

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	EBI/EMI, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	67
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f85j11t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams

Pin Diagrams (Continued)

Dia Nama	Pin Number	Pin	Buffer	Description
	TQFP	Туре	Туре	Description
				PORTB is a bidirectional I/O port. PORTB can be software programmed for internal weak pull-ups on all inputs.
RB0/INT0 RB0 INT0	48	I/O I	TTL ST	Digital I/O. External Interrupt 0.
RB1/INT1 RB1 INT1	47	I/O I	TTL ST	Digital I/O. External Interrupt 1.
RB2/INT2 RB2 INT2	46	I/O I	TTL ST	Digital I/O. External Interrupt 2.
RB3/INT3 RB3 INT3	45	I/O I	TTL ST	Digital I/O. External Interrupt 3.
RB4/KBI0 RB4 KBI0	44	I/O I	TTL TTL	Digital I/O. Interrupt-on-change pin.
RB5/KBI1 RB5 KBI1	43	I/O I	TTL TTL	Digital I/O. Interrupt-on-change pin.
RB6/KBI2/PGC RB6 KBI2 PGC	42	I/O I I/O	TTL TTL ST	Digital I/O. Interrupt-on-change pin. In-Circuit Debugger and ICSP™ programming clock pin.
RB7/KBI3/PGD RB7 KBI3 PGD	37	I/O I I/O	TTL TTL ST	Digital I/O. Interrupt-on-change pin. In-Circuit Debugger and ICSP programming data pin.
Legend: TTL = TTL co ST = Schmi I = Input P = Power I^2C^{TM} = I^2C/SM	ompatible input tt Trigger input //Bus	with C	MOS leve	CMOS = CMOS compatible input or output Analog = Analog input O = Output OD = Open-Drain (no P diode to VDD)

TABLE 1-3: PIC18F6XJ11 PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: Default assignment for CCP2 when the CCP2MX Configuration bit is set.

2: Alternate assignment for CCP2 when the CCP2MX Configuration bit is cleared.

Din Nome	Pin Number	Pin	Buffer	Description
Pin Name	TQFP	Туре	Туре	Description
				PORTC is a bidirectional I/O port.
RC0/T1OSO/T13CKI RC0 T1OSO T13CKI	30	I/O O I	ST — ST	Digital I/O. Timer1 oscillator output. Timer1/Timer3 external clock input.
RC1/T1OSI/CCP2 RC1 T1OSI CCP2 ⁽¹⁾	29	I/O I I/O	ST CMOS ST	Digital I/O. Timer1 oscillator input. Capture 2 input/Compare 2 output/PWM2 output.
RC2/CCP1 RC2 CCP1	33	I/O I/O	ST ST	Digital I/O. Capture 1 input/Compare 1 output/PWM1 output.
RC3/SCK/SCL RC3 SCK SCL	34	I/O I/O I/O	ST ST I ² C	Digital I/O. Synchronous serial clock input/output for SPI mode. Synchronous serial clock input/output for I ² C™ mode.
RC4/SDI/SDA RC4 SDI SDA	35	I/O I I/O	ST ST I ² C	Digital I/O. SPI data in. I ² C data I/O.
RC5/SDO RC5 SDO	36	I/O O	ST —	Digital I/O. SPI data out.
RC6/TX1/CK1 RC6 TX1 CK1	31	I/O O I/O	ST — ST	Digital I/O. EUSART asynchronous transmit. EUSART synchronous clock (see related RX1/DT1).
RC7/RX1/DT1 RC7 RX1 DT1	32	I/O I I/O	ST ST ST	Digital I/O. EUSART asynchronous receive. EUSART synchronous data (see related TX1/CK1).
Legend: TTL = TTL co ST = Schmi I = Input P = Power $I^2C^{TM} = I^2C/SM$	ompatible input tt Trigger input //Bus	with C	MOS leve	CMOS = CMOS compatible input or output Analog = Analog input O = Output OD = Open-Drain (no P diode to VDD)

TABLE 1-3: PIC18F6XJ11 PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: Default assignment for CCP2 when the CCP2MX Configuration bit is set.

2: Alternate assignment for CCP2 when the CCP2MX Configuration bit is cleared.

4.2.3 RC_RUN MODE

In RC_RUN mode, the CPU and peripherals are clocked from the internal oscillator; the primary clock is shut down. This mode provides the best power conservation of all the Run modes while still executing code. It works well for user applications which are not highly timing-sensitive or do not require high-speed clocks at all times.

This mode is entered by setting SCS bits to '11'. When the clock source is switched to the INTRC (see Figure 4-3), the primary oscillator is shut down and the OSTS bit is cleared. On transitions from RC_RUN mode to PRI_RUN mode, the device continues to be clocked from the INTRC while the primary clock is started. When the primary clock becomes ready, a clock switch to the primary clock occurs (see Figure 4-4). When the clock switch is complete, the OSTS bit is set and the primary clock is providing the device clock. The IDLEN and SCS bits are not affected by the switch. The INTRC source will continue to run if either the WDT or the Fail-Safe Clock Monitor is enabled.

FIGURE 4-4: TRANSITION TIMING FROM RC_RUN MODE TO PRI_RUN MODE

5.0 RESET

The PIC18F85J11 family of devices differentiate between various kinds of Reset:

- a) Power-on Reset (POR)
- b) MCLR Reset during normal operation
- c) MCLR Reset during power-managed modes
- d) Watchdog Timer (WDT) Reset (during execution)
- e) Brown-out Reset (BOR)
- f) RESET Instruction
- g) Stack Full Reset
- h) Stack Underflow Reset

This section discusses Resets generated by MCLR, POR and BOR, and covers the operation of the various start-up timers. Stack Reset events are covered in Section 6.1.6.4 "Stack Full and Underflow Resets". WDT Resets are covered in Section 23.2 "Watchdog Timer (WDT)".

A simplified block diagram of the on-chip Reset circuit is shown in Figure 5-1.

5.1 RCON Register

Device Reset events are tracked through the RCON register (Register 5-1). The lower five bits of the register indicate that a specific Reset event has occurred. In most cases, these bits can only be set by the event and must be cleared by the application after the event. The state of these flag bits, taken together, can be read to indicate the type of Reset that just occurred. This is described in more detail in **Section 5.7 "Reset State of Registers"**.

The RCON register also has a control bit for setting interrupt priority (IPEN). Interrupt priority is discussed in **Section 10.0 "Interrupts"**.

