

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	EBI/EMI, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	67
Program Memory Size	8KB (4K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f83j11t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Din Nome	Pin Number	Pin	Buffer	Description	
Pin Name	TQFP	Туре	Туре	Description	
				PORTG is a bidirectional I/O port.	
RG0	3	I/O	ST	Digital I/O.	
RG1/TX2/CK2 RG1 TX2 CK2	4	I/O O I/O	ST — ST	Digital I/O. AUSART asynchronous transmit. AUSART synchronous clock (see related RX2/DT2).	
RG2/RX2/DT2 RG2 RX2 DT2	5	I/O I I/O	ST ST ST	Digital I/O. AUSART asynchronous receive. AUSART synchronous data (see related TX2/CK2).	
RG3	6	I/O	ST	Digital I/O.	
RG4	8	I/O	ST	Digital I/O.	
Vss	9, 25, 41, 56	Р	_	Ground reference for logic and I/O pins.	
Vdd	26, 38, 57	Р	—	Positive supply for logic and I/O pins.	
AVss	20	Р	_	Ground reference for analog modules.	
AVdd	19	Р	_	Positive supply for analog modules.	
ENVREG	18	Ι	ST	Enable for on-chip voltage regulator.	
VDDCORE/VCAP VDDCORE	10	Ρ	_	Core logic power or external filter capacitor connection. Positive supply for microcontroller core logic (regulator disabled).	
VCAP		Р	_	External filter capacitor connection (regulator enabled).	
Legend: TTL = TTL c ST = Schm I = Input P = Power	ompatible input itt Trigger input r	with C	MOS leve	CMOS = CMOS compatible input or output Analog = Analog input O = Output OD = Open-Drain (no P diode to VDD)	

TABLE 1-3: PIC18F6XJ11 PINOUT I/O DESCRIPTIONS (CONTINUED)

 $I^2 C^{TM} = I^2 C/SMBus$ Note 1: Default assignment for CCP2 when the CCP2MX Configuration bit is set.

2: Alternate assignment for CCP2 when the CCP2MX Configuration bit is cleared.

Din Norra	Pin Number	Pin	Buffer Type	Description
	TQFP	Туре		Description
				PORTG is a bidirectional I/O port.
RG0	5	I/O	ST	Digital I/O.
RG1/TX2/CK2	6			
RG1		I/O	ST	Digital I/O.
TX2		0	_	AUSART asynchronous transmit.
CK2		I/O	ST	AUSART synchronous clock (see related RX2/DT2).
RG2/RX2/DT2	7			
RG2		I/O	ST	Digital I/O.
RX2		1	ST	AUSART asynchronous receive.
DT2		I/O	ST	AUSART synchronous data (see related TX2/CK2).
RG3	8	I/O	ST	Digital I/O.
RG4	10	I/O	ST	Digital I/O.
Legend: TTL = TTL co	mpatible input			CMOS = CMOS compatible input or output
ST = Schmit	t Trigger input	with Cl	MOS leve	els Analog = Analog input
I = Input				O = Output
P = Power				OD = Open-Drain (no P diode to VDD)

TABLE 1-4:	PIC18F8XJ11 PINOUT I/O DESCRIPTIONS	(CONTINUED)

 $I^2C^{TM} = I^2C/SMBus$ Note 1: Alternate assignment for CCP2 when the CCP2MX Configuration bit is cleared (80-pin devices, Extended

Microcontroller mode only).

2: Default assignment for CCP2 when the CCP2MX Configuration bit is set.

3: Alternate assignment for CCP2 when the CCP2MX Configuration bit is cleared.

2.2 Power Supply Pins

2.2.1 DECOUPLING CAPACITORS

The use of decoupling capacitors on every pair of power supply pins, such as VDD, VSS, AVDD and AVSS, is required.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: A 0.1 μ F (100 nF), 10-20V capacitor is recommended. The capacitor should be a low-ESR device, with a resonance frequency in the range of 200 MHz and higher. Ceramic capacitors are recommended.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended to place the capacitors on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is no greater than 0.25 inch (6 mm).
- Handling high-frequency noise: If the board is experiencing high-frequency noise (upward of tens of MHz), add a second ceramic type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01 μ F to 0.001 μ F. Place this second capacitor next to each primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible (e.g., 0.1 μ F in parallel with 0.001 μ F).
- Maximizing performance: On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum, thereby reducing PCB trace inductance.

2.2.2 TANK CAPACITORS

On boards with power traces running longer than six inches in length, it is suggested to use a tank capacitor for integrated circuits, including microcontrollers, to supply a local power source. The value of the tank capacitor should be determined based on the trace resistance that connects the power supply source to the device, and the maximum current drawn by the device in the application. In other words, select the tank capacitor so that it meets the acceptable voltage sag at the device. Typical values range from 4.7 μ F to 47 μ F.

2.3 Master Clear (MCLR) Pin

The MCLR pin provides two specific device functions: Device Reset, and Device Programming and Debugging. If programming and debugging are not required in the end application, a direct connection to VDD may be all that is required. The addition of other components, to help increase the application's resistance to spurious Resets from voltage sags, may be beneficial. A typical configuration is shown in Figure 2-1. Other circuit designs may be implemented, depending on the application's requirements.

During programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the $\overline{\text{MCLR}}$ pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R1 and C1 will need to be adjusted based on the application and PCB requirements. For example, it is recommended that the capacitor, C1, be isolated from the $\overline{\text{MCLR}}$ pin during programming and debugging operations by using a jumper (Figure 2-2). The jumper is replaced for normal run-time operations.

Any components associated with the $\overline{\text{MCLR}}$ pin should be placed within 0.25 inch (6 mm) of the pin.

FIGURE 2-2: EXAMPLE OF MCLR PIN CONNECTIONS

VIH and VIL specifications are met.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
INTSRC	PLLEN ⁽¹⁾	TUN5	TUN4	TUN3	TUN2	TUN1	TUN0
bit 7				·			bit 0
Legend:							
R = Readat	ole bit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7	INTSRC: Inte	ernal Oscillator	Low-Frequence	cy Source Selec	t bit		
	1 = 31.25 k⊦	Iz device clock	derived from 8	B MHz INTOSC	source (divide	-by-256 enable	d)
	0 = 31 kHz c	levice clock der	ived from INT	RC 31 kHz osci	illator	-	
bit 6	PLLEN: Fred	quency Multiplie	r PLL Enable	bit ⁽¹⁾			
	1 = PLL is e	nabled					
	0 = PLL is di	isabled					
bit 5-0	TUN<5:0>: F	ast RC Oscillat	or (INTOSC)	Frequency Tuni	ng bits		
	011111 = M a	aximum frequer	псу				
	•	•					
	•	•					
	000001						
	000000 = C e	enter frequency	. Fast RC osci	illator is running	at the calibrat	ed frequency.	
	111111						
	•	•					
	•	•					
	100000 = M i	inimum frequen	су				

REGISTER 3-2: OSCTUNE: OSCILLATOR TUNING REGISTER

Note 1: Available only for ECPLL and HSPLL oscillator configurations; otherwise, this bit is unavailable and reads as '0'.

3.3 Clock Sources and Oscillator Switching

Essentially, PIC18F85J11 family devices have three independent clock sources:

- · Primary oscillators
- · Secondary oscillators
- Internal oscillator

The **primary oscillators** can be thought of as the main device oscillators. These are any external oscillators connected to the OSC1 and OSC2 pins, and include the External Crystal and Resonator modes and the External Clock modes. In some circumstances, the internal oscillator block may be considered a primary oscillator. The particular mode is defined by the FOSC Configuration bits. The details of these modes are covered in **Section 3.4 "External Oscillator Modes**".

