

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Last Time Buy
Core Processor	PowerPC e300c3
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	133MHz
Co-Processors/DSP	Communications; QUICC Engine
RAM Controllers	DDR2
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100Mbps (3)
SATA	-
USB	USB 2.0 (1)
Voltage - I/O	1.8V, 3.3V
Operating Temperature	-40°C ~ 105°C (TA)
Security Features	-
Package / Case	369-LFBGA
Supplier Device Package	369-PBGA (19x19)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mpc8306cvmabdca

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 Overview

The MPC8306 incorporates the e300c3 (MPC603e-based) core built on Power Architecture® technology, which includes 16 Kbytes of each L1 instruction and data caches, dual integer units, and on-chip memory management units (MMUs). The MPC8306 also includes two DMA engines and a 16-bit DDR2 memory controller.

A new communications complex based on QUICC Engine technology forms the heart of the networking capability of the MPC8306. The QUICC Engine block contains several peripheral controllers and a 32-bit RISC controller. Protocol support is provided by the main workhorses of the device—the unified communication controllers (UCCs). A block diagram of the MPC8306 is shown in the following figure.

Figure 1. MPC8306 Block Diagram

Each of the five UCCs can support a variety of communication protocols such as 10/100 Mbps MII/RMII Ethernet, IEEE-1588, HDLC and TDM.

2.1.3 Output Driver Characteristics

The following table provides information on the characteristics of the output driver strengths.

Driver Type	Output Impedance (Ω)	Supply Voltage (V)
Local bus interface utilities signals	42	OV _{DD} = 3.3
DDR2 signal	18	GV _{DD} = 1.8
DUART, system control, I2C, SPI, JTAG	42	OV _{DD} = 3.3
GPIO signals	42	OV _{DD} = 3.3

Table 3. Output Drive Capability

2.1.4 Input Capacitance Specification

The following table describes the input capacitance for the SYS_CLK_IN pin in the MPC8306.

Table 4.	Input	Capacitance	Specification
----------	-------	-------------	---------------

Parameter/Condition	Symbol	Min	Max	Unit	Note
Input capacitance for all pins except SYS_CLK_IN and QE_CLK_IN	CI	6	8	pF	_
Input capacitance for SYS_CLK_IN and QE_CLK_IN	C _{ICLK_IN}	10	_	pF	1

Note:

1. The external clock generator should be able to drive 10 pF.

2.2 Power Sequencing

The device does not require the core supply voltage (V_{DD}) and I/O supply voltages (GV_{DD}) and $OV_{DD})$ to be applied in any particular order. Note that during power ramp-up, before the power supplies are stable and if the I/O voltages are supplied before the core voltage, there might be a period of time that all input and output pins are actively driven and cause contention and excessive current. In order to avoid actively driving the I/O pins and to eliminate excessive current draw, apply the core voltage (V_{DD}) before the I/O voltage (GV_{DD}) and OV_{DD} and assert PORESET before the power supplies fully ramp up. In the case where the core voltage is applied first, the core voltage supply must rise to 90% of its nominal value before the I/O supplies reach 0.7 V; see Figure 3. Once both the power supplies (I/O voltage and core voltage) are stable, wait for a minimum of 32 clock cycles before negating PORESET.

NOTE

There is no specific power down sequence requirement for the device. I/O voltage supplies (GV_{DD} and OV_{DD}) do not have any ordering requirements with respect to one another.

The following table provides the PLL lock times.

Table 10. PLL Lock Times

Parameter/Condition	Min	Мах	Unit	Note
PLL lock times	—	100	μS	

5.1 Reset Signals DC Electrical Characteristics

The following table provides the DC electrical characteristics for the MPC8306 reset signals mentioned in Table 9.

Characteristic	Symbol	Condition	Min	Мах	Unit	Note
Output high voltage	V _{OH}	I _{OH} = –6.0 mA	2.4	_	V	1
Output low voltage	V _{OL}	I _{OL} = 6.0 mA	—	0.5	V	1
Output low voltage	V _{OL}	I _{OL} = 3.2 mA	—	0.4	V	1
Input high voltage	V _{IH}	—	2.0	OV _{DD} + 0.3	V	1
Input low voltage	V _{IL}	—	-0.3	0.8	V	_
Input current	I _{IN}	$0 \ V \leq V_{IN} \ \leq OV_{DD}$	—	±5	μΑ	—

Table 11. Reset Signals DC Electrical Characteristics

Note:

1. This specification applies when operating from 3.3 V supply.

6 DDR2 SDRAM

This section describes the DC and AC electrical specifications for the DDR2 SDRAM interface of the MPC8306. Note that DDR2 SDRAM is $GV_{DD}(typ) = 1.8 \text{ V}.$

6.1 DDR2 SDRAM DC Electrical Characteristics

The following table provides the recommended operating conditions for the DDR2 SDRAM component(s) of the MPC8306 when $GV_{DD}(typ) = 1.8 \text{ V}.$