FIGURE 5-1: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT

File Name Bit 7 Bit 6 Bit 7 Bit 7 Bit 2 Bit 1 Bit 0 Value on page Orange IPR3 — — RC2IP TX2IP — CCP2IP CCP1IP — 00 -01 59, 120 PIR3 — — RC2IP TX2IP — CCP2IP CCP1IP — 00 -00 59, 120 PIR2 OSCFIP CMIP — RC2IP LVDIP TMR3IP — 00000 59, 123 PIR2 OSCFIP CMIP — — BCLIP LVDIP TMR3IP — 00000 59, 119 PIR1 PSPIP ADIP RC1IF TX1IF SSPIP — TMR2IP TMR1IF 0000 0-00 59, 110 PIR1 PSPIP ADIP RC1IF TX1IF SSPIP — TMR2IP TMR1IF 0000 0-00 59, 110 OSCTUNE INTSRC PILEN ⁴⁰ TUN4 TUN4 TUN4 TUN4			0100011								
μPR3 — — RC2IP TX2IP — CCP2IP CCP1IP — -000-11. 59,126 μPR3 — — RC2IF TX2IF — CCP2IF CCP1IF — -000-00-00-00-00-00-00-00-00-00-000-00	File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Details on page
PIR3 — — RC2IF TX2IF — CCP2IF CCP1IF — -00 -00- 59, 120 PIE3 — — RC2IE TX2IE — CCP2IE CCP1IF — -00 -00- 59, 123 PIR2 OSCFIF CMIF — — BCLIF LVDIF TMR3IF — 00000- 59, 123 PIR2 OSCFIF CMIF — — BCLIF LVDIF TMR3IF — 00 00 59, 123 PIR1 PSPIP ADIF RC1IF TX1IF SSPIF — TMR2IP TMR1IP 1111 1-11 59, 124 MEMCON ^[2] EBDIS — Wal11 WAI10 TUNA — WM11 TUNA TUNA1	IPR3	—	_	RC2IP	TX2IP	_	CCP2IP	CCP1IP	—	00 -11-	59, 126
PE3 — — RC2IE TX2IE — CCP2IE CCP1IE — - - - 0 COP1IE COP1IE — - - 0 - 1 - 11-11 59, 123 IPR2 OSCFIF CMIF — — BCLIF LVDIF TMR3IF — 00-000- 59, 113 PIE2 OSCFIF CMIF — — BCLIF LVDIF TMR3IF — 00-000- 59, 113 PIE1 PSPIP ADIF RC1IF TX1IF SSPIF — TMR2IF TMR1IF 000-000 59, 113 PIE1 PSPIF ADIF RC1IF TX1IF SSPIF — TMR2IF TMR1IF 0000-00 59, 110 MEMCONP1 EBDIS — WM11 WM10 — TMR2IF TMR2IF TMR2IF TMR3IF	PIR3	_	_	RC2IF	TX2IF	_	CCP2IF	CCP1IF	_	00 -00-	59, 120
IPR2 OSCFIP CMIP - - BCLIP LVDIP TMR3IP - 11111- 69,125 PIR2 OSCFIF CMIF - - BCLIF LVDIF TMR3IP - 00000- 59,122 IPR1 PSPIP ADIP RC1IF TX1IP SSPIP - TMR2IP TMR1IP 1111-11 59,124 IPR1 PSPIF ADIF RC1IF TX1IF SSPIF - TMR2IP TMR1IF 0000-00 59,123 MEMCON ⁴⁰ EBDIS - WAT1 WAT0 - - WM1 WM0 0-0-0 59,100 OSCTUNE INTSRC PLLSM ⁴⁰ TUNA TUN3 TUN2 TUN1 TUN0 0000 000 37,59 TRISH ⁴⁷ TRISH7 TRISH5 TRISH5 TRISH4 TRISH3 TRISH3 TRISH3 TRISH3 TRISH3 TRISH4 TRISH4 TRISH4 TRISH4 TRISH4 TRISH4 TRISH4 TRISH4 <td>PIE3</td> <td>_</td> <td>_</td> <td>RC2IE</td> <td>TX2IE</td> <td>_</td> <td>CCP2IE</td> <td>CCP1IE</td> <td>—</td> <td>00 -00-</td> <td>59, 123</td>	PIE3	_	_	RC2IE	TX2IE	_	CCP2IE	CCP1IE	—	00 -00-	59, 123
PIR2 OSCFIF CMIF — — BCLIF LVDIF TMR3IF — 00000- 59, 119 PIE2 OSCFIE CMIF — — BCLIE LVDIF TMR3IF — 00000- 59, 122 IPR1 PSPIF ADIF RC1IF TX1IF SSPIF — TMR2IF TMR1F 0000-000 59, 121 MEMCON ⁽²⁾ EBDIS — WAIT VAIT — — TMR2IF TMR1F 0000-000 59, 100 OSCTUNE INTSRC PLLEM ⁽⁴⁾ TNUS TNUS TNUS TNUS TNUS 1111 111 60, 144 TRISJ ⁽²⁾ TRISJ7 TRISJ6 TRISJ5 TRISJ3 TRISJ3 TRISJ3 TRISJ1 TRISJ0 1111 111 60, 144 TRISJ ⁽²⁾ TRISJ7 TRISJ6 TRISJ5 TRISJ3 TRISJ2 TRISJ1 TRISJ0 1111 111 60, 142 TRISJ7 TRISJ6 TRISJ5 TRISJ5 TRISJ3 TRISJ2	IPR2	OSCFIP	CMIP	_	_	BCLIP	LVDIP	TMR3IP	_	11 111-	59, 125
PIE2 OSCFIE CMIE — — BCLIE LVDIE TMR3IE — 00000- 59.122 IPR1 PSPIP ADIF RC1IF TX1IF SSPIP — TMR2IP TMR1IP 1111 1-11 69.124 PIE1 PSPIF ADIE RC1IE TX1IF SSPIF — TMR2IF TMR1IE 0000 -00 59.111 MEMCOM ²⁰ EBDIS — WAIT1 WAIT0 — — WMI WM0 0-00 -00 59.100 OSCTUNE INTSRC PLEN ⁽⁴⁾ TUN5 TUN4 TUN3 TUN3 TRISJ0 1111 111 60.149 TRISJ ² TRISJ7 TRISH6 TRISH5 TRISH4 TRISH3 TRISH3 <t< td=""><td>PIR2</td><td>OSCFIF</td><td>CMIF</td><td>_</td><td>_</td><td>BCLIF</td><td>LVDIF</td><td>TMR3IF</td><td>—</td><td>00 000-</td><td>59, 119</td></t<>	PIR2	OSCFIF	CMIF	_	_	BCLIF	LVDIF	TMR3IF	—	00 000-	59, 119
IPR1 PSPIP ADIP RC1IP TX1IP SSPIP — TMR2IP TMR1IP 1111 1-11 59,124 PIR1 PSPIF ADIF RC1IF TX1IF SSPIF — TMR2IF TMR1IP 0000 0-00 59,118 PIE1 PSPIF ADIF RC1IF TX1IF SSPIF — TMR2IF TMR1IE 0000 0-00 59,100 MEMCON ^{[20} EEDIS — WAI11 WAI10 — — WMI1 WM0 0-00 -00 59,100 OSCTUNE INTSRC PLEN ^[40] TUNS TUN4 TUN3 TUN2 TUN1 TUN0 0000 0000 37,59 TRIS/ ^[41] TRIS/R	PIE2	OSCFIE	CMIE	_	_	BCLIE	LVDIE	TMR3IE	—	00 000-	59, 122
PIR1 PSPIF ADIF RC1IF TX1IF SSPIF — TMR2IF TMR1IF 0000 0-00 59, 118 PIE1 PSPIE ADIE RC1IE TX1IE SSPIE — TMR2IF TMR1IF 0000 -00 59, 121 MEMCON ⁽²⁾ EBDIS — WAIT1 WAIT0 — — WMI 0000 0000 59, 121 OSCTUNE INTSRC PLEN(4) TUNS TUN4 TUN3 TUN2 TUN1 TUN10 0000 0000 37, 59 TRISJ ⁽²⁾ TRISJ7 TRISJ6 TRISJ5 TRISJ4 TRISJ3 TRISJ2 TRISJ0 1111 111 60, 142 TRISJ TRISF5 TRISF5 TRISF3 TRISF2 TRISG1 TRISG0 1111 111 60, 142 TRISD TRISD7 TRISD6 TRISD5 TRISD4 TRISD3 TRISD2 TRISD1 1111 111 60, 142 TRISD TRISD7 TRISD6 <t< td=""><td>IPR1</td><td>PSPIP</td><td>ADIP</td><td>RC1IP</td><td>TX1IP</td><td>SSPIP</td><td>_</td><td>TMR2IP</td><td>TMR1IP</td><td>1111 1-11</td><td>59, 124</td></t<>	IPR1	PSPIP	ADIP	RC1IP	TX1IP	SSPIP	_	TMR2IP	TMR1IP	1111 1-11	59, 124
PIE1 PSPIE ADIE RC1IE TX1IE SSPIE — TMR2IE TMR1IE 0000 0-00 59, 121 MEMCONI ^{AD} EBDIS — WMI1 WAITO — — WMI WMI0 0-00 59, 100 OSCTUNE INTSRC PLLEN ⁽⁴⁾ TUN5 TUN4 TUN3 TUN2 TUN1 TUN0 0000 0.00 37, 59 TRISJ ^{G1} TRISJT TRISH TRISH TRISJA TRISJ3 TRISJ2 TRISH 1111 1111 60, 149 TRISJ ^{G2} TRISFT TRISF6 TRISF4 TRISF3 TRISF2 TRISG1 TRISG0 0.001 1111 111 60, 142 TRISF TRISF6 TRISF4 TRISF3 TRISF2 TRISF1 — TRISG1 TRISG0 0.001 1111 111 60, 142 TRISF TRISF6 TRISF4 TRISF3 TRISF2 TRISF1 TRISF0 1111 1111 60, 142 TRISF7	PIR1	PSPIF	ADIF	RC1IF	TX1IF	SSPIF	_	TMR2IF	TMR1IF	0000 0-00	59, 118