The **secondary oscillators** are external clock sources that are not connected to the OSC1 or OSC2 pins. These sources may continue to operate even after the controller is placed in a power-managed mode. PIC18F85J11 family devices offer the Timer1 oscillator as a secondary oscillator source. This oscillator, in all power-managed modes, is often the time base for functions such as a Real-Time Clock. The Timer1 oscillator is discussed in greater detail in **Section 13.3 "Timer1 Oscillator"**

In addition to being a primary clock source in some circumstances, the **internal oscillator** is available as a power-managed mode clock source. The INTRC source is also used as the clock source for several special features, such as the WDT and Fail-Safe Clock Monitor. The internal oscillator block is discussed in more detail in **Section 3.5** "Internal Oscillator **Block**".

The PIC18F85J11 family includes features that allow the device clock source to be switched from the main oscillator, chosen by device configuration, to one of the alternate clock sources. When an alternate clock source is enabled, various power-managed operating modes are available.

Register	Applicable Devices		Power-on Reset, Brown-out Reset	MCLR Resets WDT Reset RESET Instruction S <u>tac</u> k Resets CM Resets	Wake-up via WDT or Interrupt
TOSU	PIC18F6XJ11	PIC18F8XJ11	0 0000	0 0000	0 uuuu (1)
TOSH	PIC18F6XJ11	PIC18F8XJ11	0000 0000	0000 0000	uuuu uuuu (1)
TOSL	PIC18F6XJ11	PIC18F8XJ11	0000 0000	0000 0000	uuuu uuuu ⁽¹⁾
STKPTR	PIC18F6XJ11	PIC18F8XJ11	uu-0 0000	00-0 0000	uu-u uuuu (1)
PCLATU	PIC18F6XJ11	PIC18F8XJ11	0 0000	0 0000	u uuuu
PCLATH	PIC18F6XJ11	PIC18F8XJ11	0000 0000	0000 0000	uuuu uuuu
PCL	PIC18F6XJ11	PIC18F8XJ11	0000 0000	0000 0000	PC + 2 ⁽²⁾
TBLPTRU	PIC18F6XJ11	PIC18F8XJ11	00 0000	00 0000	uu uuuu
TBLPTRH	PIC18F6XJ11	PIC18F8XJ11	0000 0000	0000 0000	uuuu uuuu
TBLPTRL	PIC18F6XJ11	PIC18F8XJ11	0000 0000	0000 0000	uuuu uuuu
TABLAT	PIC18F6XJ11	PIC18F8XJ11	0000 0000	0000 0000	uuuu uuuu
PRODH	PIC18F6XJ11	PIC18F8XJ11	XXXX XXXX	uuuu uuuu	uuuu uuuu
PRODL	PIC18F6XJ11	PIC18F8XJ11	xxxx xxxx	uuuu uuuu	uuuu uuuu
INTCON	PIC18F6XJ11	PIC18F8XJ11	0000 000x	0000 000u	uuuu uuuu ⁽³⁾
INTCON2	PIC18F6XJ11	PIC18F8XJ11	1111 1111	1111 1111	uuuu uuuu ⁽³⁾
INTCON3	PIC18F6XJ11	PIC18F8XJ11	1100 0000	1100 0000	uuuu uuuu ⁽³⁾
INDF0	PIC18F6XJ11	PIC18F8XJ11	N/A	N/A	N/A
POSTINC0	PIC18F6XJ11	PIC18F8XJ11	N/A	N/A	N/A
POSTDEC0	PIC18F6XJ11	PIC18F8XJ11	N/A	N/A	N/A
PREINC0	PIC18F6XJ11	PIC18F8XJ11	N/A	N/A	N/A
PLUSW0	PIC18F6XJ11	PIC18F8XJ11	N/A	N/A	N/A
FSR0H	PIC18F6XJ11	PIC18F8XJ11	xxxx	uuuu	uuuu
FSR0L	PIC18F6XJ11	PIC18F8XJ11	xxxx xxxx	uuuu uuuu	uuuu uuuu
WREG	PIC18F6XJ11	PIC18F8XJ11	xxxx xxxx	uuuu uuuu	uuuu uuuu
INDF1	PIC18F6XJ11	PIC18F8XJ11	N/A	N/A	N/A
POSTINC1	PIC18F6XJ11	PIC18F8XJ11	N/A	N/A	N/A
POSTDEC1	PIC18F6XJ11	PIC18F8XJ11	N/A	N/A	N/A
PREINC1	PIC18F6XJ11	PIC18F8XJ11	N/A	N/A	N/A
PLUSW1	PIC18F6XJ11	PIC18F8XJ11	N/A	N/A	N/A

TABLE 5-2:	INITIALIZATION CONDITIONS FOR ALL REGISTE	RS

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition. Shaded cells indicate conditions do not apply for the designated device.

Note 1: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.

2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).

- 3: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).
- **4:** See Table 5-1 for Reset value for specific condition.
- **5:** Bits 6 and 7 of PORTA, LATA and TRISA are enabled depending on the oscillator mode selected. When not enabled as PORTA pins, they are disabled and read as '0'.

6.3.2 ACCESS BANK

While the use of the BSR with an embedded 8-bit address allows users to address the entire range of data memory, it also means that the user must always ensure that the correct bank is selected. Otherwise, data may be read from, or written to, the wrong location. This can be disastrous if a GPR is the intended target of an operation, but an SFR is written to instead. Verifying and/or changing the BSR for each read or write to data memory can become very inefficient.

To streamline access for the most commonly used data memory locations, the data memory is configured with an Access Bank, which allows users to access a mapped block of memory without specifying a BSR. The Access Bank consists of the first 96 bytes of memory (00h-5Fh) in Bank 0 and the last 160 bytes of memory (60h-FFh) in Bank 15. The lower half is known as the "Access RAM" and is composed of GPRs. The upper half is where the device's SFRs are mapped. These two areas are mapped contiguously in the Access Bank and can be addressed in a linear fashion by an 8-bit address (Figure 6-7).

The Access Bank is used by core PIC18 instructions that include the Access RAM bit (the 'a' parameter in the instruction). When 'a' is equal to '1', the instruction uses the BSR and the 8-bit address included in the opcode for the data memory address. When 'a' is '0',

however, the instruction is forced to use the Access Bank address map; the current value of the BSR is ignored entirely.

Using this "forced" addressing allows the instruction to operate on a data address in a single cycle without updating the BSR first. For 8-bit addresses of 60h and above, this means that users can evaluate and operate on SFRs more efficiently. The Access RAM below 60h is a good place for data values that the user might need to access rapidly, such as immediate computational results or common program variables. Access RAM also allows for faster and more code efficient context saving and switching of variables.

The mapping of the Access Bank is slightly different when the extended instruction set is enabled (XINST Configuration bit = 1). This is discussed in more detail in Section 6.6.3 "Mapping the Access Bank in Indexed Literal Offset Mode".

6.3.3 GENERAL PURPOSE REGISTER FILE

PIC18 devices may have banked memory in the GPR area. This is data RAM which is available for use by all instructions. GPRs start at the bottom of Bank 0 (address 000h) and grow upwards towards the bottom of the SFR area. GPRs are not initialized by a Power-on Reset and are unchanged on all other Resets.

8.6.2 16-BIT WORD WRITE MODE

Figure 8-2 shows an example of 16-Bit Word Write mode for PIC18F85J11 family devices. This mode is used for word-wide memories which include some of the EPROM and Flash-type memories. This mode allows opcode fetches and table reads from all forms of 16-bit memory and table writes to any type of word-wide external memories. This method makes a distinction between TBLWT cycles to even or odd addresses.

During a TBLWT cycle to an even address (TBLPTR<0> = 0), the TABLAT data is transferred to a holding latch and the external address data bus is tri-stated for the data portion of the bus cycle. No write signals are activated.

During a TBLWT cycle to an odd address (TBLPTR<0> = 1), the TABLAT data is presented on the upper byte of the AD<15:0> bus. The contents of the holding latch are presented on the lower byte of the AD<15:0> bus.