Parameter/Condition	Symbol	Min	Мах	Unit	Note
I/O supply voltage	GV _{DD}	1.7	1.9	V	1
I/O reference voltage	MVREF	$0.49 imes GV_{DD}$	$0.51 imes GV_{DD}$	V	2
I/O termination voltage	V _{TT}	MVREF – 0.04	MVREF + 0.04	V	3
Input high voltage	V _{IH}	MVREF+ 0.125	GV _{DD} + 0.3	V	—
Input low voltage	V _{IL}	-0.3	MVREF – 0.125	V	—
Output leakage current	I _{OZ}	-9.9	9.9	μΑ	4

Table 12. DDR2 SDRAM DC Electrical Characteristics for GV_{DD}(typ) = 1.8 V

Table 12. DDR2 SDRAM DC Electrical Characteristics for GV_{DD}(typ) = 1.8 V (continued)

Parameter/Condition	Symbol	Min	Мах	Unit	Note
Output high current (V _{OUT} = 1.35 V)	I _{OH}	-13.4	_	mA	_
Output low current (V _{OUT} = 0.280 V)	I _{OL}	13.4	_	mA	

Notes:

1. GV_{DD} is expected to be within 50 mV of the DRAM GV_{DD} at all times.

2. MVREF is expected to be equal to $0.5 \times GV_{DD}$, and to track GV_{DD} DC variations as measured at the receiver. Peak-to-peak noise on MVREF may not exceed ±2% of the DC value.

3. V_{TT} is not applied directly to the device. It is the supply to which far end signal termination is made and is expected to be equal to MVREF. This rail should track variations in the DC level of MVREF.

4. Output leakage is measured with all outputs disabled, 0 V \leq V_{OUT} \leq GV_{DD}.

The following table provides the DDR2 capacitance when $GV_{DD}(typ) = 1.8$ V.

Table 13. DDR2 SDRAM Capacitance for GV_{DD}(typ) = 1.8 V

Parameter/Condition	Symbol	Min	Max	Unit	Note
Input/output capacitance: DQ, DQS	C _{IO}	6	8	pF	1
Delta input/output capacitance: DQ, DQS	C _{DIO}	—	0.5	pF	1

Note:

1. This parameter is sampled. GV_{DD} = 1.8 V ± 0.100 V, f = 1 MHz, T_A = 25 °C, V_{OUT} = GV_{DD} ÷ 2,

V_{OUT} (peak-to-peak) = 0.2 V.

6.2 DDR2 SDRAM AC Electrical Characteristics

This section provides the AC electrical characteristics for the DDR2 SDRAM interface.

6.2.1 DDR2 SDRAM Input AC Timing Specifications

This table provides the input AC timing specifications for the DDR2 SDRAM ($GV_{DD}(typ) = 1.8 V$).

Table 14. DDR2 SDRAM Input AC Timing Specifications for 1.8-V Interface

At recommended operating conditions with GV_{DD} of 1.8 V± 100mV.

Parameter	Symbol	Min	Max	Unit	Note
AC input low voltage	V _{IL}	—	MVREF – 0.25	V	—
AC input high voltage	V _{IH}	MVREF + 0.25	_	V	—

The following table provides the input AC timing specifications for the DDR2 SDRAM interface.

Table 15. DDR2 SDRAM Input AC Timing Specifications

At recommended operating conditions with GV_{DD} of 1.8V ± 100mV.

Parameter	Symbol	Min	Мах	Unit	Note
Controller skew for MDQS—MDQ/MDM	t _{CISKEW}			ps	1, 2

Table 16. DDR2 SDRAM Output AC Timing Specifications (continued)

At recommended operating conditions with GV_{DD} of 1.8V ± 100mV.

Parameter	Symbol ¹	Min	Мах	Unit	Note
MCS output hold with respect to MCK	t _{DDKHCX}			ns	3
266 MHz		2.5	—		
MCK to MDQS Skew	t _{DDKHMH}	-0.6	0.6	ns	4
MDQ/MDM output setup with respect to MDQS	t _{DDKHDS,} t _{DDKLDS}			ns	5
266 MHz		0.9	—		
MDQ/MDM output hold with respect to MDQS	t _{DDKHDX,} t _{DDKLDX}			ps	5
266 MHz		1100	—		
MDQS preamble start	t _{DDKHMP}	0.75 x t _{MCK}	_	ns	6
MDQS epilogue end	t _{DDKHME}	0.4 x t _{MCK}	0.6 x t _{MCK}	ns	6

Notes:

- The symbols used for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t<sub>(first two letters of functional block)(reference)(state)(signal)(state) for outputs. Output hold time can be read as DDR timing (DD) from the rising or falling edge of the reference clock (KH or KL) until the output went invalid (AX or DX). For example, t_{DDKHAS} symbolizes DDR timing (DD) for the time t_{MCK} memory clock reference (K) goes from the high (H) state until outputs (A) are setup (S) or output valid time. Also, t_{DDKLDX} symbolizes DDR timing (DD) for the time t_{MCK} memory clock reference (K) goes low (L) until data outputs (D) are invalid (X) or data output hold time.
 </sub></sub>
- 2. All MCK/MCK referenced measurements are made from the crossing of the two signals ±0.1 V.
- 3. ADDR/CMD includes all DDR SDRAM output signals except MCK/MCK, MCS, and MDQ/MDM/MDQS. For the ADDR/CMD setup and hold specifications, it is assumed that the Clock Control register is set to adjust the memory clocks by 1/2 applied cycle.
- 4. Note that t_{DDKHMH} follows the symbol conventions described in note 1. For example, t_{DDKHMH} describes the DDR timing (DD) from the rising edge of the MCK(n) clock (KH) until the MDQS signal is valid (MH). t_{DDKHMH} can be modified through control of the DQSS override bits in the TIMING_CFG_2 register. This is typically set to the same delay as the clock adjusts in the CLK_CNTL register. The timing parameters listed in the table assume that these 2 parameters have been set to the same adjustment value. See the MPC8306 PowerQUICC II Pro Integrated Communications Processor Family Reference Manual for a description and understanding of the timing modifications enabled by use of these bits.
- 5. Determined by maximum possible skew between a data strobe (MDQS) and any corresponding bit of data (MDQ), or data mask (MDM). The data strobe should be centered inside of the data eye at the pins of the microprocessor.
- 6. t_{DDKHMP} follows the symbol conventions described in note 1.

Local Bus

7 Local Bus

This section describes the DC and AC electrical specifications for the local bus interface of the MPC8306.

7.1 Local Bus DC Electrical Characteristics

The following table provides the DC electrical characteristics for the local bus interface.

Parameter	Symbol	Min	Max	Unit
High-level input voltage	V _{IH}	2	OV _{DD} + 0.3	V
Low-level input voltage	V _{IL}	-0.3	0.8	V
High-level output voltage, I _{OH} = –100 μA	V _{OH}	OV _{DD} – 0.2	_	V
Low-level output voltage, I_{OL} = 100 μ A	V _{OL}	—	0.2	V
Input current	I _{IN}	—	±5	μΑ

Table 17. Local Bus DC Electrical Characteristics

7.2 Local Bus AC Electrical Specifications

The following table describes the general timing parameters of the local bus interface of the MPC8306.

Table 18. Local Bus General Timing Parameters

Parameter	Symbol ¹	Min	Max	Unit	Note
Local bus cycle time	t _{LBK}	15	—	ns	2
Input setup to local bus clock (LCLKn)	t _{LBIVKH}	7	—	ns	3, 4
Input hold from local bus clock (LCLKn)	t _{LBIXKH}	1.0	—	ns	3, 4
Local bus clock (LCLK <i>n</i>) to output valid	t _{LBKHOV}	—	3	ns	3
Local bus clock (LCLK <i>n</i>) to output high impedance for LAD/LDP	t _{LBKHOZ}	—	4	ns	5

Notes:

 The symbols used for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{LBIXKH1} symbolizes local bus timing (LB) for the input (I) to go invalid (X) with respect to the time the t_{LBK} clock reference (K) goes high (H), in this case for clock one(1).
</sub>

2. All timings are in reference to falling edge of LCLK0 (for all outputs and for LGTA and LUPWAIT inputs) or rising edge of LCLK0 (for all other inputs).

3. All signals are measured from $OV_{DD}/2$ of the rising/falling edge of LCLK0 to $0.4 \times OV_{DD}$ of the signal in question for 3.3-V signaling levels.

4. Input timings are measured at the pin.

5. For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification.

Ethernet and MII Management

Parameter	Symbol	Conditions		Min	Мах	Unit
Supply voltage 3.3 V	OV _{DD}	—		3	3.6	V
Output high voltage	V _{OH}	I _{OH} = -4.0 mA	OV _{DD} = Min	2.40	OV _{DD} + 0.3	V
Output low voltage	V _{OL}	I _{OL} = 4.0 mA	OV _{DD} = Min	GND	0.50	V
Input high voltage	V _{IH}	—	—	2.0	OV _{DD} + 0.3	V
Input low voltage	V _{IL}	—	—	-0.3	0.90	V
Input current	I _{IN}	$0 V \le V_{IN} \le OV_{DD}$		_	±5	μA

Table 19. MII and RMII DC Electrical Characteristics

8.2 MII and RMII AC Timing Specifications

The AC timing specifications for MII and RMII are presented in this section.

8.2.1 MII AC Timing Specifications

This section describes the MII transmit and receive AC timing specifications.