MEMCON ^{[2)} EBDIS — WAIT1 WAIT0 — — WM1 WM0 0.00 -0.00 59,100 OSCTUNE INTSRC PLLEN ⁽⁴⁾ TUNS TUNA TUN3 TUN1 TUN10 0.000 37,59 TRISJ ⁽²⁾ TRISJ7 TRISJ6 TRISJ4 TRISH3 TRISJ3 TRISJ2 TRISJ1 TRISJ0 1111 111 60,149 TRISH ⁽²⁾ TRISF7 TRISF6 TRISF5 TRISH4 TRISF3 TRISG2 TRISG1 TRISG0 0.01 1111 60,142 TRISF TRISF7 TRISF6 TRISF5 TRISF3 TRISF3 TRISF1 TRISF0 1111 111 60,142 TRISF TRISF7 TRISF6 TRISF5 TRISC3 TRISC3 TRISF1 TRISF0 1111 1111 60,142 TRISF TRISF6 TRISF5 TRISC4 TRISC3 TRISC1 TRISF0 1111 1111 60,133 TRISF TRISF6 TRISF5	PIE1	PSPIE	ADIE	RC1IE	TX1IE	SSPIE	_	TMR2IE	TMR1IE	0000 0-00	59, 121
OSCTUNE INTSRC PLLEN ⁽⁴⁾ TUN5 TUN4 TUN3 TUN2 TUN1 TUN0 0000 0000 37,59 TRISJ ⁽²⁾ TRISJ7 TRISJ6 TRISJ5 TRISJ4 TRISJ3 TRISJ2 TRISJ1 TRISJ0 1111 1111 100,149 TRISG SPIOD CCP10D TRISF4 TRISF3 TRISC2 TRISG1 TRISG0 0001 1111 101,140 60,149 TRISF TRISF4 TRISF3 TRISF2 TRISF1 TRISF0 0001 1111 101,140 60,142 TRISF TRISF5 TRISF5 TRISF4 TRISF3 TRISF1 TRISF0 1111 111 60,139 TRISF TRISF7 TRISF6 TRISF5 TRISF4 TRISF3 TRISF1 TRISF0 1111 111 60,139 TRISF TRISF7 TRISF6 TRISF5 TRISF4 TRISF3 TRISF5 TRISF4 TRISF3 TRISF1 TRISF5 TRISF5 TRISF4 TRISF3 TRISF5	MEMCON ⁽²⁾	EBDIS	_	WAIT1	WAIT0	_	_	WM1	WM0	0-0000	59, 100
TRISJ ^[2] TRISJ TRISJ6 TRISJ5 TRISJ4 TRISJ3 TRISJ2 TRISJ1 TRISJ0 1111 1111 60, 149 TRISH ^[2] TRISH7 TRISH6 TRISH5 TRISH4 TRISH3 TRISH2 TRISH1 TRISH0 1111 1111 60, 149 TRISG SPIOD CCP2OD CCP1OD TRISG3 TRISG2 TRISG1 TRISG0 0001 1111 60, 142 TRISF TRISF7 TRISF6 TRISF5 TRISG3 TRISG2 TRISG1 TRISG0 0011 100, 142 TRISF TRISF7 TRISF6 TRISF5 TRISF4 TRISG3 TRISC2 TRISC0 1111 111 60, 143 TRISC TRISF7 TRISC6 TRISF5 TRISF4 TRISG3 TRISC2 TRISC1 TRISC0 1111 111 60, 133 TRISC TRISF6 TRISF5 TRISF4 TRISF3 TRISF2 TRISF1 TRISF0 1111 111 60, 133 TRISA	OSCTUNE	INTSRC	PLLEN ⁽⁴⁾	TUN5	TUN4	TUN3	TUN2	TUN1	TUN0	0000 0000	37, 59
TRISH ² TRISH4 TRISH3 TRISH2 TRISH1 TRISH0 1111 1111 60,147 TRISG SPIOD CCP2OD CCP1OD TRISG4 TRISG3 TRISG2 TRISG1 TRISG0 0001 1111 60,147 TRISG TRISF7 TRISF6 TRISF6 TRISF5 TRISF3 TRISF2 TRISG1 TRISG0 0001 1111 60,142 TRISE TRISF7 TRISF6 TRISF6 TRISF5 TRISF4 TRISF2 TRISF1 — 1111 111 60,142 TRISC TRISC7 TRISC6 TRISF5 TRISF4 TRISF3 TRISF2 TRISF1 TRISF0 1111 111 60,133 TRISA TRISF7 TRISF6 TRISF5 TRISF4 TRISF3 TRISF2 TRISF1 TRISF0 1111 1111 60,133 TRISA TRISF7 TRISF6 TRISF5 TRISF4 TRISF3 TRISF2 TRISF1 TRISF0 1111 1111 60,136 <tr< td=""><td>TRISJ⁽²⁾</td><td>TRISJ7</td><td>TRISJ6</td><td>TRISJ5</td><td>TRISJ4</td><td>TRISJ3</td><td>TRISJ2</td><td>TRISJ1</td><td>TRISJ0</td><td>1111 1111</td><td>60, 149</td></tr<>	TRISJ ⁽²⁾	TRISJ7	TRISJ6	TRISJ5	TRISJ4	TRISJ3	TRISJ2	TRISJ1	TRISJ0	1111 1111	60, 149
TRISG SPIOD CCP2OD CCP1OD TRISG4 TRISG3 TRISG2 TRISG1 TRISG0 0.001 1111 60.144 TRISF TRISF7 TRISF6 TRISF5 TRISF4 TRISF3 TRISF2 TRISF1 — 1111 1111 60.144 TRISE TRISE7 TRISE6 TRISE5 TRISE4 TRISE3 — TRISE1 TRISE0 1111 1111 60.142 TRISD TRISD7 TRISE6 TRISE5 TRISE4 TRISE3 — TRISD1 TRISD0 1111 1111 60.133 TRISD TRISB7 TRISB6 TRISB5 TRISA4 TRISA3 TRISA2 TRISA1 TRISA0 1111 1111 60.133 TRISA TRISA7 ⁽⁹⁾ TRISA6 TRISA5 TRISA4 TRISA3 TRISA2 TRISA1 TRISA0 1111 1111 60.136 TRISA TRISA6 TRISA5 TRISA4 TRISA3 TRISA2 TRISA1 TRISA0 1111 1111 <td>TRISH⁽²⁾</td> <td>TRISH7</td> <td>TRISH6</td> <td>TRISH5</td> <td>TRISH4</td> <td>TRISH3</td> <td>TRISH2</td> <td>TRISH1</td> <td>TRISH0</td> <td>1111 1111</td> <td>60, 147</td>	TRISH ⁽²⁾	TRISH7	TRISH6	TRISH5	TRISH4	TRISH3	TRISH2	TRISH1	TRISH0	1111 1111	60, 147
TRISF TRISF6 TRISF5 TRISF4 TRISF3 TRISF2 TRISF1 — 1111 111- 60, 144 TRISE TRISE7 TRISE6 TRISE5 TRISE4 TRISE3 — TRISE1 TRISE0 1111 111- 60, 144 TRISD TRISD7 TRISE6 TRISE5 TRISD4 TRISD3 TRISD2 TRISD1 TRISE0 1111 111 60, 139 TRISC TRISC7 TRISE6 TRISE5 TRISC4 TRISC3 TRISC2 TRISD1 TRISE0 1111 1111 60, 133 TRISB TRISF7 TRISE6 TRISE5 TRISA4 TRISC3 TRISC2 TRISB1 TRISB0 1111 1111 60, 133 TRISA TRISA7 ⁽⁵⁾ TRISA6 ⁽⁵⁾ TRISA5 TRISA3 TRISA2 TRISA1 TRISA0 1111 1111 60, 133 LATJ ⁽²⁾ LATJ7 LATJ6 LATJ5 LATH4 LATH3 LATJ1 LATJ0 xxxx xxxx 60, 149 LATH ⁽²⁾ LATH7 LATH6 LATH5 L	TRISG	SPIOD	CCP2OD	CCP10D	TRISG4	TRISG3	TRISG2	TRISG1	TRISG0	0001 1111	60, 146
TRISE TRISE6 TRISE5 TRISE4 TRISE3 — TRISE1 TRISE0 1111 1-11 60.142 TRISD TRISD7 TRISD6 TRISD5 TRISD4 TRISD3 TRISD2 TRISD1 TRISD0 1111 1-11 60.142 TRISD TRISC7 TRISC6 TRISC5 TRISC4 TRISC3 TRISC2 TRISD1 TRISC0 1111 1111 60.139 TRISB TRISD7 TRISG6 TRISC5 TRISC4 TRISC3 TRISC2 TRISD1 TRISD0 1111 1111 60.133 TRISA TRISA6 ^(%) TRISA5 TRISA4 TRISA3 TRISA2 TRISA1 TRISA0 1111 1111 60.131 LATJ ⁽²⁾ LATH7 LATH6 LATH5 LATH4 LATH3 LATL2 LATJ1 LATG0 00-x xxxx 60.149 LATH ⁽²⁾ LATH7 LATH6 LATF5 LATH4 LATF3 LATC1 LATG0 0-x xxxx 60.149 LATC LATF7 LATF6 LATF5 LATF4	TRISF	TRISF7	TRISF6	TRISF5	TRISF4	TRISF3	TRISF2	TRISF1	_	1111 111-	60, 144
TRISD TRISD6 TRISD5 TRISD4 TRISD3 TRISD2 TRISD1 TRISD0 1111 1111 60, 139 TRISC TRISC7 TRISC6 TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0 1111 1111 60, 139 TRISB TRISB7 TRISC6 TRISC5 TRISB4 TRISB3 TRISC2 TRISC1 TRISC0 1111 1111 60, 133 TRISA TRISA7(⁶) TRISA6(⁵) TRISA5 TRISA4 TRISA3 TRISA2 TRISA1 TRISA0 1111 1111 60, 133 TRISA TRISA7(⁶) TRISA6(⁵) TRISA5 TRISA4 TRISA3 TRISA2 TRISA1 TRISA0 1111 1111 60, 133 LATJ2 LATJ7 LAT6 LAT5 LAT44 LAT33 LATJ2 LAT11 LAT04 xxxx xxxx 60, 147 LATG U2OD U1OD — LAT64 LAT63 LAT62 LAT61 LAT60 0.0-x xxxx 60, 144 LATE LATF7 LATF6 LAT55 LAT64 LAT63	TRISE	TRISE7	TRISE6	TRISE5	TRISE4	TRISE3	_	TRISE1	TRISE0	1111 1-11	60, 142
TRISC TRISC6 TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0 1111 1111 60, 136 TRISB TRISB7 TRISB6 TRISB5 TRISB4 TRISB3 TRISB2 TRISB1 TRISB0 1111 1111 60, 133 TRISA TRISA7 ⁽⁵⁾ TRISA6 ⁽⁵⁾ TRISA5 TRISA4 TRISA3 TRISA2 TRISA1 TRISA0 1111 1111 60, 133 LATJ ⁽²⁾ LATJ7 LATJ6 LATJ5 LATJ4 LATJ3 LATJ2 LATJ1 LATJ0 xxxx xxxx 60, 149 LATH ⁽²⁾ LATH7 LATH6 LATH5 LATH4 LATB3 LATG2 LATG1 LATG0 00~x xxxx 60, 147 LATG U2OD U1OD — LATG4 LATG3 LATG2 LATG1 LATG0 00~x xxxx 60, 144 LATE LATF7 LATF6 LATF5 LATF4 LATF3 LATC1 LATG0 xxxx xxxx 60, 143 LATD LATC6	TRISD	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	1111 1111	60, 139