The WRH signal is strobed for each write cycle; the WRL pin is unused. The signal on the BA0 pin indicates the LSb of the TBLPTR, but it is left unconnected. Instead, the UB and LB signals are active to select both bytes. The obvious limitation to this method is that the table write must be done in pairs on a specific word boundary to correctly write a word location.

11.10 PORTJ, TRISJ and LATJ Registers

Note: PORTJ is available only on 80-pin devices.

PORTJ is an 8-bit wide, bidirectional port. The corresponding Data Direction and Output Latch registers are TRISJ and LATJ. All pins on PORTJ are digital only and tolerate voltages up to 5.5V.

All pins on PORTJ are implemented with Schmitt Trigger input buffers. Each pin is individually configurable as an input or output.

Note: These pins are configured as digital inputs on any device Reset.

Each of the PORTJ pins has a weak internal pull-up. The pull-ups are provided to keep the inputs at a known state for the external memory interface while powering up. A single control bit can turn off all the pull-ups. This is performed by clearing bit, RJPU (PORTG<5>). The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on any device Reset.

When the external memory interface is enabled, all of the PORTJ pins function as control outputs for the interface. This occurs automatically when the interface is enabled by clearing the EBDIS control bit (MEMCON<7>). The TRISJ bits are also overridden.

EXAMPLE 11-9.	INITIAL IZING PORT I
EXAIVIPLE 11-9.	INITIALIZING PORTJ

CLRF	PORTJ	; Initialize PORTJ by
		; clearing output latches
CLRF	LATJ	; Alternate method
		; to clear output latches
MOVLW	0CFh	; Value used to
		; initialize data
		; direction
MOVWF	TRISJ	; Set RJ3:RJ0 as inputs
		; RJ5:RJ4 as output
		; RJ7:RJ6 as inputs

17.3.2 OPERATION

When initializing the SPI, several options need to be specified. This is done by programming the appropriate control bits (SSPCON1<5:0> and SSPSTAT<7:6>). These control bits allow the following to be specified:

- Master mode (SCK is the clock output)
- Slave mode (SCK is the clock input)
- Clock Polarity (Idle state of SCK)
- Data Input Sample Phase (middle or end of data output time)
- Clock Edge (output data on rising/falling edge of SCK)
- Clock Rate (Master mode only)
- · Slave Select mode (Slave mode only)

The MSSP consists of a transmit/receive shift register (SSPSR) and a buffer register (SSPBUF). The SSPSR shifts the data in and out of the device, MSb first. The SSPBUF holds the data that was written to the SSPSR until the received data is ready. Once the 8 bits of data have been received, that byte is moved to the SSPBUF register. Then, the Buffer Full detect bit, BF (SSPSTAT<0>), and the MSSP Interrupt Flag bit, SSPIF, are set. This double-buffering of the received data (SSPBUF) allows the next byte to start reception before reading the data that was just received. Any write to the SSPBUF register during transmission/reception of data will be ignored and the Write

Collision detect bit, WCOL (SSPCON1<7>), will be set. User software must clear the WCOL bit so that it can be determined if the following write(s) to the SSPBUF register completed successfully.

When the application software is expecting to receive valid data, the SSPBUF should be read before the next byte of data to transfer is written to the SSPBUF. The Buffer Full bit, BF (SSPSTAT<0>), indicates when SSPBUF has been loaded with the received data (transmission is complete). When the SSPBUF is read, the BF bit is cleared. This data may be irrelevant if the SPI is only a transmitter. Generally, the MSSP interrupt is used to determine when the transmission/reception has completed. The SSPBUF must be read and/or written. If the interrupt method is not going to be used, then software polling can be done to ensure that a write collision does not occur. Example 17-1 shows the loading of the SSPBUF (SSPSR) for data transmission.

The SSPSR is not directly readable or writable and can only be accessed by addressing the SSPBUF register. Additionally, the SSPSTAT register indicates the various status conditions.

Note:	To avoid lost data in Master mode, a
	read of the SSPBUF must be performed
	to clear the Buffer Full (BF) detect
	bit (SSPSTAT<0>) between each
	transmission.

EXAMPLE 17-1:	LOADING THE SSPBUF	(SSPSR) REGISTER
---------------	--------------------	------------------

LOOP	BTFSS	SSPSTAT, BF	;Has data been received (transmit complete)?
	BRA	LOOP	;No
	MOVF	SSPBUF, W	;WREG reg = contents of SSPBUF
	MOVWF	RXDATA	;Save in user RAM, if data is meaningful
	MOVF	TXDATA, W	;W reg = contents of TXDATA
	MOVWF	SSPBUF	;New data to xmit

17.3.7 SLAVE MODE

In Slave mode, the data is transmitted and received as the external clock pulses appear on SCK. When the last bit is latched, the SSPIF interrupt flag bit is set.

Before enabling the module in SPI Slave mode, the clock line must match the proper Idle state. The clock line can be observed by reading the SCK pin. The Idle state is determined by the CKP bit (SSPCON1<4>).

While in Slave mode, the external clock is supplied by the external clock source on the SCK pin. This external clock must meet the minimum high and low times as specified in the electrical specifications.

While in Sleep mode, the slave can transmit/receive data. When a byte is received, the device will wake-up from Sleep.

17.3.8 SLAVE SELECT SYNCHRONIZATION

The \overline{SS} pin allows a Synchronous Slave mode. The SPI must be in Slave mode with \overline{SS} pin control enabled (SSPCON1<3:0> = 04h). When the \overline{SS} pin is low, transmission and reception are enabled and the SDO pin is

driven. When the \overline{SS} pin goes high, the SDO pin is no longer driven, even if in the middle of a transmitted byte and becomes a floating output. External pull-up/pull-down resistors may be desirable depending on the application.

- Note 1: When the SPI is in Slave mode with \overline{SS} pin control enabled (SSPCON1<3:0> = 0100), the SPI module will reset if the \overline{SS} pin is set to VDD.
 - 2: If the SPI is used in Slave mode with CKE set, then the SS pin control must be enabled.

When the SPI module resets, the bit counter is forced to '0'. This can be done by either forcing the \overline{SS} pin to a high level or clearing the SSPEN bit.

To emulate two-wire communication, the SDO pin can be connected to the SDI pin. When the SPI needs to operate as a receiver, the SDO pin can be configured as an input. This disables transmissions from the SDO. The SDI can always be left as an input (SDI function) since it cannot create a bus conflict.

FIGURE 17-4: SLAVE SYNCHRONIZATION WAVEFORM

19.2 AUSART Baud Rate Generator (BRG)

The BRG is a dedicated, 8-bit generator that supports both the Asynchronous and Synchronous modes of the AUSART.

The SPBRG2 register controls the period of a free-running timer. In Asynchronous mode, bit BRGH (TXSTA<2>) also controls the baud rate. In Synchronous mode, BRGH is ignored. Table 19-1 shows the formula for computation of the baud rate for different AUSART modes, which only apply in Master mode (internally generated clock).

Given the desired baud rate and FOSC, the nearest integer value for the SPBRG2 register can be calculated using the formulas in Table 19-1. From this, the error in baud rate can be determined. An example calculation is shown in Example 19-1. Typical baud rates and error values for the various Asynchronous modes are shown in Table 19-2. It may be advantageous to use the high baud rate (BRGH = 1) to reduce the baud rate error, or achieve a slow baud rate for a fast oscillator frequency.

Writing a new value to the SPBRG2 register causes the BRG timer to be reset (or cleared). This ensures the BRG does not wait for a timer overflow before outputting the new baud rate.

19.2.1 OPERATION IN POWER-MANAGED MODES

The device clock is used to generate the desired baud rate. When one of the power-managed modes is entered, the new clock source may be operating at a different frequency. This may require an adjustment to the value in the SPBRG2 register.

19.2.2 SAMPLING

The data on the RX2 pin is sampled three times by a majority detect circuit to determine if a high or low level is present at the RX2 pin.