8.2.1.1 MII Transmit AC Timing Specifications

The following table provides the MII transmit AC timing specifications.

```
Table 20. MII Transmit AC Timing Specifications
```

```
At recommended operating conditions with \text{OV}_{\text{DD}} of 3.3 V ± 300mV.
```

Parameter/Condition	Symbol ¹	Min	Typical	Max	Unit
TX_CLK clock period 10 Mbps	t _{MTX}	—	400	—	ns
TX_CLK clock period 100 Mbps	t _{MTX}	—	40	—	ns
TX_CLK duty cycle	t _{MTXH} /t _{MTX}	35	—	65	%
TX_CLK to MII data TXD[3:0], TX_ER, TX_EN delay	t _{MTKHDX}	1	5	15	ns
TX_CLK data clock rise V _{IL} (max) to V _{IH} (min)	t _{MTXR}	1.0	—	4.0	ns
TX_CLK data clock fall V _{IH} (min) to V _{IL} (max)	t _{MTXF}	1.0	—	4.0	ns

Note:

The symbols used for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t<sub>(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{MTKHDX} symbolizes MII transmit timing (MT) for the time t_{MTX} clock reference (K) going high (H) until data outputs (D) are invalid (X). Note that, in general, the clock reference symbol representation is based on two to three letters representing the clock of a particular functional. For example, the subscript of t_{MTX} represents the MII(M) transmit (TX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).
</sub></sub>

Ethernet and MII Management

The following figure shows the MII receive AC timing diagram.

Figure 13. MII Receive AC Timing Diagram

8.2.2 RMII AC Timing Specifications

This section describes the RMII transmit and receive AC timing specifications.

8.2.2.1 RMII Transmit AC Timing Specifications

The following table provides the RMII transmit AC timing specifications.

Table 22. RMII Transmit AC Timing Specifications

At recommended operating conditions with OV_{DD} of 3.3 V ± 300mV.

Parameter/Condition	Symbol ¹	Min	Typical	Max	Unit
REF_CLK clock	t _{RMX}	—	20	—	ns
REF_CLK duty cycle	t _{RMXH} /t _{RMX}	35	—	65	%
REF_CLK to RMII data TXD[1:0], TX_EN delay	t _{RMTKHDX}	2	—	13	ns
REF_CLK data clock rise V _{IL} (min) to V _{IH} (max)	t _{RMXR}	1.0	—	4.0	ns
REF_CLK data clock fall $V_{IH}(max)$ to $V_{IL}(min)$	t _{RMXF}	1.0		4.0	ns

Note:

1. The symbols used for timing specifications follow the pattern of t_{(first three letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{RMTKHDX} symbolizes RMII transmit timing (RMT) for the time t_{RMX} clock reference (K) going high (H) until data outputs (D) are invalid (X). Note that, in general, the clock reference symbol representation is based on two to three letters representing the clock of a particular functional. For example, the subscript of t_{RMX} represents the RMII(RM) reference (X) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).}

The following figure provides the AC test load.

Figure 14. AC Test Load

Ethernet and MII Management

The following figure shows the RMII receive AC timing diagram.

Figure 16. RMII Receive AC Timing Diagram

8.3 Ethernet Management Interface Electrical Characteristics

The electrical characteristics specified here apply to MII management interface signals MDIO (management data input/output) and MDC (management data clock). The electrical characteristics for MII, and RMII are specified in Section 8.1, "Ethernet Controller (10/100 Mbps)—MII/RMII Electrical Characteristics."

8.3.1 MII Management DC Electrical Characteristics

MDC and MDIO are defined to operate at a supply voltage of 3.3 V. The DC electrical characteristics for MDIO and MDC are provided in the following table.

Parameter	Symbol	Conditions		Min	Мах	Unit
Supply voltage (3.3 V)	OV _{DD}	—		3	3.6	V
Output high voltage	V _{OH}	I _{OH} = -1.0 mA	OV _{DD} = Min	2.40	OV _{DD} + 0.3	V
Output low voltage	V _{OL}	I _{OL} = 1.0 mA	OV _{DD} = Min	GND	0.50	V
Input high voltage	V _{IH}	-	—		—	V
Input low voltage	V _{IL}	_		_	0.80	V
Input current	I _{IN}	$0~V \le V_{IN} \le OV_{DD}$		—	±5	μA

Table 24. MII Management DC Electrical Characteristics When Powered at 3.3 V

8.3.2 MII Management AC Electrical Specifications

The following table provides the MII management AC timing specifications.

Table 25. MII Management AC Timing Specifications

At recommended operating conditions with OV_{DD} is 3.3 V ± 300mV.

Parameter/Condition	Symbol ¹	Min	Typical	Мах	Unit	Note
MDC frequency	f _{MDC}	_	2.5	_	MHz	_
MDC period	t _{MDC}	_	400	—	ns	_
MDC clock pulse width high	t _{MDCH}	32		_	ns	

HDLC

9.2 TDM/SI AC Timing Specifications

The following table provides the TDM/SI input and output AC timing specifications.