TRISB TRISB6 TRISB5 TRISB4 TRISB3 TRISB2 TRISB1 TRISB0 1111 1111 60,133 TRISA TRISA7 ⁽⁶⁾ TRISA6 ⁽⁵⁾ TRISA5 TRISA4 TRISA3 TRISA2 TRISA1 TRISA0 1111 1111 60,133 LATJ ⁽²⁾ LATJ7 LATJ6 LATJ5 LATJ4 LATJ3 LATJ2 LATJ1 LATJ0 xxxx xxxx 60,149 LATH ⁽²⁾ LATH7 LATH6 LATH5 LATH4 LATH3 LATL2 LATH1 LATH0 xxxx xxxx 60,147 LATG U2OD U1OD — LATG4 LATG3 LATG2 LATG1 LATG0 0x xxxx 60,144 LATF LATF7 LATF6 LATF5 LATF4 LATF3 LATC2 LATG1 LATG0 0x xxxx 60,142 LATD LATD7 LAT66 LATE5 LATF4 LATE3 LATE2 LATE1 LATE0 xxxx xxxx 60,142 LATD LATC7 LAT6 LATC5 LATC4 LATC3 LATC1 LATC1 LATC1 Xxxx xxxxx	TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111	60, 136
TRISA TRISA6 ⁽⁵⁾ TRISA5 TRISA4 TRISA3 TRISA2 TRISA1 TRISA0 1111 1111 60,131 LATJ ⁽²⁾ LATJ7 LATJ6 LATJ5 LATJ4 LATJ3 LATJ2 LATJ1 LATJ0 xxxx xxxx 60,149 LATH ⁽²⁾ LATH7 LATH6 LATH5 LATH4 LATH3 LATJ2 LATH1 LATJ0 xxxx xxxx 60,149 LATH ⁽²⁾ LATH7 LATH6 LATH5 LATH4 LATB3 LATL2 LATH1 LATH0 xxxx xxxx 60,149 LATG U2OD U1OD — LATG4 LATG3 LATG2 LATG1 LATG0 00-x xxxx 60,144 LATE LATF7 LATE6 LATE5 LATF4 LATG3 LATE2 LATE1 LATG0 xxxx xxxx 60,142 LATD LATD7 LATC6 LATC5 LATC4 LATC3 LATC2 LATC1 LATC0 xxxx xxxx 60,133 LATA LATA7 LATA6 LATA5 </td <td>TRISB</td> <td>TRISB7</td> <td>TRISB6</td> <td>TRISB5</td> <td>TRISB4</td> <td>TRISB3</td> <td>TRISB2</td> <td>TRISB1</td> <td>TRISB0</td> <td>1111 1111</td> <td>60, 133</td>	TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	1111 1111	60, 133
LATJ(2) LATJ7 LATJ6 LATJ5 LATJ4 LATJ3 LATJ2 LATJ1 LATJ0 xxxx xxxx 60,149 LATH ⁽²⁾ LATH7 LATH6 LATH5 LATH4 LATH3 LATH2 LATH1 LATH0 xxxx xxxx 60,149 LATG U2OD U1OD — LATG4 LATG3 LATG2 LATG1 LATG0 00-x xxxx 60,148 LATF LATF7 LATF6 LATF5 LATF4 LATG3 LATG2 LATG1 LATG0 00-x xxxx 60,144 LATF LATF7 LATF6 LATF5 LATF4 LATG3 LATF2 LATF1 — xxxx xxxx 60,144 LATE LATF7 LAT66 LATE5 LATE4 LATE3 LATE2 LATF1 LATE0 xxxx xxxx 60,142 LATD LATC6 LATC5 LATC4 LATC3 LATC1 LATC0 xxxx xxxx 60,133 LATA LATA7 LATA6 LATA5 LATA4 LATA3 LA	TRISA	TRISA7 ⁽⁵⁾	TRISA6 ⁽⁵⁾	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1111 1111	60, 131
LATH(2)LATH7LATH6LATH5LATH4LATH3LATH2LATH1LATH0xxxx xxxx60, 147LATGU2ODU1OD-LATG4LATG3LATG2LATG1LATG000-x xxxx60, 146LATFLATF7LATF6LATF5LATF4LATG3LATG2LATG1LATG000-x xxxx60, 144LATELATE7LATF6LATF5LATF4LATF3LATF2LATF1-xxxx xxxx60, 142LATDLATD7LATC6LATC5LATC4LATC3LATC2LATC1LATC0xxxx xxxx60, 138LATCLATC7LATC6LATC5LATC4LATC3LATC2LATC1LATC0xxxx xxxx60, 133LATBLATB7LATA6LATA5LATA4LATA3LATA2LATA1LATA0xxxx xxxx60, 133LATALATA7 ⁽⁵⁾ LATA6LATA5LATA4LATA3LATA2LATA1LATA0xxxx xxxx60, 147PORTJ ⁽²⁾ RJ7RJ6RJ5RJ4RJ3RJ2RJ1LATA0xxxx xxxx60, 147PORTGRDPURH9RH6RH5RH4RH3RH2RH1RH0xxxx xxxx60, 147PORTGRD7RB6RF5RF4RG3RG2RG1RG0000x xxxx60, 147PORTFRF7RF6RF5RF4RF3RF2RF1-xxxx xxxx60, 147PORTFRF7RF6RE5RE4	LATJ ⁽²⁾	LATJ7	LATJ6	LATJ5	LATJ4	LATJ3	LATJ2	LATJ1	LATJ0	xxxx xxxx	60, 149
LATGU2ODU1OD—LATG4LATG3LATG2LATG1LATG000-x xxxx60, 146LATFLATF7LATF6LATF5LATF4LATF3LATF2LATF1—xxxx xxxx60, 144LATELATE7LATE6LATE5LATE4LATE3LATE2LATE1LATE0xxxx xxxx60, 142LATDLATD7LATD6LATD5LATD4LATD3LATD2LATD1LATD0xxxx xxxx60, 139LATCLATC7LATC6LATC5LATC4LATC3LATC2LATC1LATD0xxxx xxxx60, 136LATBLATB7LATB6LATB5LATA4LATB3LATB2LATB1LATB0xxxx xxxx60, 133LATALATA7 ⁽⁵⁾ LATA6 ⁽⁵⁾ LATA5LATA4LATA3LATA2LATA1LATA0xxxx xxxx60, 131PORTJ ⁽²⁾ RJ7RJ6RJ5RJ4RJ3RJ2RJ1RJ0xxxx xxxx60, 147PORTJ ⁽²⁾ RH7RH6RH5RH4RH3RH2RH1RH0xxxx xxxx60, 147PORTGRDPUREPURJPU ⁽²⁾ RG4RG3RG2RG1RG0000x xxxx60, 144PORTFRF7RF6RF5RF4RF3RF2RF1—xxxx xxxx60, 144PORTDRD7RD6RD5RD4RD3RD2RD1RD0xxxx xxxx60, 144PORTDRD7RE6RE5RE4RE3 <td< td=""><td>LATH⁽²⁾</td><td>LATH7</td><td>LATH6</td><td>LATH5</td><td>LATH4</td><td>LATH3</td><td>LATH2</td><td>LATH1</td><td>LATH0</td><td>xxxx xxxx</td><td>60, 147</td></td<>	LATH ⁽²⁾	LATH7	LATH6	LATH5	LATH4	LATH3	LATH2	LATH1	LATH0	xxxx xxxx	60, 147
LATFLATF6LATF5LATF4LATF3LATF2LATF1	LATG	U2OD	U10D	_	LATG4	LATG3	LATG2	LATG1	LATG0	00-x xxxx	60, 146
LATELATE7LATE6LATE5LATE4LATE3LATE2LATE1LATE0XXXX XXXX60, 142LATDLATD7LATD6LATD5LATD4LATD3LATD2LATD1LATD0XXXX XXXX60, 139LATCLATC7LATC6LATC5LATC4LATC3LATC2LATC1LATC0XXXX XXXX60, 136LATBLATB7LAT66LATC5LATC4LATC3LATC2LATC1LATC0XXXX XXXX60, 133LATBLATB7LATB6LATB5LATB4LATB3LATB2LATB1LATB0XXXX XXXX60, 131PORTJ ⁽²⁾ RJ7RJ6RJ5RJ4RJ3RJ2RJ1RJ0XXXX XXXX60, 149PORTH ⁽²⁾ RH7RH6RH5RH4RH3RH2RH1RH0XXXX XXXX60, 144PORTGRDPUREPURJPU ⁽²⁾ RG4RG3RG2RG1RG0000x XXX60, 144PORTFRF7RF6RF5RF4RF3RF2RF1—XXXX XXX60, 144PORTDRD7RD6RD5RD4RD3RD2RD1RD0XXXX XXX60, 139PORTDRD7RB6RE5RC4RC3RC2RC1RC0XXXX XXX60, 136PORTBRB7RB6RB5RB4RB3RB2RB1RB0XXXX XXX60, 133PORTARA7 ⁽⁵⁾ RA6 ⁽⁵⁾ RA5RA4RA3RA2RA1	LATF	LATF7	LATF6	LATF5	LATF4	LATF3	LATF2	LATF1	—	xxxx xxx-	60, 144
LATDLATD7LATD6LATD5LATD4LATD3LATD2LATD1LATD0XXXX XXXX60, 139LATCLATC7LATC6LATC5LATC4LATC3LATC2LATC1LATC0XXXX XXXX60, 136LATBLATB7LATB6LATB5LATB4LATB3LATB2LATB1LATB0XXXX XXXX60, 133LATALATA7 ⁽⁵⁾ LATA6 ⁽⁵⁾ LATA5LATA4LATA3LATA2LATA1LATA0XXXX XXXX60, 131PORTJ ⁽²⁾ RJ7RJ6RJ5RJ4RJ3RJ2RJ1RJ0XXXX XXXX60, 149PORTH ⁽²⁾ RH7RH6RH5RH4RH3RH2RH1RH0XXXX XXXX60, 144PORTGRDPUREPURJPU ⁽²⁾ RG4RG3RG2RG1RG0000x XXX60, 142PORTFRF7RF6RF5RF4RF3RF2RF1—XXXX XXX60, 142PORTDRD7RD6RD5RD4RD3RD2RD1RD0XXXX XXX60, 142PORTDRD7RC6RC5RC4RC3RC2RC1RC0XXXX XXX60, 133PORTBRB7RB6RB5RB4RB3RB2RB1RB0XXXX XXX60, 133PORTBRB7RB6RB5RB4RA3RA2RA1RA0XX0X 000060, 131	LATE	LATE7	LATE6	LATE5	LATE4	LATE3	LATE2	LATE1	LATE0	xxxx xxxx	60, 142