Configuration Bits			Paud Pata Formula		
SYNC	BRGH	BRG/AUSART Mode	Bauu Kale Formula		
0	0	Asynchronous	Fosc/[64 (n + 1)]		
0	1	Asynchronous	Fosc/[16 (n + 1)]		
1	x	Synchronous	Fosc/[4 (n + 1)]		

TABLE 19-1: BAUD RATE FORMULAS

Legend: x = Don't care, n = Value of SPBRG2 register

EXAMPLE 19-1: CALCULATING BAUD RATE ERROR

For a device with FOSC of 16 MHz, desired baud rate of 9600, Asynchronous mode, BRGH = 0:					
Desired Baud Rate	=	Fosc/(64 ([SPBRG2] + 1))			
Solving for SPBRG2:					
Х	=	((FOSC/Desired Baud Rate)/64) – 1			
	=	((1600000/9600)/64) – 1			
	=	[25.042] = 25			
Calculated Baud Rate	=	16000000/(64 (25 + 1))			
	=	9615			
Error	=	(Calculated Baud Rate - Desired Baud Rate)/Desired Baud Rate			
	=	(9615 - 9600)/9600 = 0.16%			

TABLE 19-2: REGISTERS ASSOCIATED WITH THE BAUD RATE GENERATOR

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
TXSTA2	CSRC	TX9	TXEN	SYNC		BRGH	TRMT	TX9D	61
RCSTA2	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	61
SPBRG2 AUSART Baud Rate Generator Register							61		

Legend: - = unimplemented locations read as '0'. Shaded cells are not used by the BRG.

TABLE 19-6: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	57
PIR3	—	—	RC2IF	TX2IF	—	CCP2IF	CCP1IF	_	59
PIE3	—	—	RC2IE	TX2IE	—	CCP2IE	CCP1IE	—	59
IPR3	—	—	RC2IP	TX2IP	—	CCP2IP	CCP1IP	—	59
RCSTA2	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	61
TXREG2	EG2 AUSART Transmit Register							61	
TXSTA2	CSRC	TX9	TXEN	SYNC	—	BRGH	TRMT	TX9D	61
SPBRG2	SPBRG2 AUSART Baud Rate Generator Register							61	
LATG	U2OD	U1OD	_	LATG4	LATG3	LATG2	LATG1	LATG0	60

Legend: — = unimplemented, read as '0'. Shaded cells are not used for synchronous master transmission.

20.2 Selecting and Configuring Automatic Acquisition Time

The ADCON2 register allows the user to select an acquisition time that occurs each time the GO/DONE bit is set.

When the GO/DONE bit is set, sampling is stopped and a conversion begins. The user is responsible for ensuring the required acquisition time has passed between selecting the desired input channel and setting the GO/DONE bit. This occurs when the ACQT<2:0> bits (ADCON2<5:3>) remain in their Reset state ('000') and is compatible with devices that do not offer programmable acquisition times.

If desired, the ACQT bits can be set to select a programmable <u>acquisition</u> time for the A/D module. When the GO/DONE bit is set, the A/D module continues to sample the input for the selected acquisition time, then automatically begins a conversion. Since the acquisition time is programmed, there may be no need to wait for an acquisition time between selecting a channel and setting the GO/DONE bit.

In either case, when the conversion is completed, the GO/DONE bit is cleared, the ADIF flag is set and the A/D begins sampling the currently selected channel again. If an acquisition time is programmed, there is nothing to indicate if the acquisition time has ended or if the conversion has begun.

20.3 Selecting the A/D Conversion Clock

The A/D conversion time per bit is defined as TAD. The A/D conversion requires 11 TAD per 10-bit conversion. The source of the A/D conversion clock is software selectable.

There are seven possible options for TAD:

- 2 Tosc
- 4 Tosc
- 8 Tosc
- 16 Tosc
- 32 Tosc
- 64 Tosc
- Internal RC Oscillator

For correct A/D conversions, the A/D conversion clock (TAD) must be as short as possible but greater than the minimum TAD (see parameter 130 in Table 26-26 for more information).

Table 20-1 shows the resultant TAD times derived from the device operating frequencies and the A/D clock source selected.

TABLE 20-1: TAD vs. DEVICE OPERATING FREQUENCIES

AD Clock S	Maximum	
Operation	ADCS<2:0>	Device Frequency
2 Tosc	000	2.86 MHz
4 Tosc	100	5.71 MHz
8 Tosc	001	11.43 MHz
16 Tosc	101	22.86 MHz
32 Tosc	010	40.0 MHz
64 Tosc	110	40.0 MHz
RC ⁽¹⁾	x11	1.00 MHz ⁽²⁾

Note 1: The RC source has a typical TAD time of $4 \ \mu$ s.

2: For device frequencies above 1 MHz, the device must be in Sleep mode for the entire conversion or the A/D accuracy may be out of specification.

20.4 Configuring Analog Port Pins

The ADCON1, TRISA, TRISF and TRISH registers control the operation of the A/D port pins. The port pins needed as analog inputs must have their corresponding TRIS bits set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) will be converted.

The A/D operation is independent of the state of the CHS<3:0> bits and the TRIS bits.

- Note 1: When reading the PORT register, all pins configured as analog input channels will read as cleared (a low level). Pins configured as digital inputs will convert an analog input. Analog levels on a digitally configured input will be accurately converted.
 - Analog levels on any pin defined as a digital input may cause the digital input buffer to consume current out of the device's specification limits.

RLNCF	Rotate Left f (No Carry)	RRCF	Rotate Rig	ht f through	Carry	
Syntax:	RLNCF f {,d {,a}}	Syntax:	RRCF f {,d	{,a}}		
Operands:	0 ≤ f ≤ 255 d ∈ [0, 1] a ∈ [0, 1]	Operands:	0 ≤ f ≤ 255 d ∈ [0, 1] a ∈ [0, 1]			
Operation:	$(f \le n >) \rightarrow dest \le n + 1 >,$ $(f \le 7 >) \rightarrow dest \le 0 >$	Operation:	$(f < n >) \rightarrow de$ $(f < 0 >) \rightarrow C$	est <n 1="" –="">,</n>		
Status Affected:	N, Z		$(C) \rightarrow dest$			
Encoding:	0100 01da ffff ffff	Status Affected:	C, N, Z			
Description:	The contents of register 'f' are rotated	Encoding:	0011	00da ff	ff ffff	
one bit to the left. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is stored back in register 'f'.		Description:	The contents of register 'f' are rotated one bit to the right through the Carry flag. If 'd' is '0', the result is placed in V			
	If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the		in a is \perp , the result is placed back in register 'f'.			
GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 25.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.			If 'a' is '0', the Access Bank is selected If 'a' is '1', the BSR is used to select the GPR bank.			
			If 'a' is '0' a set is enabl in Indexed I mode when Section 25 Bit-Oriente	nd the extend ed, this instru- Literal Offset ever $f \le 95$ (5 2.3 "Byte-O d Instruction	led instruction iction operates Addressing iFh). See riented and ns in Indexed	
			Literal Offs	Set Mode" TO	detalls.	
Words:	1		C	registe	er f	
Cycles:	1	Words:	1			
Q Cycle Activity:		Words.	1			
Q1	Q2 Q3 Q4	Cycles.	I			
Decode	Read Process Write to	Q Cycle Activity:	00	00	04	
	register to Data destination	Q1	Q2	Q3	Q4	
Example [.]	RINCE REG 1 0	Decode	register 'f'	Data	destination	
Before Instruc	tion					
REG	= 1010 1011	Example:	RRCF	REG, 0,	0	
After Instruction	n	Before Instruc	tion			
REG	= 0101 0111	REG C	= 1110 0 = 0	110		
		After Instruction	on			
		REG W C	$ \begin{array}{c} = & 1110 & 0 \\ = & 0111 & 0 \\ = & 0 \end{array} $	110 011		