Table 29. TDM/SI AC Timing Specifications¹

Characteristic	Symbol ²	Min	Max	Unit
TDM/SI outputs—External clock delay	t _{SEKHOV}	2	14	ns
TDM/SI outputs—External clock High Impedance	t _{SEKHOX}	2	10	ns
TDM/SI inputs—External clock input setup time	t _{SEIVKH}	5	—	ns
TDM/SI inputs—External clock input hold time	t _{SEIXKH}	2	—	ns

Notes:

1. Output specifications are measured from the 50% level of the rising edge of QE_CLK_IN to the 50% level of the signal. Timings are measured at the pin.

The symbols used for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t<sub>(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{SEKHOX} symbolizes the TDM/SI outputs external timing (SE) for the time t_{TDM/SI} memory clock reference (K) goes from the high state (H) until outputs (O) are invalid (X).
</sub></sub>

The following figure provides the AC test load for the TDM/SI.

Figure 20. TDM/SI AC Test Load

The following figure represents the AC timing from Table 29. Note that although the specifications generally reference the rising edge of the clock, these AC timing diagrams also apply when the falling edge is the active edge.

Figure 21. TDM/SI AC Timing (External Clock) Diagram

10 HDLC

This section describes the DC and AC electrical specifications for the high level data link control (HDLC), of the MPC8306.

is the active edge.

Figure 23 and Figure 24 represent the AC timing from Table 31. Note that although the specifications generally reference the rising edge of the clock, these AC timing diagrams also apply when the falling edge

The following figure shows the timing with external clock.

Figure 23. AC Timing (External Clock) Diagram

The following figure shows the timing with internal clock.

Figure 24. AC Timing (Internal Clock) Diagram

eSDHC

13 eSDHC

This section describes the DC and AC electrical specifications for the eSDHC interface of the device.

13.1 eSDHC DC Electrical Characteristics

The following table provides the DC electrical characteristics for the eSDHC interface.

Table 36. eSDHC Interface DC Electrical Characteristics

At recommended operating conditions with OV_{DD} = 3.3 V

Characteristic	Symbol	Condition	Min	Max	Unit	Note
Input high voltage	V _{IH}	—	$0.625\times OV_{DD}$	—	V	1
Input low voltage	V _{IL}	—	—	$0.25\times OV_{DD}$	V	1
Output high voltage	V _{OH}	I _{OH} = −100 μA at OV _{DD} min	$0.75 \times OV_{DD}$	—	V	_
Output low voltage	V _{OL}	I _{OL} = 100 μA at OV _{DD} min	—	$0.125 \times OV_{DD}$	V	
Output high voltage	V _{OH}	I _{OH} = -100 mA	OV _{DD} – 0.2	—	V	2
Output low voltage	V _{OL}	I _{OL} = 2 mA	—	0.3	V	2
Input/output leakage current	I _{IN} /I _{OZ}	—	-10	10	μA	

Notes:

1. Note that the min V_{IL}and max V_{IH} values are based on the respective min and max OV_{IN} values found in Table 2..

2. Open drain mode for MMC cards only.

13.2 eSDHC AC Timing Specifications

The following table provides the eSDHC AC timing specifications as defined in Figure 27 and Figure 28.

Table 37. eSDHC AC Timing Specifications

At recommended operating conditions with OV_{DD} = 3.3 V

Parameter	Symbol ¹	Min	Max	Unit	Notes
SD_CLK clock frequency: SD/SDIO Full-speed/High-speed mode MMC Full-speed/High-speed mode	f _{SHSCK}	0	25/33.25 20/52	MHz	2, 4
SD_CLK clock low time—Full-speed/High-speed mode	t _{SHSCKL}	10/7	_	ns	4
SD_CLK clock high time—Full-speed/High-speed mode	t _{sнscкн}	10/7	_	ns	4
SD_CLK clock rise and fall times	t _{SHSCKR∕} t _{SHSCKF}	_	3	ns	4
Input setup times: SD_CMD, SD_DATx, SD_CD to SD_CLK	t _{SHSIVKH}	5	_	ns	4

SPI

Table 48. SPI DC Electrical Characteristics

Characteristic	Symbol	Condition	Min	Мах	Unit
Output high voltage	V _{OH}	I _{OH} = -6.0 mA	2.4	—	V
Output low voltage	V _{OL}	I _{OL} = 6.0 mA	—	0.5	V
Output low voltage	V _{OL}	I _{OL} = 3.2 mA	—	0.4	V
Input high voltage	V _{IH}	—	2.0	OV _{DD} + 0.3	V
Input low voltage	V _{IL}	—	-0.3	0.8	V
Input current	I _{IN}	$0 \ V \le V_{IN} \le OV_{DD}$	—	±5	μA

19.2 SPI AC Timing Specifications

The following table and provide the SPI input and output AC timing specifications.