LATCLATC7LATC6LATC5LATC4LATC3LATC2LATC1LATC0XXXX XXXX60, 136LATBLATB7LATB6LATB5LATB4LATB3LATB2LATB1LATB0XXXX XXXX60, 133LATALATA7 ⁽⁵⁾ LATA6 ⁽⁵⁾ LATA5LATA4LATA3LATA2LATA1LATA0XXXX XXXX60, 131PORTJ ⁽²⁾ RJ7RJ6RJ5RJ4RJ3RJ2RJ1RJ0XXXX XXXX60, 149PORTH ⁽²⁾ RH7RH6RH5RH4RH3RH2RH1RH0XXXX XXXX60, 147PORTGRDPUREPURJPU ⁽²⁾ RG4RG3RG2RG1RG0000x XXXX60, 144PORTFRF7RF6RF5RF4RF3RF2RF1—XXXX XXXX60, 142PORTERE7RE6RE5RE4RE3—RE1RE0XXXX XXX60, 142PORTDRD7RD6RD5RD4RD3RD2RD1RD0XXXX XXX60, 133PORTBRB7RB6RE5RE4RC3RC2RC1RC0XXXX XXX60, 133PORTBRB7RB6RB5RB4RB3RB2RB1RB0XXXX XXX60, 133PORTBRB7RB6RB5RB4RB3RA2RA1RA0XX0X 000060, 131	LATD	LATD7	LATD6	LATD5	LATD4	LATD3	LATD2	LATD1	LATD0	xxxx xxxx	60, 139
LATBLATB7LATB6LATB5LATB4LATB3LATB2LATB1LATB0xxxx xxxx60, 133LATALATA7(5)LATA6(5)LATA5LATA4LATA3LATA2LATA1LATA0xxxx xxxx60, 131PORTJ(2)RJ7RJ6RJ5RJ4RJ3RJ2RJ1RJ0xxxx xxxx60, 149PORTH(2)RH7RH6RH5RH4RH3RH2RH1RH0xxxx xxxx60, 147PORTGRDPUREPURJ9U(2)RG4RG3RG2RG1RG0000x xxxx60, 144PORTFRF7RF6RF5RF4RF3RF2RF1—xxxx xxxx60, 142PORTERE7RE6RE5RE4RE3—RE1RE0xxxx xxxx60, 142PORTDRD7RD6RD5RD4RD3RD2RD1RD0xxxx xxxx60, 142PORTDRD7RC6RC5RC4RC3RC2RC1RC0xxxx xxxx60, 133PORTBRB7RB6RB5RB4RB3RB2RB1RB0xxxx xxxx60, 133PORTBRA7(5)RA6(5)RA5RA4RA3RA2RA1RA0xx00 00060, 131	LATC	LATC7	LATC6	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0	xxxx xxxx	60, 136
LATALATA6 ⁽⁵⁾ LATA6 ⁽⁵⁾ LATA5LATA4LATA3LATA2LATA1LATA0xxxx xxxx60, 131PORTJ ⁽²⁾ RJ7RJ6RJ5RJ4RJ3RJ2RJ1RJ0xxxx xxxx60, 149PORTH ⁽²⁾ RH7RH6RH5RH4RH3RH2RH1RH0xxxx xxxx60, 147PORTGRDPUREPURJDU ⁽²⁾ RG4RG3RG2RG1RG0000x xxxx60, 144PORTFRF7RF6RF5RF4RF3RF2RF1—xxxx xxxx60, 144PORTERE7RE6RE5RE4RE3—RE1RE0xxxx xxxx60, 142PORTDRD7RD6RD5RD4RD3RD2RD1RD0xxxx xxxx60, 139PORTBRB7RB6RB5RB4RB3RB2RD1RC0xxxx xxxx60, 133PORTBRB7RB6RB5RB4RB3RB2RB1RB0xxxx xxxx60, 133PORTARA7 ⁽⁵⁾ RA6 ⁽⁵⁾ RA5RA4RA3RA2RA1RA0xx00 00060, 131	LATB	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	xxxx xxxx	60, 133
PORTJ ⁽²⁾ RJ7 RJ6 RJ5 RJ4 RJ3 RJ2 RJ1 RJ0 xxxx xxxx 60, 149 PORTH ⁽²⁾ RH7 RH6 RH5 RH4 RH3 RH2 RH1 RH0 xxxx xxxx 60, 147 PORTH ⁽²⁾ RDPU REPU RJPU ⁽²⁾ RG4 RG3 RG2 RG1 RG0 000x xxxx 60, 147 PORTG RDPU REPU RJPU ⁽²⁾ RG4 RG3 RG2 RG1 RG0 000x xxxx 60, 144 PORTF RF7 RF6 RF5 RF4 RF3 RF2 RF1 — xxxx xxx- 60, 144 PORTE RE7 RE6 RE5 RE4 RE3 — RE1 RE0 xxxx xxxx 60, 142 PORTD RD7 RD6 RD5 RD4 RD3 RD2 RD1 RD0 xxxx xxxx 60, 139 PORTC RC7 RC6 RC5 RC4 RC3 RC2 RD1	LATA	LATA7 ⁽⁵⁾	LATA6 ⁽⁵⁾	LATA5	LATA4	LATA3	LATA2	LATA1	LATA0	xxxx xxxx	60, 131
PORTH ⁽²⁾ RH7 RH6 RH5 RH4 RH3 RH2 RH1 RH0 xxxx xxxx 60, 147 PORTG RDPU REPU RJPU ⁽²⁾ RG4 RG3 RG2 RG1 RG0 000x xxxx 60, 146 PORTF RF7 RF6 RF5 RF4 RF3 RF2 RF1 — xxxx xxx- 60, 144 PORTF RF7 RF6 RF5 RF4 RF3 RF2 RF1 — xxxx xxx- 60, 144 PORTE RE7 RE6 RF5 RF4 RF3 ME2 RF1 — xxxx xxx- 60, 144 PORTE RE7 RE6 RE5 RE4 RE3 — RE1 RE0 xxxx xxx 60, 142 PORTD RD7 RD6 RD5 RD4 RD3 RD2 RD1 RD0 xxxx xxxx 60, 139 PORTC RC7 RC6 RC5 RC4 RC3 RC2 RC1 RC0	PORTJ ⁽²⁾	RJ7	RJ6	RJ5	RJ4	RJ3	RJ2	RJ1	RJ0	xxxx xxxx	60, 149
PORTG RDPU REPU RJPU ⁽²⁾ RG4 RG3 RG2 RG1 RG0 000x xxxx 60, 146 PORTF RF7 RF6 RF5 RF4 RF3 RF2 RF1 — xxxx xxx- 60, 144 PORTE RE7 RE6 RE5 RE4 RE3 — RE1 RE0 xxxx x-xx 60, 144 PORTE RE7 RE6 RE5 RE4 RE3 — RE1 RE0 xxxx x-xx 60, 142 PORTD RD7 RD6 RD5 RD4 RD3 RD2 RD1 RD0 xxxx xxxx 60, 139 PORTC RC7 RC6 RC5 RC4 RC3 RC2 RC1 RC0 xxxx xxxx 60, 133 PORTB RB7 RB6 RB5 RB4 RB3 RB2 RB1 RB0 xxxx xxxx 60, 133 PORTA RA7 ⁽⁵⁾ RA6 ⁽⁵⁾ RA5 RA4 RA3 RA2 RA1 RA0 <td>PORTH⁽²⁾</td> <td>RH7</td> <td>RH6</td> <td>RH5</td> <td>RH4</td> <td>RH3</td> <td>RH2</td> <td>RH1</td> <td>RH0</td> <td>xxxx xxxx</td> <td>60, 147</td>	PORTH ⁽²⁾	RH7	RH6	RH5	RH4	RH3	RH2	RH1	RH0	xxxx xxxx	60, 147
PORTF RF7 RF6 RF5 RF4 RF3 RF2 RF1 — xxxx xxx- 60, 144 PORTE RE7 RE6 RE5 RE4 RE3 — RE1 RE0 xxxx xxx- 60, 144 PORTE RE7 RE6 RE5 RE4 RE3 — RE1 RE0 xxxx xxx- 60, 142 PORTD RD7 RD6 RD5 RD4 RD3 RD2 RD1 RD0 xxxx xxxx 60, 139 PORTC RC7 RC6 RC5 RC4 RC3 RC2 RC1 RC0 xxxx xxxx 60, 139 PORTB RB7 RB6 RB5 RB4 RB3 RB2 RB1 RB0 xxxx xxxx 60, 133 PORTA RA7 ⁽⁵⁾ RA6 ⁽⁵⁾ RA5 RA4 RA3 RA2 RA1 RA0 xx0x 0000 60, 131	PORTG	RDPU	REPU	RJPU ⁽²⁾	RG4	RG3	RG2	RG1	RG0	000x xxxx	60, 146
PORTE RE7 RE6 RE5 RE4 RE3 — RE1 RE0 xxxx x-xx 60, 142 PORTD RD7 RD6 RD5 RD4 RD3 RD2 RD1 RD0 xxxx x-xx 60, 139 PORTC RC7 RC6 RC5 RC4 RC3 RC2 RC1 RC0 xxxx xxxx 60, 139 PORTB RB7 RB6 RB5 RB4 RB3 RB2 RB1 RB0 xxxx xxxx 60, 133 PORTA RA7 ⁽⁵⁾ RA6 ⁽⁵⁾ RA5 RA4 RA3 RA2 RA1 RA0 xx0x 0000 60, 131	PORTF	RF7	RF6	RF5	RF4	RF3	RF2	RF1	_	xxxx xxx-	60, 144
PORTD RD7 RD6 RD5 RD4 RD3 RD2 RD1 RD0 xxxx xxxx 60, 139 PORTC RC7 RC6 RC5 RC4 RC3 RC2 RC1 RC0 xxxx xxxx 60, 139 PORTB RB7 RB6 RB5 RB4 RB3 RB2 RB1 RB0 xxxx xxxx 60, 133 PORTA RA7 ⁽⁵⁾ RA6 ⁽⁵⁾ RA5 RA4 RA3 RA2 RA1 RA0 xx0x 0000 60, 131	PORTE	RE7	RE6	RE5	RE4	RE3	_	RE1	RE0	xxxx x-xx	60, 142
PORTC RC7 RC6 RC5 RC4 RC3 RC2 RC1 RC0 xxxx xxxx 60, 136 PORTB RB7 RB6 RB5 RB4 RB3 RB2 RB1 RB0 xxxx xxxx 60, 133 PORTA RA7 ⁽⁵⁾ RA6 ⁽⁵⁾ RA5 RA4 RA3 RA2 RA1 RA0 xx0x 0000 60, 131	PORTD	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	xxxx xxxx	60, 139
PORTB RB7 RB6 RB5 RB4 RB3 RB2 RB1 RB0 xxxx xxxx 60, 133 PORTA RA7 ⁽⁵⁾ RA6 ⁽⁵⁾ RA5 RA4 RA3 RA2 RA1 RA0 xx0x 0000 60, 133	PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	xxxx xxxx	60, 136
PORTA RA7 ⁽⁵⁾ RA6 ⁽⁵⁾ RA5 RA4 RA3 RA2 RA1 RA0 xx0x 0000 60, 131	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx xxxx	60, 133
	PORTA	RA7 ⁽⁵⁾	RA6 ⁽⁵⁾	RA5	RA4	RA3	RA2	RA1	RA0	xx0x 0000	60, 131

