

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	PowerPC e300c3
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	266MHz
Co-Processors/DSP	Communications; QUICC Engine
RAM Controllers	DDR2
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100Mbps (3)
SATA	-
USB	USB 2.0 (1)
Voltage - I/O	1.8V, 3.3V
Operating Temperature	0°C ~ 105°C (TA)
Security Features	-
Package / Case	369-LFBGA
Supplier Device Package	369-PBGA (19x19)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/ppc8306vmaddca

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 Overview

The MPC8306 incorporates the e300c3 (MPC603e-based) core built on Power Architecture® technology, which includes 16 Kbytes of each L1 instruction and data caches, dual integer units, and on-chip memory management units (MMUs). The MPC8306 also includes two DMA engines and a 16-bit DDR2 memory controller.

A new communications complex based on QUICC Engine technology forms the heart of the networking capability of the MPC8306. The QUICC Engine block contains several peripheral controllers and a 32-bit RISC controller. Protocol support is provided by the main workhorses of the device—the unified communication controllers (UCCs). A block diagram of the MPC8306 is shown in the following figure.

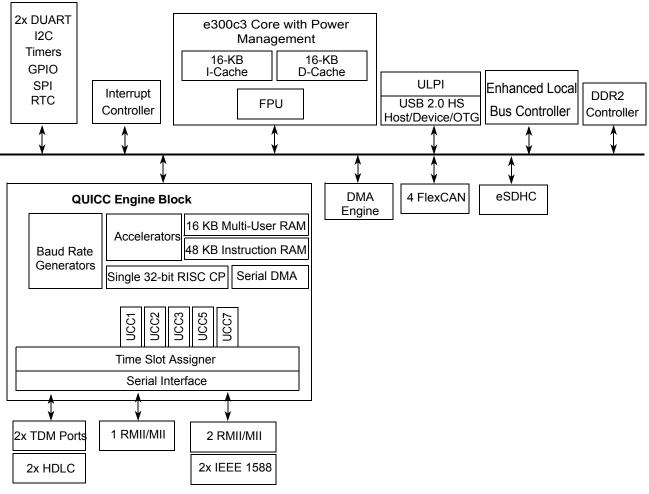


Figure 1. MPC8306 Block Diagram

Each of the five UCCs can support a variety of communication protocols such as 10/100 Mbps MII/RMII Ethernet, IEEE-1588, HDLC and TDM.

- Programmable highest priority request
- Six groups of interrupts with programmable priority
- External and internal interrupts directed to host processor
- Unique vector number for each interrupt source
- Enhanced secure digital host controller (eSDHC)
 - Compatible with the SD Host Controller Standard Specification Version 2.0 with test event register support
 - Compatible with the MMC System Specification Version 4.2
 - Compatible with the SD Memory Card Specification Version 2.0 and supports the high capacity SD memory card
 - Compatible with the SD Input/Output (SDIO) Card Specification, Version 2.0
 - Designed to work with SD Memory, miniSD Memory, SDIO, miniSDIO, SD Combo, MMC, MMC*plus*, and RS-MMC cards
 - Card bus clock frequency up to 33.33 MHz.
 - Supports 1-/4-bit SD and SDIO modes, 1-/4-bit modes
 - Up to 133 Mbps data transfer for SD/SDIO/MMC cards using 4 parallel data lines
 - Supports block sizes of 1 ~ 4096 bytes
- Universal serial bus (USB) dual-role controller
 - Designed to comply with Universal Serial Bus Revision 2.0 Specification
 - Supports operation as a stand-alone USB host controller
 - Supports operation as a stand-alone USB device
 - Supports high-speed (480-Mbps), full-speed (12-Mbps), and low-speed (1.5-Mbps) operations. Low speed is only supported in host mode.
- FlexCAN module
 - Full implementation of the CAN protocol specification version 2.0B
 - Up to 64 flexible message buffers of zero to eight bytes data length
 - Powerful Rx FIFO ID filtering, capable of matching incoming IDs
 - Selectable backwards compatibility with previous FlexCAN module version
 - Programmable loop-back mode supporting self-test operation
 - Global network time, synchronized by a specific message
 - Independent of the transmission medium (an external transceiver is required)
 - Short latency time due to an arbitration scheme for high-priority messages
- Dual I²C interfaces
 - Two-wire interface
 - Multiple-master support
 - Master or slave I²C mode support
 - On-chip digital filtering rejects spikes on the bus
 - I²C1 can be used as the boot sequencer

- DMA Engine
 - Support for the DMA engine with the following features:
 - Sixteen DMA channels
 - All data movement via dual-address transfers: read from source, write to destination
 - Transfer control descriptor (TCD) organized to support two-deep, nested transfer operations
 - Channel activation via one of two methods (for both the methods, one activation per execution of the minor loop is required):
 - Explicit software initiation
 - Initiation via a channel-to-channel linking mechanism for continuous transfers (independent channel linking at end of minor loop and/or major loop)
 - Support for fixed-priority and round-robin channel arbitration
 - Channel completion reported via optional interrupt requests
 - Support for scatter/gather DMA processing
- DUART
 - Two 2-wire interfaces (RxD, TxD)
 - The same can be configured as one 4-wire interface (RxD, TxD, RTS, CTS)
 - Programming model compatible with the original 16450 UART and the PC16550D
- Serial peripheral interface (SPI)
 - Master or slave support
- Power managemnt controller (PMC)
 - Supports core doze/nap/sleep/ power management
 - Exits low power state and returns to full-on mode when
 - The core internal time base unit invokes a request to exit low power state
 - The power management controller detects that the system is not idle and there are outstanding transactions on the internal bus or an external interrupt.
- Parallel I/O
 - General-purpose I/O (GPIO)
 - 56 parallel I/O pins multiplexed on various chip interfaces
 - Interrupt capability
- System timers
 - Periodic interrupt timer
 - Software watchdog timer
 - Eight general-purpose timers
- Real time clock (RTC) module
 - Maintains a one-second count, unique over a period of thousands of years
 - Two possible clock sources:
 - External RTC clock (RTC_PIT_CLK)
 - CSB bus clock
- IEEE Std. 1149.1[™] compliant JTAG boundary scan

2 Electrical Characteristics

This section provides the AC and DC electrical specifications and thermal characteristics for the MPC8306. The MPC8306 is currently targeted to these specifications. Some of these specifications are independent of the I/O cell, but are included for a more complete reference. These are not purely I/O buffer design specifications.