Table 49. SPI	AC Ti	ming Spe	cifications ¹
---------------	-------	----------	--------------------------

Characteristic	Symbol ²	Min	Max	Unit
SPI outputs—Master mode (internal clock) delay	t _{NIKHOV}	0.5	6	ns
SPI outputs—Slave mode (external clock) delay	t _{NEKHOV}	2	8	ns
SPI inputs—Master mode (internal clock) input setup time	t _{NIIVKH}	6	_	ns
SPI inputs—Master mode (internal clock) input hold time	t _{NIIXKH}	0	_	ns
SPI inputs—Slave mode (external clock) input setup time	t _{NEIVKH}	4	_	ns
SPI inputs—Slave mode (external clock) input hold time	t _{NEIXKH}	2	_	ns

Notes:

1. Output specifications are measured from the 50% level of the rising edge of SPICLK to the 50% level of the signal. Timings are measured at the pin.

The symbols used for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{NIKHOV} symbolizes the NMSI outputs internal timing (NI) for the time t_{SPI} memory clock reference (K) goes from the high state (H) until outputs (O) are valid (V).
</sub>

3. All units of output delay must be enabled for 8306 output port spimosi (SPI Master Mode)

4. delay units must not be enabled for Slave Mode.

The following figure provides the AC test load for the SPI.

Figure 33. SPI AC Test Load

Figure 34 and Figure 35 represent the AC timing from Table 49. Note that although the specifications generally reference the rising edge of the clock, these AC timing diagrams also apply when the falling edge is the active edge.

JTAG

The following figure shows the SPI timing in slave mode (external clock).

Note: The clock edge is selectable on SPI.

The following figure shows the SPI timing in master mode (internal clock).

Figure 35. SPI AC Timing in Master Mode (Internal Clock) Diagram

20 JTAG

This section describes the DC and AC electrical specifications for the IEEE Std. 1149.1[™] (JTAG) interface of the MPC8306.

20.1 JTAG DC Electrical Characteristics

The following table provides the DC electrical characteristics for the IEEE Std. 1149.1 (JTAG) interface of the MPC8306.

Characteristic	Symbol	Condition	Min	Мах	Unit
Output high voltage	V _{OH}	I _{OH} = –6.0 mA	2.4	—	V
Output low voltage	V _{OL}	I _{OL} = 6.0 mA	—	0.5	V
Output low voltage	V _{OL}	I _{OL} = 3.2 mA	—	0.4	V

Table 50. JTAG Interface DC Electrical Characteristics

Package and Pin Listings

Figure 41. Mechanical Dimensions and Bottom Surface Nomenclature of the MPC8306 MAPBGA

Notes:

- 1. All dimensions are in millimeters.
- 2. Dimensions and tolerances per ASME Y14.5M-1994.
- 3. Maximum solder ball diameter measured parallel to datum A.
- 4. Datum A, the seating plane, is determined by the spherical crowns of the solder balls.

Package and Pin Listings

Signal	Package Pin Number	Pin Type	Power Supply	Notes
MEMC_MA[8]	T1	0	GV _{DD}	
MEMC_MA[9]	P4	0	GV _{DD}	
MEMC_MA[10]	L4	0	GV _{DD}	_
MEMC_MA[11]	T2	0	GV _{DD}	
MEMC_MA[12]	U1	0	GV _{DD}	_
MEMC_MA[13]	U2	0	GV _{DD}	
MEMC_MWE_B	K1	0	GV _{DD}	
MEMC_MRAS_B	K2	0	GV _{DD}	_
MEMC_MCAS_B	J1	0	GV _{DD}	
MEMC_MCS_B[0]	J4	0	GV _{DD}	_
MEMC_MCS_B[1]	H1	0	GV _{DD}	_
MEMC_MCKE[0]	U4	0	GV _{DD}	
MEMC_MCK[0]	V1	0	GV _{DD}	_
MEMC_MCK_B[0]	W1	0	GV _{DD}	_
MEMC_MODT[0]	H2	0	GV _{DD}	
MEMC_MODT[1]	H4	0	GV _{DD}	_
MEMC_MVREF	L8		GV _{DD}	_
Loc	al Bus Controller Interfac	e		<u> </u>
LAD[0]	B7	IO	OV _{DD}	—
LAD[1]	D9	IO	OV _{DD}	_
LAD[2]	A6	IO	OV _{DD}	_
LAD[3]	B8	IO	OV _{DD}	_
LAD[4]	A7	IO	OV _{DD}	_
LAD[5]	A8	IO	OV _{DD}	_
LAD[6]	A9	IO	OV _{DD}	_
LAD[7]	D10	IO	OV _{DD}	_
LAD[8]	B10	IO	OV _{DD}	_
LAD[9]	A10	IO	OV _{DD}	_
LAD[10]	B11	IO	OV _{DD}	_
LAD[11]	D12	IO	OV _{DD}	
LAD[12]	D11	IO	OV _{DD}	_
LAD[13]	A11	IO	OV _{DD}	_
LAD[14]	A12	IO	OV _{DD}	—
LAD[15]	B13	IO	OV _{DD}	—
LA[16]	A13	IO	OV _{DD}	—

Table 52. MPC8306 Pinout Listing (continued)