XOR	WF	Exclusive OR W with f					
Synta	ax:	XORWF f	{,d {,a}}				
Oper	ands:	$0 \le f \le 255$ $d \in [0, 1]$ $a \in [0, 1]$	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0, 1] \\ a \in [0, 1] \end{array}$				
Oper	ation:	(W) .XOR.	$(f) \rightarrow des$	t			
Statu	is Affected:	N, Z					
Enco	oding:	0001	10da	ffff	ffff		
Desc	cription:	Exclusive (register 'f'. in W. If 'd' i in the regis	Exclusive OR the contents of W with register 'f'. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in the register 'f'.				
		lf 'a' is '0', If 'a' is '1', GPR bank	the Acces the BSR i	s Bank is s used to	selected. select the		
		If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 25.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed					
Word	ds:	1					
Cycle	es:	1					
QC	ycle Activity:						
	Q1	Q2	Q3	•	Q4		
	Decode	Read register 'f'	Proce Data	ss V a de	Vrite to stination		
Exan	nple:	XORWF	REG. 1.	0			
	Before Instruc	tion		-			
	REG	= AFh					
	W After Instructio	= B5h					
	REG	= 1Ah = B5h					

SUB	FSR	Subtract	Subtract Literal from FSR					
Synta	ax:	SUBFSR	SUBFSR f, k					
Oper	ands:	$0 \le k \le 63$	3					
		$f \in [0, 1,$	2]					
Oper	ation:	FSRf – k	\rightarrow FSRf					
Statu	s Affected:	None		_				
Enco	ding:	1110	1001	ffkl	ĸ	kkkk		
Desc	ription:	The 6-bit	The 6-bit literal, 'k', is subtracted					
		from the c	contents c	of the	FSF	R		
		specified	specified by 'f'.					
Word	ls:	1	1					
Cycle	es:	1	1					
QC	ycle Activity:							
	Q1	Q2	Q3			Q4		
	Decode	Read	Proce	Process		Vrite to		
		register 'f'	Data		de	stination		
Example:		SUBFSR	2, 23h					

<u>xample:</u>	SUBFSR 2, 23h
Before Instructio	n
FSR2 =	03FFh
After Instruction	
FSR2 =	03DCh

SUB	ULNK	Subtract Literal from FSR2 and Return					
Synta	ax:	SUBULNK k					
Oper	ands:	s: $0 \le k \le 63$					
Oper	ation:	$FSR2 - k \rightarrow FSR2,$ (TOS) \rightarrow PC					
Statu	s Affected:	None					
Enco	ding:	1110	1001	11kk	kkkk		
Desc	Description: The 6-bit literal, 'k', is subtracted from the contents of the FSR2. A RETURN is then executed by loading the PC with the TOS.						
		The instruction takes two cycles to execute; a NOP is performed during the second cycle.					
	This may be thought of as a special case of the SUBFSR instruction, where f = 3 (binary '11'); it operates only on FSR2.						
Word	ls:	1					
Cycle	es:	2					
QC	ycle Activity:						
	Q1	Q2		Q3	Q4		
	Decode	Read register	f'	ocess Data	Write to destination		
	No	No		No	No		
	Operation	Operatio	on Op	eration	Operation		

Example: SUBULNK 23h

Before Instru	iction	
FSR2	=	03FFh
PC	=	0100h

After Instruction FSR2 = 03DCh PC = (TOS)

ADDWF	ADD W to (Indexed L	ADD W to Indexed (Indexed Literal Offset mode)					
Syntax:	ADDWF [k]	{,d}					
Operands:	$\begin{array}{l} 0 \leq k \leq 95 \\ d \in [0, 1] \end{array}$	$\begin{array}{l} 0 \leq k \leq 95 \\ d \ \in \ [0, \ 1] \end{array}$					
Operation:	(W) + ((FSF	R2) + k) \rightarrow de	st				
Status Affected:	N, OV, C, D	0C, Z					
Encoding:	0010	01d0 kk	kk kkkk				
Description:	The conten contents of FSR2, offse	ts of W are ac the register ir t by the value	lded to the idicated by e, 'k'.				
	lf 'd' is '0', t is '1', the re register 'f'.	he result is sto sult is stored	pred in W. If 'd' back in				
Words:	1						
Cycles:	1						
Q Cycle Activity:							
Q1	Q2	Q3	Q4				
Decode	Read 'k'	Process Data	Write to destination				
Example:	ADDWF	[OFST],0					
Before Instruct W OFST FSR2 Contents of 0A2CI After Instructio W Contents of 0A2CI	tion = = = = = = = = = = = = = = = = = = =	17h 2Ch 0A00h 20h 37h 20h					