TABLE 6-4:	PIC18F85J11 FAMILY REGISTER FILE SUMMARY	(CONTINUED))
------------	--	-------------	---

Legend: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition, r = reserved, do not modify

Note 1: Bit 21 of the PC is only available in Test mode and Serial Programming modes.

2: These registers and/or bits are available only on 80-pin devices; otherwise, they are unimplemented and read as '0'. Reset states shown are for 80-pin devices.

3: Alternate names and definitions for these bits when the MSSP module is operating in I²C[™] Slave mode. See Section 17.4.3.2 "Address Masking" for details.

4: The PLLEN bit is only available in specific oscillator configurations; otherwise, it is disabled and reads as '0'. See Section 3.4.3 "PLL Frequency Multiplier" for details.

5: RA6/RA7 and their associated latch and direction bits are configured as port pins only when the internal oscillator is selected as the default clock source (FOSC2 Configuration bit = 0); otherwise, they are disabled and these bits read as '0'.

FIGURE 7-2: TABLE WRITE OPERATION

7.2 Control Registers

Several control registers are used in conjunction with the ${\tt TBLRD}$ and ${\tt TBLWT}$ instructions. These include the:

- EECON1 register
- · EECON2 register
- TABLAT register
- TBLPTR registers

7.2.1 EECON1 AND EECON2 REGISTERS

The EECON1 register (Register 7-1) is the control register for memory accesses. The EECON2 register is not a physical register; it is used exclusively in the memory write and erase sequences. Reading EECON2 will read all '0's.

The FREE bit, when set, will allow a program memory erase operation. When FREE is set, the erase operation is initiated on the next WR command. When FREE is clear, only writes are enabled. The WREN bit, when set, will allow a write operation. On power-up, the WREN bit is clear. The WRERR bit is set in hardware when the WR bit is set and cleared when the internal programming timer expires and the write operation is complete.

Note:	During normal operation, the WRERR is
	read as '1'. This can indicate that a write
	operation was prematurely terminated by
	a Reset, or a write operation was
	attempted improperly.

The WR control bit initiates write operations. The bit cannot be cleared, only set, in software. It is cleared in hardware at the completion of the write operation.

8.7 8-Bit Data Width Mode

In 8-Bit Data Width mode, the external memory bus operates only in Multiplexed mode; that is, data shares the 8 Least Significant bits of the address bus.

Figure 8-6 shows an example of 8-Bit Multiplexed mode for 80-pin devices. This mode is used for a single 8-bit memory connected for 16-bit operation. The instructions will be fetched as two 8-bit bytes on a shared data/address bus. The two bytes are sequentially fetched within one instruction cycle (TCY). Therefore, the designer must choose external memory devices according to timing calculations based on 1/2 TCY (2 times the instruction rate). For proper memory speed selection, glue logic propagation delay times must be considered, along with setup and hold times.

The Address Latch Enable (ALE) pin indicates that the address bits, AD<15:0>, are available on the external memory interface bus. The Output Enable signal (\overline{OE})

will enable one byte of program memory for a portion of the instruction cycle, then BA0 will change and the second byte will be enabled to form the 16-bit instruction word. The Least Significant bit of the address, BA0, must be connected to the memory devices in this mode. The Chip Enable signal (\overline{CE}) is active at any time that the microcontroller accesses external memory, whether reading or writing. It is inactive (asserted high) whenever the device is in Sleep mode.

This generally includes basic EPROM and Flash devices. It allows table writes to byte-wide external memories.

During a TBLWT instruction cycle, the TABLAT data is presented on the upper and lower bytes of the AD<15:0> bus. The appropriate level of the BA0 control line is strobed on the LSb of the TBLPTR.

FIGURE 8-6: 8-BIT MULTIPLEXED MODE EXAMPLE

	TABLE 11-9:	PORTD FUNCTIONS	(CONTINUED)
--	-------------	-----------------	-------------

Pin Name	Function	TRIS Setting	I/O	l/O Type	Description
RD7/AD7/PSP7	RD7	0	0	DIG	LATD<7> data output.
		1	I	ST	PORTD<7> data input.
	AD7 ⁽²⁾	x	0	DIG	External memory interface, address/data bit 7 output. ⁽¹⁾
		x	I	TTL	External memory interface, data bit 7 input. ⁽¹⁾
	PSP7	x	0	DIG	PSP read output data (LATD<7>); takes priority over port data.
		x	I	TTL	PSP write data input.

Legend: O = Output, I = Input, DIG = Digital Output, ST = Schmitt Buffer Input, TTL = TTL Buffer Input, x = Don't care (TRIS bit does not affect port direction or is overridden for this option).

Note 1: External memory interface I/O takes priority over all other digital and PSP I/O.

2: Available on 80-pin devices only.