Signal	Package Pin Number	Pin Type	Power Supply	Notes
LA[17]	B14	0	OV _{DD}	_
LA[18]	A14	0	OV _{DD}	
LA[19]	A15	0	OV _{DD}	
LA[20]	A16	0	OV _{DD}	_
LA[21]	B16	0	OV _{DD}	—
LA[22]	A17	0	OV _{DD}	_
LA[23]	B17	0	OV _{DD}	_
LA[24]	A18	0	OV _{DD}	—
LA[25]	B19	0	OV _{DD}	_
LCS_B[0]	A19	0	OV _{DD}	3
LCS_B[1]	B20	0	OV _{DD}	3
LCS_B[2]	A20	0	OV _{DD}	3
LCS_B[3]	A21	0	OV _{DD}	3
LCLK[0]	D13	0	OV _{DD}	—
LGPL[0]/LFCLE	B22	0	OV _{DD}	_
LGPL[1]/LFALE	D16	0	OV _{DD}	_
LGPL[2]/LOE_B/LFRE_B	D19	0	OV _{DD}	—
LGPL[3]/LFWP_B	D17	0	OV _{DD}	_
LGPL[4]/LGTA_B/LUPWAIT/LFRB_B	E18	IO	OV _{DD}	—
LGPL[5]	E19	0	OV _{DD}	—
LWE_B[0]/LFWE_B[0]/LBS_B[0]	D15	0	OV _{DD}	_
LWE_B[1]/LBS_B[1]	D14	0	OV _{DD}	—
LBCTL	A22	0	OV _{DD}	—
LALE	B23	0	OV _{DD}	_
	JTAG		•	L
тск	A3	I	OV _{DD}	—
TDI	B5	I	OV _{DD}	3
TDO	D7	0	OV _{DD}	_
TMS	A4	I	OV _{DD}	3
TRST_B	D8	I	OV _{DD}	3
	Test Interface	•	•	•
TEST_MODE	A5	I	OV _{DD}	—
:	System Control Signals	•		•
HRESET_B	U20	IO	OV _{DD}	1
PORESET_B	V20	I	OV _{DD}	—

Table 52	. MPC8306	Pinout	Listing	(continued)
----------	-----------	--------	---------	-------------

Table 52. MPC8306 Pinout	Listing (continued)
--------------------------	-----------	------------

Signal	Package Pin Number	Pin Type	Power Supply	Notes
USBDR_TXDRXD[7]/GPI0[37]/QE_BRG[11]	Y5	10	OV _{DD}	—
	DUART		I	1
UART1_SOUT[1]/LSRCID4/LCS_B[4]	C23	0	OV _{DD}	—
UART1_SIN[1]/LDVAL/LCS_B[5]	F19	IO	OV _{DD}	—
UART1_SOUT[2]/UART1_RTS_B1/LCS_B[6]	D23	0	OV _{DD}	—
UART1_SIN[2]/UART1_CTS_B[1]/LCS_B[7]	D22	IO	OV _{DD}	—
	Interrupts			
IRQ_B0_MCP_IN_B/CE_PI_0	E20	10	OV _{DD}	—
IRQ_B1/MCP_OUT_B	E23	IO	OV _{DD}	—
IRQ_B2/CKSTOP_OUT_B	E22	IO	OV _{DD}	—
IRQ_B3/CKSTOP_IN_B	F20	I	OV _{DD}	—
	12C / SPI			
IIC_SDA1	G20	Ю	OV _{DD}	2
IIC_SCL1	J20	10	OV _{DD}	2
LCLK1/IIC_SCL2/CKSTOP_IN_B	H20	10	OV _{DD}	2
SPISEL_BOOT/IIC_SDA2/CKSTOP_OUT_B	F23	0	OV _{DD}	2
SPIMOSI/LSRCID[2]	G22	10	OV _{DD}	—
SPIMISO/LSRCID[3]	K20	10	OV _{DD}	—
SPICLK/LSRCID[0]	G23	Ю	OV _{DD}	_
SPISEL/LSRCID[1]	H22	-	OV _{DD}	—
	FEC Management			
FEC_MDC	H23	0	OV _{DD}	—
FEC_MDIO	L20	10	OV _{DD}	—
	FEC1/GTM/GPIO			
FEC1_COL/GTM1_TIN[1]/GPIO[16]	AB20	10	OV _{DD}	—
FEC1_CRS/GTM1_TGATE1_B/GPIO[17]	AC21	IO	OV _{DD}	—
FEC1_RX_CLK/GPIO[18]	Y17	10	OV _{DD}	_
FEC1_RX_DV/GTM1_TIN[2]/GPIO[19]	Y18	IO	OV _{DD}	—
FEC1_RX_ER/GTM1_TGATE[2]_B/GPIO[20]	AB19	IO	OV _{DD}	—
FEC1_RXD0/GPIO[21]	AC20	10	OV _{DD}	—
FEC1_RXD1/GTM1_TIN[3]/GPI0[22]	AC19	IO	OV _{DD}	—
FEC1_RXD2/GTM1_TGATE[3]_B/GPIO[23]	AC18	10	OV _{DD}	—
FEC1_RXD3/GPIO[24]	AB17	IO	OV _{DD}	—
FEC1_TX_CLK/GTM1_TIN4/GPIO[25]	Y15	10	OV _{DD}	_
FEC1_TX_EN/GTM1_TGATE[4]_B/GPIO[26]	Y16	IO	OV _{DD}	_