BSF	Bit Set Indexed (Indexed Literal Offset mode)				
Syntax:	BSF [k], b				
Operands:	$\begin{array}{l} 0 \leq f \leq 95 \\ 0 \leq b \leq 7 \end{array}$	$\begin{array}{l} 0 \leq f \leq 95 \\ 0 \leq b \leq 7 \end{array}$			
Operation:	$1 \rightarrow ((FSR))$	$1 \rightarrow ((FSR2) + k) < b >$			
Status Affected:	None				
Encoding:	1000 bbb0 kkkk kkkk				
Description:	Bit 'b' of the offset by the	register indica e value, 'k', is	ated by FSR2, set.		
Words:	1				
Cycles:	1				
Q Cycle Activity:					
Q1	Q2	Q3	Q4		
Decode	Read register 'f'	Process Data	Write to destination		
Example:	BSF [FLAG_OFST]	, 7		
Before Instruct FLAG_OF FSR2	ion ⁻ ST = =	0Ah 0A00h			
Contents of 0A0Ah	=	55h			
After Instruction	n				
Contents of 0A0Ah	=	D5h			
SETF	Set Indexe (Indexed L	d iteral Offset r	node)		
SETF Syntax:	Set Indexe (Indexed L SETF [k]	d iteral Offset r	node)		
SETF Syntax: Operands:	Set Indexe (Indexed L SETF [k] 0 ≤ k ≤ 95	d iteral Offset r	node)		
SETF Syntax: Operands: Operation:	Set Indexe (Indexed L SETF [k] $0 \le k \le 95$ FFh \rightarrow ((FS	d iteral Offset r SR2) + k)	node)		
SETF Syntax: Operands: Operation: Status Affected:	Set Indexe (Indexed L SETF [k] $0 \le k \le 95$ FFh \rightarrow ((FS None	d iteral Offset r SR2) + k)	node)		
SETF Syntax: Operands: Operation: Status Affected: Encoding:	Set Indexe (Indexed L SETF [k] $0 \le k \le 95$ FFh \rightarrow ((FS None 0110	d iteral Offset r SR2) + k) 1000 kkl	node) kk kkkk		
SETF Syntax: Operands: Operation: Status Affected: Encoding: Description:	Set Indexed L SETF [k] $0 \le k \le 95$ FFh \rightarrow ((FS None 0110 The conten FSR2, offse	d iteral Offset r SR2) + k) 1000 kki ts of the registe et by 'k', are se	node) kk kkkk er indicated by et to FFh.		
SETF Syntax: Operands: Operation: Status Affected: Encoding: Description: Words:	Set Indexe (Indexed L SETF [k] $0 \le k \le 95$ FFh \rightarrow ((FS None 0110 The conten FSR2, offse 1	d iteral Offset r SR2) + k) 1000 kki ts of the registr et by 'k', are se	node) kk kkkk er indicated by et to FFh.		
SETF Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles:	Set Indexe (Indexed L SETF [k] $0 \le k \le 95$ FFh \rightarrow ((FS None 0110 The conten FSR2, offset 1 1	d iteral Offset r SR2) + k) 1000 kkl ts of the registe t by 'k', are se	node) kk kkkk er indicated by et to FFh.		
SETF Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Q Cycle Activity:	Set Indexe (Indexed L SETF [k] $0 \le k \le 95$ FFh \rightarrow ((FS None 0110 The conten FSR2, offse 1 1	d iteral Offset r SR2) + k) 1000 kk1 ts of the registe et by 'k', are se	node) kk kkkk er indicated by et to FFh.		
SETF Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Q Cycle Activity: Q1	Set Indexe (Indexed L SETF [k] $0 \le k \le 95$ FFh \rightarrow ((FS None 0110 The conten FSR2, offset 1 1 2	d iteral Offset r SR2) + k) 1000 kki ts of the registr et by 'k', are se	node) kk kkkk er indicated by et to FFh. Q4		
SETF Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Q Cycle Activity: Q1 Decode	Set Indexe (Indexed L SETF [k] $0 \le k \le 95$ FFh \rightarrow ((FS None 0110 The conten FSR2, offse 1 1 2 Read 'k'	d iteral Offset r SR2) + k) 1000 kkl ts of the registre ts of the registre tby 'k', are se Q3 Process	node) kk kkkk er indicated by et to FFh. Q4 Write		
SETF Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Q Cycle Activity: Q1 Decode	Set Indexe (Indexed L SETF [k] $0 \le k \le 95$ FFh \rightarrow ((FS None 0110 The conten FSR2, offse 1 1 2 Read 'k'	d iteral Offset r GR2) + k) 1000 kki ts of the registr ts of the registr ts by 'k', are se Q3 Process Data	node) kk kkkk er indicated by et to FFh. Q4 Write register		
SETF Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Q Cycle Activity: Q1 Decode Example:	Set Indexe (Indexed L SETF [k] $0 \le k \le 95$ FFh \rightarrow ((FS None 0110 The conten FSR2, offset 1 1 Q2 Read 'k'	d iteral Offset r SR2) + k) 1000 kk ts of the register ts of ts of	node) kk kkkk er indicated by et to FFh. Q4 Write register		
SETF Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Q Cycle Activity: Q1 Decode Example: Before Instruct	Set Indexe (Indexed L SETF [k] $0 \le k \le 95$ FFh \rightarrow ((FS None 0110 The conten FSR2, offse 1 1 Q2 Read 'k' SETF [ion = 20	d iteral Offset r SR2) + k) 1000 kkl ts of the registre ts of the registre ts of the registre Q3 Process Data OFST]	node) kk kkkk er indicated by et to FFh. Q4 Write register		
SETF Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Q Cycle Activity: Q1 Decode Example: Before Instruct OFST FSR2	Set Indexe (Indexed L SETF [k] $0 \le k \le 95$ FFh \rightarrow ((FS None 0110 The conten FSR2, offset 1 1 Q2 Read 'k' SETF [ion = 2C = 0A	d iteral Offset r SR2) + k) 1000 kki ts of the registr st by 'k', are se Q3 Process Data OFST] th 00h	node) kk kkkk er indicated by et to FFh. Q4 Write register		
SETF Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Q Cycle Activity: Q1 Decode Example: Before Instruct OFST FSR2 Contents of 0A2Ch	Set Indexe (Indexed L SETF [k] $0 \le k \le 95$ FFh \rightarrow ((FS None 0110 The conten FSR2, offset 1 1 Q2 Read 'k' SETF [ion = 2C = 0A = 00	d iteral Offset r SR2) + k) 1000 kk ts of the registrest of the registrest Q3 Process Data OFST] th 00h h	node) kk kkkk er indicated by et to FFh. Q4 Write register		
SETF Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Q Cycle Activity: Q1 Decode Example: Before Instruct OFST FSR2 Contents of 0A2Ch After Instruction	Set Indexe (Indexed L SETF [k] $0 \le k \le 95$ FFh \rightarrow ((FS None 0110 The conten FSR2, offse 1 1 2 Read 'k' SETF [ion = 2C = 0A = 00	d iteral Offset r SR2) + k) 1000 kkl ts of the registre ts of the registre the registre Q3 Process Data OFST] th 00h h	node) kk kkkk er indicated by et to FFh. Q4 Write register		

25.2.5 SPECIAL CONSIDERATIONS WITH MICROCHIP MPLAB[®] IDE TOOLS

The latest versions of Microchip's software tools have been designed to fully support the extended instruction set for the PIC18F85J11 family. This includes the MPLAB C18 C Compiler, MPASM assembly language and MPLAB Integrated Development Environment (IDE).

When selecting a target device for software development, MPLAB IDE will automatically set default Configuration bits for that device. The default setting for the XINST Configuration bit is '1', enabling the extended instruction set and Indexed Literal Offset Addressing. For proper execution of applications developed to take advantage of the extended instruction set, XINST must be set during programming.

To develop software for the extended instruction set, the user must enable support for the instructions and the Indexed Addressing mode in their language tool(s). Depending on the environment being used, this may be done in several ways:

- A menu option or dialog box within the environment that allows the user to configure the language tool and its settings for the project
- · A command line option
- · A directive in the source code

These options vary between different compilers, assemblers and development environments. Users are encouraged to review the documentation accompanying their development systems for the appropriate information.

DC CH/	ARACTE	ERISTICS	Standard Operating Conditions (unless otherwise stated) Operating temperature -40°C \leq TA \leq +85°C for industrial				
Param No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
		Program Flash Memory					
D130	Eр	Cell Endurance	100	1k	_	E/W	-40°C to +85°C
D131	Vpr	VDD for Read	VMIN	—	3.6	V	VMIN = Minimum operating voltage
D132	VPEW	Voltage for Self-Timed Erase or Write					
		VDD	2.35		3.6	V	ENVREG tied to VDD
		VDDCORE	2.25	_	2.7	V	ENVREG tied to Vss
D133A	Tiw	Self-Timed Write Cycle Time	_	2.8	—	ms	
D133B	TIE	Self-Timed Block Erase Cycle Time	_	33	—	ms	
D134	TRETD	Characteristic Retention	20	—	—	Year	Provided no other specifications are violated
D135	IDDP	Supply Current during Programming	-	3	7	mA	
D1xxx	TWE	Writes per Erase Cycle	-	_	1		Per one physical word address

TABLE 26-1: MEMORY PROGRAMMING REQUIREMENTS

† Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Serial Data Out	
Slave Mode	
Slave Select	
Slave Select Synchronization	
SPI Clock	
Typical Connection	
SS	179
SSPOV	
SSPOV Status Flag	
SSPSTAT Register	
R/W Bit	193, 195
R/W Bit Stack Full/Underflow Resets	193, 195 69
R/W Bit Stack Full/Underflow Resets STATUS Register	193, 195 69 81
R/W Bit Stack Full/Underflow Resets STATUS Register SUBFSR	193, 195
R/W Bit Stack Full/Underflow Resets STATUS Register SUBFSR SUBFWB	
R/W Bit Stack Full/Underflow Resets STATUS Register SUBFSR SUBFWB SUBLW	
R/W Bit Stack Full/Underflow Resets STATUS Register SUBFSR SUBFWB SUBLW SUBLW	
R/W Bit Stack Full/Underflow Resets STATUS Register SUBFSR SUBFWB SUBLW SUBLW SUBULNK SUBWF	
R/W Bit Stack Full/Underflow Resets STATUS Register SUBFSR SUBFWB SUBLW SUBULNK SUBWF SUBWFB	
R/W Bit Stack Full/Underflow Resets STATUS Register SUBFSR SUBFWB SUBLW SUBULNK SUBWF SUBWFB SWAPF	

Т

Table Pointer Operations (table)	
Table Reads/Table Writes	69
TBLRD	337
TBLWT	338
Timer0	153
Associated Registers	155
Clock Source Select (T0CS Bit)	154
Interrupt	155
Operation	154
Prescaler	155
Switching Assignment	155
Prescaler Assignment (PSA Bit)	155
Prescaler Select (T0PS2:T0PS0 Bits)	155
Prescaler. See Prescaler, Timer0.	
Reads and Writes in 16-Bit Mode	154
Source Edge Select (T0SE Bit)	154
Timer1	157
16-Bit Read/Write Mode	159
Associated Registers	161
Interrupt	160
Operation	158
Oscillator	. 157, 159
Layout Considerations	160
Overflow Interrupt	157
Resetting, Using the CCPx Special	
Event Trigger	160
TMR1H Register	157
TMR1L Register	157
Use as a Clock Source	159
Use as a Real-Time Clock	160
Timer2	163
Associated Registers	164
Interrupt	164
Operation	163
Output	164
PR2 Register	175
TMR2 to PR2 Match Interrupt	175
Timer3	165
16-Bit Read/Write Mode	167
Associated Registers	167
Interrupt	167
Operation	166
Oscillator	. 165, 167
Overflow Interrupt	165