TABLE 11-10: SUMMARY OF REGISTERS ASSOCIATED WITH PORTD

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
PORTD	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	60
LATD	LATD7	LATD6	LATD5	LATD4	LATD3	LATD2	LATD1	LATD0	60
TRISD	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	60
PORTG	RDPU	REPU	RJPU ⁽¹⁾	RG4	RG3	RG2	RG1	RG0	60

Legend: Shaded cells are not used by PORTD.

Note 1: Unimplemented on 64-pin devices, read as '0'.

16.0 CAPTURE/COMPARE/PWM (CCP) MODULES

PIC18F85J11 family devices have two CCP (Capture/Compare/PWM) modules, designated CCP1 and CCP2. Both modules implement standard Capture, Compare and Pulse-Width Modulation (PWM) modes.

Each CCP module contains a 16-bit register which can operate as a 16-bit Capture register, a 16-bit Compare register or a PWM Master/Slave Duty Cycle register. For the sake of clarity, all CCP module operation in the following sections is described with respect to CCP2, but is equally applicable to CCP1.

REGISTER 16-1: CCPxCON: CCPx CONTROL REGISTER (CCP1, CCP2 MODULES)

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	DCxB1	DCxB0	CCPxM3	CCPxM2	CCPxM1	CCPxM0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6	Unimplemented: Read as '0'
bit 5-4	DCxB<1:0>: PWM Duty Cycle bit 1 and bit 0 for CCPx Module
	Capture mode:
	Unused.
	Compare mode:
	Unused.
	PWM mode:
	These bits are the two Least Significant bits (bit 1 and bit 0) of the 10-bit PWM duty cycle. The eight Most Significant bits (DCx9:DCx2) of the duty cycle are found in CCPRxL.
bit 3-0	CCPxM<3:0>: CCPx Module Mode Select bits
	0000 = Capture/Compare/PWM disabled (resets CCPx module)
	0001 = Reserved
	0010 = Compare mode, toggle output on match (CCPxIF bit is set)
	0011 = Reserved
	0100 = Capture mode, every falling edge
	0101 = Capture mode, every rising edge
	0110 = Capture mode, every 4th rising edge
	0111 = Capture mode, every 16th rising edge
	1000 = Compare mode: initialize CCPx pin low; on compare match, force CCPx pin high (CCPxIF bit is set)
	1001 = Compare mode: initialize CCPx pin high; on compare match, force CCPx pin low (CCPxIF bit is set)
	1010 = Compare mode: generate software interrupt on compare match (CCPxIF bit is set, CCPx pin reflects I/O state)
	1011 = Compare mode: Special Event Trigger; reset timer; start A/D conversion on CCPx match (CCPxIF bit is set) ⁽¹⁾

- 11xx = PWM mode
- **Note 1:** CCPxM<3:0> = 1011 will only reset the timer and not start an A/D conversion on CCPx match.

17.3.7 SLAVE MODE

In Slave mode, the data is transmitted and received as the external clock pulses appear on SCK. When the last bit is latched, the SSPIF interrupt flag bit is set.

Before enabling the module in SPI Slave mode, the clock line must match the proper Idle state. The clock line can be observed by reading the SCK pin. The Idle state is determined by the CKP bit (SSPCON1<4>).

While in Slave mode, the external clock is supplied by the external clock source on the SCK pin. This external clock must meet the minimum high and low times as specified in the electrical specifications.

While in Sleep mode, the slave can transmit/receive data. When a byte is received, the device will wake-up from Sleep.

17.3.8 SLAVE SELECT SYNCHRONIZATION

The \overline{SS} pin allows a Synchronous Slave mode. The SPI must be in Slave mode with \overline{SS} pin control enabled (SSPCON1<3:0> = 04h). When the \overline{SS} pin is low, transmission and reception are enabled and the SDO pin is

driven. When the \overline{SS} pin goes high, the SDO pin is no longer driven, even if in the middle of a transmitted byte and becomes a floating output. External pull-up/pull-down resistors may be desirable depending on the application.

- Note 1: When the SPI is in Slave mode with \overline{SS} pin control enabled (SSPCON1<3:0> = 0100), the SPI module will reset if the \overline{SS} pin is set to VDD.
 - 2: If the SPI is used in Slave mode with CKE set, then the SS pin control must be enabled.

When the SPI module resets, the bit counter is forced to '0'. This can be done by either forcing the \overline{SS} pin to a high level or clearing the SSPEN bit.

To emulate two-wire communication, the SDO pin can be connected to the SDI pin. When the SPI needs to operate as a receiver, the SDO pin can be configured as an input. This disables transmissions from the SDO. The SDI can always be left as an input (SDI function) since it cannot create a bus conflict.

FIGURE 17-4: SLAVE SYNCHRONIZATION WAVEFORM

17.4.3.2 Address Masking

Masking an address bit causes that bit to become a "don't care". When one address bit is masked, two addresses will be Acknowledged and cause an interrupt. It is possible to mask more than one address bit at a time, which makes it possible to Acknowledge up to 31 addresses in 7-Bit Addressing mode and up to 63 addresses in 10-Bit Addressing mode (see Example 17-2).

The I²C Slave behaves the same way, whether address masking is used or not. However, when address masking is used, the I²C slave can Acknowledge multiple addresses and cause interrupts. When this occurs, it is necessary to determine which address caused the interrupt by checking SSPBUF.

In 7-Bit Addressing mode, Address Mask bits, ADMSK<5:1> (SSPCON2<5:1>), mask the corresponding address bits in the SSPADD register. For any ADMSK bits that are set (ADMSK<n> = 1), the corresponding address bit is ignored (SSPADD<n> = x). For the module to issue an address Acknowledge, it is sufficient to match only on addresses that do not have an active address mask.

In 10-Bit Addressing mode, ADMSK<5:2> bits mask the corresponding address bits in the SSPADD register. In addition, ADMSK1 simultaneously masks the two LSbs of the address (SSPADD<1:0>). For any ADMSK bits that are active (ADMSK<n> = 1), the corresponding address bit is ignored (SSPADD<n> = x). Also note that although in 10-Bit Addressing mode, the upper address bits reuse part of the SSPADD register bits, the address mask bits do not interact with those bits. They only affect the lower address bits.

Note 1: ADMSK1 masks the two Least Significant bits of the address.

2: The two Most Significant bits of the address are not affected by address masking.

EXAMPLE 17-2: ADDRESS MASKING EXAMPLES

7-Bit Addressing:

SSPADD<7:1> = A0h (1010000) (SSPADD<0> is assumed to be '0')

ADMSK<5:1> = 00111

Addresses Acknowledged: A0h, A2h, A4h, A6h, A8h, AAh, ACh, AEh

10-Bit Addressing:

SSPADD<7:0> = A0h (10100000) (the two MSbs of the address are ignored in this example, since they are not affected by masking)

ADMSK<5:1> = 00111

Addresses Acknowledged: A0h, A1h, A2h, A3h, A4h, A5h, A6h, A7h, A8h, A9h, AAh, ABh, ACh, ADh, AEh, AFh

17.4.7 BAUD RATE

In I²C Master mode, the Baud Rate Generator (BRG) reload value is placed in the lower 7 bits of the SSPADD register (Figure 17-19). When a write occurs to SSPBUF, the Baud Rate Generator will automatically begin counting. The BRG counts down to 0 and stops until another reload has taken place. The BRG count is decremented twice per instruction cycle (TcY) on the Q2 and Q4 clocks. In I²C Master mode, the BRG is reloaded automatically.

Once the given operation is complete (i.e., transmission of the last data bit is followed by ACK), the internal clock will automatically stop counting and the SCL pin will remain in its last state.

Table 17-3 demonstrates clock rates based on instruction cycles and the BRG value loaded into SSPADD. The SSPADD BRG value of 0x00 is not supported.

17.4.7.1 Baud Rate Generation in Power-Managed Modes

When the device is operating in one of the power-managed modes, the clock source to the BRG may change frequency, or even stop, depending on the mode and clock source selected. Switching to a Run or Idle mode from either the secondary clock or internal oscillator is likely to change the clock rate to the BRG. In Sleep mode, the BRG will not be clocked at all.

FIGURE 17-19: BAUD RATE GENERATOR BLOCK DIAGRAM

TABLE 17-3: I²C[™] CLOCK RATE w/BRG

Fcy	Fcy * 2	BRG Value	FscL (2 Rollovers of BRG)
10 MHz	20 MHz	18h	400 kHz ⁽¹⁾
10 MHz	20 MHz	1Fh	312.5 kHz
10 MHz	20 MHz	63h	100 kHz
4 MHz	8 MHz	09h	400 kHz ⁽¹⁾
4 MHz	8 MHz	0Ch	308 kHz
4 MHz	8 MHz	27h	100 kHz
1 MHz	2 MHz	02h	333 kHz ⁽¹⁾
1 MHz	2 MHz	09h	100 kHz

Note 1: The I²C interface does not conform to the 400 kHz I²C specification (which applies to rates greater than 100 kHz) in all details, but may be used with care where higher rates are required by the application.