Signal	Package Pin Number	Pin Type	Power Supply	Notes
FEC3_TXD0/FEC_TMR_PP2/GPIO[60]	R20	IO	OV _{DD}	—
FEC3_TXD1/FEC_TMR_PP3/GPIO[61]	T22	IO	OV _{DD}	—
FEC3_TXD2/FEC_TMR_ALARM1/GPIO[62]	T23	IO	OV _{DD}	—
FEC3_TXD3/FEC_TMR_ALARM2/GPIO[63]	T20	IO	OV _{DD}	—
	HDLC/GPIO/TDM			
HDLC1_RXCLK/TDM1_RCK/GPIO[1]	U23	IO	OV _{DD}	—
HDLC1_RXD/TDM1_RD/GPIO[3]	U22	IO	OV _{DD}	—
HDLC1_TXCLK/GPIO[0]/TDM1_TCK/ QE_BRG[5]	AC22	IO	OV _{DD}	_
HDLC1_TXD/GPIO[2]/TDM1_TD/ CFG_RESET_SOURCE[0]	W18	IO	OV _{DD}	_
HDLC1_CD_B/GPIO[4]/TDM1_TFS	W19	IO	OV _{DD}	—
HDLC1_CTS_B/GPIO[5]/TDM1_RFS	Y20	IO	OV _{DD}	—
HDLC1_RTS_B/GPIO[6]/TDM1_STROBE_B/ CFG_RESET_SOURCE[1]	AB22	IO	OV _{DD}	_
HDLC2_TXCLK/GPIO[16]/TDM2_TCK/ QE_BRG[7]	AB23	IO	OV _{DD}	—
HDLC2_RXCLK/GPIO[17]/TDM2_RCK/ QE_BRG[8]	AA23	IO	OV _{DD}	—
HDLC2_TXD/GPIO[18]/TDM2_TD/ CFG_RESET_SOURCE[2]	W20	IO	OV _{DD}	—
HDLC2_RXD/GPIO[19]/TDM2_RD	Y23	IO	OV _{DD}	—
HDLC2_CD_B/GPIO[20]/TDM2_TFS	Y22	IO	OV _{DD}	—
HDLC2_CTS_B/GPIO[21]/TDM2_RFS	W23	IO	OV _{DD}	—
HDLC2_RTS_B/GPIO[22]/TDM2_STROBE_B/ CFG_RESET_SOURCE[3]	W22	IO	OV _{DD}	—
	Power			
AV _{DD1}	L16	—	—	—
AV _{DD2}	M16	_	—	—
AV _{DD3}	N8	_	_	—
GV _{DD}	G5, H5, J5, K5, L5, M5, N5, P5, R5, T5, U5	—	—	_
OV _{DD}	E7,E8,E9,E10,E11,E12, E13,E14, E15, E16,E17,G19,H19,J19,K 19,L19,M19, N19,P19,R19,T19,U19, W7,W8,W9, W10,W11, W12,W13, W14,W15, W16, W17	_	_	_

Document Revision History

26 Document Revision History

The following table provides a revision history for this document.

Rev. No.	Date	Substantive Change(s)
3	12/2014	 In Table 20 an Table 21, VIL(min) is replaced with VIL(max) and VIH(max) is replaced with VIL(min) Removed following signals from Table 52: FEC1_TMR_TX_ESFD FEC2_TMR_TX_ESFD FEC2_TMR_RX_ESFD FEC2_TMR_RX_ESFD Updated following signal names in Table 52: LGPL[0] to LGPL[0]/LFCLE LGPL[1] to LGPL[1]/LFALE LGPL[2] to LGPL[2]/LOE_B/LFRE_B LGPL[3] to LGPL[3]/LFWP_B LGPL[4] to LGPL[4]/LGTA_B/LUPWAIT/LFRB_B LWE_B[0] to LWE_B[0]/LFWE_B[0]/LBS_B[0] LWE_B[1] to LWE_B[1]/LBS_B[1]
2	09/2011	 Added Power numbers for core frequency of 333 MHz in Table 5. Added new PLL configurations as per new core frequency in Table 60. Added AF to indicate 333 MHz in Table 63.
1	06/2011	 Updated QE frequency in Table 5. Updated QUICC Engine frequency from 200 MHz to 233 MHz in Table 54. Updated CEMF and CEDF as per new QE frequency in Table 60. In Part Nomenclature field for QUICC Engine frequency, C now denotes 233 MHz. Updated Table 63. Added SPISEL_BOOT in MPC8306 Pin out Listing Table 52. Corrected SPISEL Pin Type in Table 52.
0	03/2011	Initial Release

Table 65. Document Revision History