Creatial Event Trianan (CCD)	407
Special Event Trigger (CCP)	167
TMR3H Register	165
TMR3L Register	165
Timing Diagrams	
A/D Conversion	395
	305
Acknowledge Sequence	216
Asynchronous Reception 236,	253
Asynchronous Transmission	251
Asynchronous Transmission	
(Deek to Deek)	051
(Dack-IO-Dack)	201
Automatic Baud Rate Calculation	232
Auto-Wake-up Bit (WUE) During	
Normal Operation	237
Auto-Wake-up Bit (WLIE) During Sleen	237
Baud Bate Congrater with Cleak Arbitration	210
	210
BRG Overflow Sequence	232
BRG Reset Due to SDA Arbitration During	
Start Condition	219
Bus Collision During a Repeated Start	
Condition (Coop 1)	220
	220
Bus Collision During a Repeated Start	
Condition (Case 2)	220
Bus Collision During a Start Condition (SCL = 0)	219
Bus Collision During a Stop Condition (Case 1)	221
Bus Collision During a Stop Condition (Case 2)	221
Dus Collision During & Stop Condition (Case 2)	221
Bus Collision During Start Condition (SDA Only)	218
Bus Collision for Transmit and Acknowledge	217
Capture/Compare/PWM (CCP1, CCP2)	374
CLKO and I/O	368
Clock Synchronization	203
Clock/Instruction Cycle	70
	70
EUSARI/AUSARI Synchronous	
Receive (Master/Slave)	383
EUSART/AUSART Synchronous	
Transmission (Master/Slave)	383
Example SPI Master Mode (CKE = 0)	375
Example SPI Master Mode (CKE = 1)	376
Example OPI Master Mode (CKE = 1)	077
Example SPI Slave Mode (CKE = 0)	3//
Example SPI Slave Mode (CKE = 1)	378
External Clock (All Modes Except PLL)	366
External Memory Bus for Sleep	
(Extended Microcontroller Mode) 106	108
External Memory Due for TPL DD	100
External Memory Bus for TBLRD	
(Extended Microcontroller Mode) 106,	108
Fail-Safe Clock Monitor	292
Eirst Start Bit Timing	
	211
I ² C Bus Data	211 380
I ² C Bus Data	211 380 370
I ² C Bus Start/Stop Bits	211 380 379
I ² C Bus Data I ² C Bus Start/Stop Bits I ² C Master Mode (7 or 10-Bit Transmission)	211 380 379 214
I ² C Bus Data I ² C Bus Start/Stop Bits I ² C Master Mode (7 or 10-Bit Transmission) I ² C Master Mode (7-Bit Reception)	211 380 379 214 215
I^2C Bus Data I^2C Bus Start/Stop Bits I^2C Master Mode (7 or 10-Bit Transmission) I^2C Master Mode (7-Bit Reception) I^2C Slave Mode (10-Bit Reception, SEN = 0,	211 380 379 214 215
$I^{2}C$ Bus Data $I^{2}C$ Bus Start/Stop Bits $I^{2}C$ Master Mode (7 or 10-Bit Transmission) $I^{2}C$ Master Mode (7-Bit Reception) $I^{2}C$ Slave Mode (10-Bit Reception, SEN = 0, ADMSK = 01001)	 211 380 379 214 215 200
I^2C Bus Data I^2C Bus Start/Stop Bits I^2C Master Mode (7 or 10-Bit Transmission) I^2C Master Mode (7-Bit Reception) I^2C Slave Mode (10-Bit Reception, SEN = 0, ADMSK = 01001) I^2C Slave Mode (10-Bit Reception, SEN = 0)	 211 380 379 214 215 200 199
I^2C Bus Data I^2C Bus Start/Stop Bits I^2C Master Mode (7 or 10-Bit Transmission) I^2C Master Mode (7-Bit Reception) I^2C Slave Mode (10-Bit Reception, SEN = 0, ADMSK = 01001) I^2C Slave Mode (10-Bit Reception, SEN = 0) I^2C Slave Mode (10-Bit Reception, SEN = 0)	 211 380 379 214 215 200 199 205
$I^{2}C \text{ Bus Data}$ $I^{2}C \text{ Bus Start/Stop Bits}$ $I^{2}C \text{ Bus Start/Stop Bits}$ $I^{2}C \text{ Master Mode (7 or 10-Bit Transmission)}$ $I^{2}C \text{ Master Mode (7-Bit Reception)}$ $I^{2}C \text{ Slave Mode (10-Bit Reception, SEN = 0, ADMSK = 01001)}$ $I^{2}C \text{ Slave Mode (10-Bit Reception, SEN = 0)}$ $I^{2}C \text{ Slave Mode (10-Bit Reception, SEN = 1)}$	 211 380 379 214 215 200 199 205 201
 I²C Bus Data I²C Bus Start/Stop Bits I²C Master Mode (7 or 10-Bit Transmission) I²C Master Mode (7-Bit Reception) I²C Slave Mode (10-Bit Reception, SEN = 0, ADMSK = 01001) I²C Slave Mode (10-Bit Reception, SEN = 0) I²C Slave Mode (10-Bit Reception, SEN = 1) I²C Slave Mode (10-Bit Reception, SEN = 1) I²C Slave Mode (10-Bit Transmission) 	211 380 379 214 215 200 199 205 201
 I²C Bus Data I²C Bus Start/Stop Bits I²C Master Mode (7 or 10-Bit Transmission) I²C Master Mode (7-Bit Reception) I²C Slave Mode (10-Bit Reception, SEN = 0, ADMSK = 01001) I²C Slave Mode (10-Bit Reception, SEN = 0) I²C Slave Mode (10-Bit Reception, SEN = 1) I²C Slave Mode (10-Bit Reception, SEN = 1) I²C Slave Mode (10-Bit Reception, SEN = 0)	211 380 379 214 215 200 199 205 201
I^2C Bus Data I^2C Bus Start/Stop Bits I^2C Master Mode (7 or 10-Bit Transmission) I^2C Master Mode (7-Bit Reception) I^2C Slave Mode (10-Bit Reception) I^2C Slave Mode (10-Bit Reception, SEN = 0, $ADMSK = 01001$) I^2C Slave Mode (10-Bit Reception, SEN = 0) I^2C Slave Mode (10-Bit Reception, SEN = 1) I^2C Slave Mode (10-Bit Reception, SEN = 1) I^2C Slave Mode (10-Bit Reception, SEN = 0) I^2C Slave Mode (10-Bit Reception) I^2C Slave Mode (10-Bit Reception) I^2C Slave Mode (10-Bit Reception) </td <td>211 380 379 214 215 200 199 205 201 197</td>	211 380 379 214 215 200 199 205 201 197
$I^{2}C \text{ Bus Data } \dots$ $I^{2}C \text{ Bus Start/Stop Bits } \dots$ $I^{2}C \text{ Bus Start/Stop Bits } \dots$ $I^{2}C \text{ Master Mode (7 or 10-Bit Transmission)} \dots$ $I^{2}C \text{ Master Mode (7-Bit Reception) } \dots$ $I^{2}C \text{ Slave Mode (10-Bit Reception, SEN = 0, ADMSK = 01001)} \dots$ $I^{2}C \text{ Slave Mode (10-Bit Reception, SEN = 0)} \dots$ $I^{2}C \text{ Slave Mode (10-Bit Reception, SEN = 1)} \dots$ $I^{2}C \text{ Slave Mode (10-Bit Reception, SEN = 1)} \dots$ $I^{2}C \text{ Slave Mode (7-Bit Reception, SEN = 0, ADMSK = 01011)} \dots$ $I^{2}C \text{ Slave Mode (7-Bit Reception, SEN = 0, ADMSK = 01011)} \dots$	211 380 379 214 215 200 199 205 201 197 196
