, read as "0". Shaded cells are not used for synchronous master reception. ∟egena:

19.5 AUSART Synchronous Slave Mode

Synchronous Slave mode is entered by clearing bit, CSRC (TXSTA2<7>). This mode differs from the Synchronous Master mode in that the shift clock is supplied externally at the CK2 pin (instead of being supplied internally in Master mode). This allows the device to transfer or receive data while in any low-power mode.

19.5.1 AUSART SYNCHRONOUS SLAVE TRANSMIT

The operation of the Synchronous Master and Slave modes are identical except in the case of the Sleep mode.

If two words are written to the TXREG2 and then the SLEEP instruction is executed, the following will occur:

- a) The first word will immediately transfer to the TSR register and transmit.
- b) The second word will remain in the TXREG2 register.
- c) Flag bit, TX2IF, will not be set.
- d) When the first word has been shifted out of TSR, the TXREG2 register will transfer the second word to the TSR and flag bit, TX2IF, will now be set.
- e) If enable bit, TX2IE, is set, the interrupt will wake the chip from Sleep. If the global interrupt is enabled, the program will branch to the interrupt vector.

To set up a Synchronous Slave Transmission:

- Enable the synchronous slave serial port by setting bits, SYNC and SPEN, and clearing bit, CSRC.
- 2. Clear bits, CREN and SREN.
- 3. If interrupts are desired, set enable bit, TX2IE.
- 4. If 9-bit transmission is desired, set bit, TX9.
- 5. Enable the transmission by setting enable bit, TXEN.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit, TX9D.
- 7. Start transmission by loading data to the TXREG2 register.
- If using interrupts, ensure that the GIE and PEIE bits in the INTCON register (INTCON<7:6>) are set.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	57
PIR3	—	—	RC2IF	TX2IF	—	CCP2IF	CCP1IF	—	59
PIE3	—	—	RC2IE	TX2IE	—	CCP2IE	CCP1IE	—	59
IPR3	—	—	RC2IP	TX2IP	—	CCP2IP	CCP1IP	—	59
RCSTA2	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	61
TXREG2	AUSART Transmit Register								61
TXSTA2	CSRC	TX9	TXEN	SYNC	—	BRGH	TRMT	TX9D	61
SPBRG2	AUSART Baud Rate Generator Register								61
LATG	U2OD	U1OD		LATG4	LATG3	LATG2	LATG1	LATG0	60

TABLE 19-8: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION

Legend: — = unimplemented, read as '0'. Shaded cells are not used for synchronous slave transmission.

23.5 Fail-Safe Clock Monitor

The Fail-Safe Clock Monitor (FSCM) allows the microcontroller to continue operation in the event of an external oscillator failure by automatically switching the device clock to the internal oscillator block. The FSCM function is enabled by setting the FCMEN Configuration bit.

When FSCM is enabled, the INTRC oscillator runs at all times to monitor clocks to peripherals and provides a backup clock in the event of a clock failure. Clock monitoring (shown in Figure 23-4) is accomplished by creating a sample clock signal which is the INTRC output divided by 64. This allows ample time between FSCM sample clocks for a peripheral clock edge to occur. The peripheral device clock and the sample clock are presented as inputs to the Clock Monitor latch (CM). The CM is set on the falling edge of the device clock source but cleared on the rising edge of the sample clock.

Clock failure is tested for on the falling edge of the sample clock. If a sample clock falling edge occurs while CM is still set, a clock failure has been detected (Figure 23-5). This causes the following:

- the FSCM generates an oscillator fail interrupt by setting bit, OSCFIF (PIR2<7>);
- the device clock source is switched to the internal oscillator block (OSCCON is not updated to show the current clock source – this is the fail-safe condition); and
- the WDT is reset.

During switchover, the postscaler frequency from the internal oscillator block may not be sufficiently stable for timing-sensitive applications. In these cases, it may be desirable to select another clock configuration and enter an alternate power-managed mode. This can be done to attempt a partial recovery or execute a controlled shutdown. See Section 4.1.4 "Multiple Sleep Commands" and Section 23.4.1 "Special Considerations for Using Two-Speed Start-up" for more details.

The FSCM will detect failures of the primary or secondary clock sources only. If the internal oscillator block fails, no failure would be detected, nor would any action be possible.

23.5.1 FSCM AND THE WATCHDOG TIMER

Both the FSCM and the WDT are clocked by the INTRC oscillator. Since the WDT operates with a separate divider and counter, disabling the WDT has no effect on the operation of the INTRC oscillator when the FSCM is enabled.

As already noted, the clock source is switched to the INTRC clock when a clock failure is detected. This may mean a substantial change in the speed of code execution. If the WDT is enabled with a small prescale value, a decrease in clock speed allows a WDT time-out to occur and a subsequent device Reset. For this reason, Fail-Safe Clock Monitor events also reset the WDT and postscaler, allowing it to start timing from when execution speed was changed and decreasing the likelihood of an erroneous time-out.

If the interrupt is disabled, subsequent interrupts while in Idle mode will cause the CPU to begin executing instructions while being clocked by the INTRC source. NOTES:

24.7 MPLAB SIM Software Simulator

The MPLAB SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC[®] DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB SIM Software Simulator fully supports symbolic debugging using the MPLAB C Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

24.8 MPLAB REAL ICE In-Circuit Emulator System

MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs PIC[®] Flash MCUs and dsPIC[®] Flash DSCs with the easy-to-use, powerful graphical user interface of the MPLAB Integrated Development Environment (IDE), included with each kit.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with incircuit debugger systems (RJ11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradable through future firmware downloads in MPLAB IDE. In upcoming releases of MPLAB IDE, new devices will be supported, and new features will be added. MPLAB REAL ICE offers significant advantages over competitive emulators including low-cost, full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, a ruggedized probe interface and long (up to three meters) interconnection cables.

24.9 MPLAB ICD 3 In-Circuit Debugger System

MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost effective high-speed hardware debugger/programmer for Microchip Flash Digital Signal Controller (DSC) and microcontroller (MCU) devices. It debugs and programs PIC[®] Flash microcontrollers and dsPIC[®] DSCs with the powerful, yet easyto-use graphical user interface of MPLAB Integrated Development Environment (IDE).

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

24.10 PICkit 3 In-Circuit Debugger/ Programmer and PICkit 3 Debug Express

The MPLAB PICkit 3 allows debugging and programming of PIC[®] and dsPIC[®] Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB Integrated Development Environment (IDE). The MPLAB PICkit 3 is connected to the design engineer's PC using a full speed USB interface and can be connected to the target via an Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the reset line to implement in-circuit debugging and In-Circuit Serial Programming[™].

The PICkit 3 Debug Express include the PICkit 3, demo board and microcontroller, hookup cables and CDROM with user's guide, lessons, tutorial, compiler and MPLAB IDE software.