17.4.12 ACKNOWLEDGE SEQUENCE TIMING

An Acknowledge sequence is enabled by setting the Acknowledge Sequence Enable bit. ACKEN (SSPCON2<4>). When this bit is set, the SCL pin is pulled low and the contents of the Acknowledge data bit are presented on the SDA pin. If the user wishes to generate an Acknowledge, then the ACKDT bit should be cleared. If not, the user should set the ACKDT bit before starting an Acknowledge sequence. The Baud Rate Generator then counts for one rollover period (TBRG) and the SCL pin is deasserted (pulled high). When the SCL pin is sampled high (clock arbitration), the Baud Rate Generator counts for TBRG. The SCL pin is then pulled low. Following this, the ACKEN bit is automatically cleared, the Baud Rate Generator is turned off and the MSSP module then goes into Idle mode (Figure 17-25).

17.4.12.1 WCOL Status Flag

If the user writes the SSPBUF when an Acknowledge sequence is in progress, then WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

17.4.13 STOP CONDITION TIMING

A Stop bit is asserted on the SDA pin at the end of a receive/transmit by setting the Stop Sequence Enable bit, PEN (SSPCON2<2>). At the end of a receive/transmit, the SCL line is held low after the falling edge of the ninth clock. When the PEN bit is set, the master will assert the SDA line low. When the SDA line is sampled low, the Baud Rate Generator is reloaded and counts down to 0. When the Baud Rate Generator times out, the SCL pin will be brought high and one TBRG (Baud Rate Generator rollover count) later, the SDA pin will be deasserted. When the SDA pin is sampled high while SCL is high, the P bit (SSPSTAT<4>) is set. A TBRG later, the PEN bit is cleared and the SSPIF bit is set (Figure 17-26).

17.4.13.1 WCOL Status Flag

If the user writes the SSPBUF when a Stop sequence is in progress, then the WCOL bit is set and the contents of the buffer are unchanged (the write doesn't occur).

FIGURE 17-25: ACKNOWLEDGE SEQUENCE WAVEFORM

17.4.17.1 Bus Collision During a Start Condition

During a Start condition, a bus collision occurs if:

- a) SDA or SCL is sampled low at the beginning of the Start condition (Figure 17-28).
- b) SCL is sampled low before SDA is asserted low (Figure 17-29).

During a Start condition, both the SDA and the SCL pins are monitored.

If the SDA pin is already low, or the SCL pin is already low, then all of the following occur:

- the Start condition is aborted;
- · the BCLIF flag is set; and
- the MSSP module is reset to its Idle state (Figure 17-28).

The Start condition begins with the SDA and SCL pins deasserted. When the SDA pin is sampled high, the Baud Rate Generator is loaded from SSPADD<6:0> and counts down to 0. If the SCL pin is sampled low while SDA is high, a bus collision occurs, because it is assumed that another master is attempting to drive a data '1' during the Start condition.

If the SDA pin is sampled low during this count, the BRG is reset and the SDA line is asserted early (Figure 17-30). If, however, a '1' is sampled on the SDA pin, the SDA pin is asserted low at the end of the BRG count. The Baud Rate Generator is then reloaded and counts down to 0. If the SCL pin is sampled as '0' during this time, a bus collision does not occur. At the end of the BRG count, the SCL pin is asserted low.

Note: The reason that bus collision is not a factor during a Start condition is that no two bus masters can assert a Start condition at the exact same time. Therefore, one master will always assert SDA before the other. This condition does not cause a bus collision because the two masters must be allowed to arbitrate the first address following the Start condition. If the address is the same, arbitration must be allowed to continue into the data portion, Repeated Start or Stop conditions.

FIGURE 17-28: BUS COLLISION DURING START CONDITION (SDA ONLY)

TABLE 19-4:	REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	57
PIR3	_	—	RC2IF	TX2IF	—	CCP2IF	CCP1IF	_	59
PIE3	—	—	RC2IE	TX2IE	—	CCP2IE	CCP1IE	—	59
IPR3	—	—	RC2IP	TX2IP	—	CCP2IP	CCP1IP	—	59
RCSTA2	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	61
TXREG2	AUSART Transmit Register							61	
TXSTA2	CSRC	TX9	TXEN	SYNC	—	BRGH	TRMT	TX9D	61
SPBRG2	2 AUSART Baud Rate Generator Register								61
LATG	U2OD	U1OD	_	LATG4	LATG3	LATG2	LATG1	LATG0	60

Legend: — = unimplemented locations read as '0'. Shaded cells are not used for asynchronous transmission.

FIGURE 22-2: COMPARATOR VOLTAGE REFERENCE OUTPUT BUFFER EXAMPLE

TABLE 22-1: REGISTERS ASSOCIATED WITH COMPARATOR VOLTAGE REFERENCE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
CVRCON	CVREN	CVROE	CVRR	CVRSS	CVR3	CVR2	CVR1	CVR0	59
CMCON	C2OUT	C10UT	C2INV	C1INV	CIS	CM2	CM1	CM0	59
TRISF	TRISF7	TRISF6	TRISF5	TRISF4	TRISF3	TRISF2	TRISF1	_	60

Legend: — = unimplemented, read as '0'. Shaded cells are not used with the comparator voltage reference.

SUBFSR Subtract Literal from FSR								
Synta	ax:	SUBFSR	f, k					
Oper	ands:	$0 \le k \le 63$	$0 \le k \le 63$					
		$f \in [0, 1,$	2]					
Oper	ation:	FSRf – k	\rightarrow FSRf					
Status Affected: None								
Encoding: 1110 1002				ffkl	ĸ	kkkk		
Desc	ription:	The 6-bit	The 6-bit literal, 'k', is subtracted					
		from the c	contents c	of the	FSR	1		
		specified	specified by 'f'.					
Word	ls:	1	1					
Cycle	es:	1	1					
QC	ycle Activity:							
	Q1	Q2	Q3			Q4		
	Decode	e Read Proce		cess		Vrite to		
		register 'f'	Data		de	stination		
Example:		SUBFSR	SUBFSR 2, 23h					

<u>xample:</u>	SUBFSR 2, 23h
Before Instructio	n
FSR2 =	03FFh
After Instruction	
FSR2 =	03DCh

SUB	ULNK	Subtract Literal from FSR2 and Return						
Synta	ax:	SUBULNK k						
Oper	ands:	$0 \le k \le 63$						
Oper	ation:	$\begin{aligned} FSR2 &-k \to FSR2, \\ (TOS) &\to PC \end{aligned}$						
Statu	s Affected:	None						
Enco	oding:	1110	1001	11kk	kkkk			
Desc	Description: The 6-bit literal, 'k', is subtracted from the contents of the FSR2. A RETURN is then executed by loading the PC with the TOS.							
	The instruction takes two cycles to execute; a NOP is performed during the second cycle.							
	This may be thought of as a special cas of the SUBFSR instruction, where f = 3 (binary '11'): it operates only on FSR2.							
Word	ls:	1						
Cycle	es:	2						
QC	ycle Activity:							
	Q1	Q2		Q3	Q4			
	Decode	Read register	f Pro	ocess Jata	Write to destination			
	No	No		No	No			
	Operation	Operatio	on Ope	eration	Operation			

Example: SUBULNK 23h

Before Instru		
FSR2	03FFh	
PC	=	0100h

After Instruction FSR2 = 03DCh PC = (TOS)

26.3	DC Characteristics:	PIC18F85J11 Family	(Industrial)	(Continued)
------	---------------------	--------------------	--------------	-------------

DC CHARACTERISTICS			Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial				
Param No.	Symbol	Characteristic	Min		Units	Conditions	
	Vol	Output Low Voltage					
D080		I/O Ports:					
		PORTA, PORTF, PORTG, PORTH	—	0.4	V	IOL = 3.4 mA, VDD = 3.3V, -40°C to +85°C	
		PORTD, PORTE, PORTJ	_	0.4	V	Io∟ = 3.4 mA, VDD = 3.3V, -40°C to +85°C	
		PORTB, PORTC	_	0.4	V	IOL = 8.5 mA, VDD = 3.3V, -40°C to +85°C	
D083		OSC2/CLKO (EC, ECPLL modes)	_	0.4	V	Io∟ = 1.6 mA, VDD = 3.3V, -40°C to +85°C	
	Vон	Output High Voltage ⁽¹⁾					
D090		I/O Ports:			V		
		PORTA, PORTF, PORTG, PORTH	2.4	—	V	IOH = -2 mA, VDD = 3.3V, -40°C to +85°C	
		PORTD, PORTE, PORTJ	2.4	—	V	lон = -2 mA, VDD = 3.3V, -40°С to +85°С	
		PORTB, PORTC	2.4	—	V	IOH = -6 mA, VDD = 3.3V, -40°C to +85°C	
D092		OSC2/CLKO (INTOSC, EC, ECPLL modes)	2.4	—	V	IOH = -1 mA, VDD = 3.3V, -40°C to +85°C	
		Capacitive Loading Specs on Output Pins					
D100	COSC2	OSC2 Pin	_	15	pF	In HS mode when external clock is used to drive OSC1	
D101	Сю	All I/O Pins and OSC2	_	50	pF	To meet the AC Timing Specifications	
D102	Св	SCL, SDA		400	pF	I ² C [™] Specification	

Note 1: Negative current is defined as current sourced by the pin.

2: Refer to Table 11-1 for the pins that have corresponding tolerance limits.