$I^{2}C \text{ Bus Data}$ $I^{2}C \text{ Bus Start/Stop Bits}$ $I^{2}C \text{ Bus Start/Stop Bits}$ $I^{2}C \text{ Master Mode (7 or 10-Bit Transmission)}$ $I^{2}C \text{ Master Mode (7-Bit Reception)}$ $I^{2}C \text{ Slave Mode (10-Bit Reception, SEN = 0, ADMSK = 01001)}$ $I^{2}C \text{ Slave Mode (10-Bit Reception, SEN = 0)}$ $I^{2}C \text{ Slave Mode (10-Bit Reception, SEN = 1)}$ $I^{2}C \text{ Slave Mode (10-Bit Reception, SEN = 1)}$ $I^{2}C \text{ Slave Mode (10-Bit Reception, SEN = 0, ADMSK = 01011)}$ $I^{2}C \text{ Slave Mode (7-Bit Reception, SEN = 0)}$ $I^{2}C \text{ Slave Mode (7-Bit Reception, SEN = 0)}$ $I^{2}C \text{ Slave Mode (7-Bit Reception, SEN = 1)}$	211 380 379 214 215 200 199 205 201 197 196 204
$I^{2}C \text{ Bus Data}$ $I^{2}C \text{ Bus Start/Stop Bits}$ $I^{2}C \text{ Bus Start/Stop Bits}$ $I^{2}C \text{ Master Mode (7 or 10-Bit Transmission)}$ $I^{2}C \text{ Master Mode (7-Bit Reception)}$ $I^{2}C \text{ Slave Mode (10-Bit Reception, SEN = 0, ADMSK = 01001)}$ $I^{2}C \text{ Slave Mode (10-Bit Reception, SEN = 0)}$ $I^{2}C \text{ Slave Mode (10-Bit Reception, SEN = 1)}$ $I^{2}C \text{ Slave Mode (10-Bit Reception, SEN = 1)}$ $I^{2}C \text{ Slave Mode (10-Bit Reception, SEN = 0, ADMSK = 01011)}$ $I^{2}C \text{ Slave Mode (7-Bit Reception, SEN = 0)}$ $I^{2}C \text{ Slave Mode (7-Bit Reception, SEN = 0)}$ $I^{2}C \text{ Slave Mode (7-Bit Reception, SEN = 1)}$ $I^{2}C \text{ Slave Mode (7-Bit Reception, SEN = 1)}$	211 380 379 214 215 200 199 205 201 197 196 204 198
$I^{2}C \text{ Bus Data}$ $I^{2}C \text{ Bus Start/Stop Bits}$ $I^{2}C \text{ Master Mode (7 or 10-Bit Transmission)}$ $I^{2}C \text{ Master Mode (7-Bit Reception)}$ $I^{2}C \text{ Master Mode (10-Bit Reception, SEN = 0, ADMSK = 01001)}$ $I^{2}C \text{ Slave Mode (10-Bit Reception, SEN = 0)}$ $I^{2}C \text{ Slave Mode (10-Bit Reception, SEN = 1)}$ $I^{2}C \text{ Slave Mode (10-Bit Reception, SEN = 1)}$ $I^{2}C \text{ Slave Mode (10-Bit Reception, SEN = 1)}$ $I^{2}C \text{ Slave Mode (10-Bit Reception, SEN = 0, ADMSK = 01011)}$ $I^{2}C \text{ Slave Mode (7-Bit Reception, SEN = 0)}$ $I^{2}C \text{ Slave Mode (7-Bit Reception, SEN = 0)}$ $I^{2}C \text{ Slave Mode (7-Bit Reception, SEN = 1)}$ $I^{2}C \text{ Slave Mode (7-Bit Reception, SEN = 1)}$ $I^{2}C \text{ Slave Mode (7-Bit Reception, SEN = 1)}$ $I^{2}C \text{ Slave Mode (7-Bit Reception, SEN = 1)}$	211 380 379 214 215 200 199 205 201 197 196 204 198
I^2C Bus Data I^2C Bus Start/Stop Bits I^2C Bus Start/Stop Bits I^2C Master Mode (7 or 10-Bit Transmission) I^2C Master Mode (7-Bit Reception) I^2C Slave Mode (10-Bit Reception, SEN = 0, ADMSK = 01001) I^2C Slave Mode (10-Bit Reception, SEN = 0) I^2C Slave Mode (10-Bit Reception, SEN = 1) I^2C Slave Mode (10-Bit Reception, SEN = 1) I^2C Slave Mode (10-Bit Reception, SEN = 1) I^2C Slave Mode (10-Bit Reception, SEN = 0, ADMSK = 01011) I^2C Slave Mode (7-Bit Reception, SEN = 0, ADMSK = 01011) I^2C Slave Mode (7-Bit Reception, SEN = 0) I^2C Slave Mode (7-Bit Reception, SEN = 1) I^2C Slave Mode (7-Bit Transmission) I^2C Slave Mode (7-Bit Transmission) I^2C Slave Mode (7-Bit Transmission)	211 380 379 214 215 200 199 205 201 197 196 204 198
I^2C Bus Data I^2C Bus Start/Stop Bits I^2C Master Mode (7 or 10-Bit Transmission) I^2C Master Mode (7-Bit Reception) I^2C Slave Mode (10-Bit Reception) I^2C Slave Mode (10-Bit Reception, SEN = 0, ADMSK = 01001) I^2C Slave Mode (10-Bit Reception, SEN = 0) I^2C Slave Mode (10-Bit Reception, SEN = 1) I^2C Slave Mode (10-Bit Reception, SEN = 1) I^2C Slave Mode (10-Bit Reception, SEN = 1) I^2C Slave Mode (7-Bit Reception, SEN = 0, ADMSK = 01011) I^2C Slave Mode (7-Bit Reception, SEN = 0) I^2C Slave Mode (7-Bit Reception, SEN = 1) I^2C Slave Mode (7-Bit Transmission) I^2C Slave Mode General Call Address Sequence (7 or 10-Bit Addressing Mode)	211 380 379 214 215 200 199 205 201 197 196 204 198 206
 I²C Bus Data I²C Bus Start/Stop Bits I²C Master Mode (7 or 10-Bit Transmission) I²C Master Mode (7-Bit Reception) I²C Slave Mode (10-Bit Reception, SEN = 0, ADMSK = 01001) I²C Slave Mode (10-Bit Reception, SEN = 0) I²C Slave Mode (10-Bit Reception, SEN = 1) I²C Slave Mode (7-Bit Reception, SEN = 1) I²C Slave Mode (7-Bit Reception, SEN = 0, ADMSK = 01011) I²C Slave Mode (7-Bit Reception, SEN = 0, ADMSK = 01011) I²C Slave Mode (7-Bit Reception, SEN = 0) I²C Slave Mode (7-Bit Reception, SEN = 1) I²C Slave Mode (7-Bit Reception, SEN = 1) I²C Slave Mode (7-Bit Reception, SEN = 1) I²C Slave Mode (7-Bit Reception, SEN = 1)	211 380 379 214 215 200 199 205 201 197 196 204 198 206 216
 I²C Bus Data I²C Bus Start/Stop Bits I²C Master Mode (7 or 10-Bit Transmission) I²C Master Mode (7-Bit Reception) I²C Slave Mode (10-Bit Reception, SEN = 0, ADMSK = 01001) I²C Slave Mode (10-Bit Reception, SEN = 0)	211 380 379 214 215 200 199 205 201 197 196 204 198 206 216 381
 I¹C Bus Data	211 380 379 214 215 200 199 205 201 197 196 204 198 206 216 381 381