2.1 **Overall DC Electrical Characteristics**

This section covers the ratings, conditions, and other characteristics.

2.1.1 Absolute Maximum Ratings

The following table provides the absolute maximum ratings.

Table 1. Absolute	Maximum Ratings ¹
-------------------	------------------------------

	Characteristic		Max Value	Unit	Notes
Core supply voltage		V _{DD}	-0.3 to 1.26	V	
PLL supply voltage		AV _{DD1} AV _{DD2} AV _{DD3}	-0.3 to 1.26	V	_
DDR2 DRAM I/O voltage		GV _{DD}	-0.3 to 1.98	V	—
Local bus, DUART, system control and power management, I ² C, SPI, MII, RMII, MII management, eSDHC, FlexCAN, USB and JTAG I/O voltage		OV _{DD}	-0.3 to 3.6	V	2
Input voltage	DDR2 DRAM signals	MV _{IN}	–0.3 to (GV _{DD} + 0.3)	V	3
	DDR2 DRAM reference	MV _{REF}	-0.3 to (GV _{DD} + 0.3)	V	3
Local bus, DUART, SYS_CLK_IN, system control and power management, I ² C, SPI, and JTAG signals		OV _{IN}	-0.3 to (OV _{DD} + 0.3)	V	4
Storage temperature range		T _{STG}	-55 to 150	°C	_

Notes:

1. Functional and tested operating conditions are given in Table 2. Absolute maximum ratings are stress ratings only, and functional operation at the maximums is not guaranteed. Stresses beyond those listed may affect device reliability or cause permanent damage to the device.

2. OVDD here refers to NVDDA, NVDDB, NVDDC, NVDDF, NVDDG, and NVDDH from the ball map.

3. **Caution:** MV_{IN} must not exceed GV_{DD} by more than 0.3 V. This limit may be exceeded for a maximum of 100 ms during power-on reset and power-down sequences.

4. Caution: OV_{IN} must not exceed OV_{DD} by more than 0.3 V. This limit may be exceeded for a maximum of 100 ms during power-on reset and power-down sequences.

Electrical Characteristics

2.1.2 Power Supply Voltage Specification

The following table provides the recommended operating conditions for the MPC8306. Note that these values are the recommended and tested operating conditions. Proper device operation outside of these conditions is not guaranteed.

Characteristic	Symbol	Recommended Value	Unit	Note
Core supply voltage	V _{DD}	1.0 V ± 50 mV	V	1
PLL supply voltage	AV _{DD1} AV _{DD2} AV _{DD3}	1.0 V ± 50 mV	V	1
DDR2 DRAM I/O voltage	GV _{DD}	1.8 V ± 100 mV	V	1
Local bus, DUART, system control and power management, I ² C, SPI, MII, RMII, MII management, eSDHC, FlexCAN, USB and JTAG I/O voltage	OV _{DD}	3.3 V ± 300 mV	V	1, 3
Junction temperature	T _A /T _J	0 to 105	°C	2

Table 2. Recommended Operating Conditions

Notes:

1. GV_{DD}, OV_{DD}, AV_{DD}, and V_{DD} must track each other and must vary in the same direction—either in the positive or negative direction.

- 2. Minimum temperature is specified with T_A(Ambient Temperature); maximum temperature is specified with T_J(Junction Temperature).
- 3. OVDD here refers to NVDDA, NVDDB, NVDDC, NVDDF, NVDDG, and NVDDH from the ball map.

The following figure shows the undershoot and overshoot voltages at the interfaces of the MPC8306

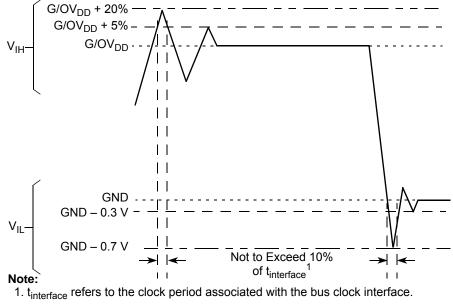


Figure 2. Overshoot/Undershoot Voltage for GV_{DD}/OV_{DD}

Power Characteristics

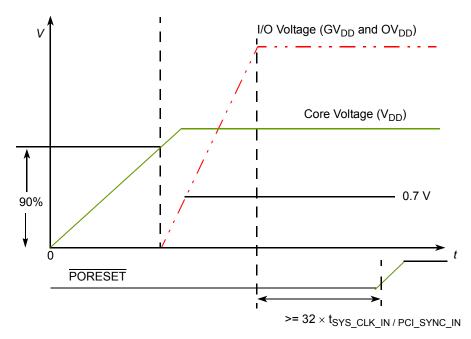


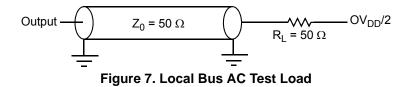
Figure 3. MPC8306 Power-Up Sequencing Example

3 Power Characteristics

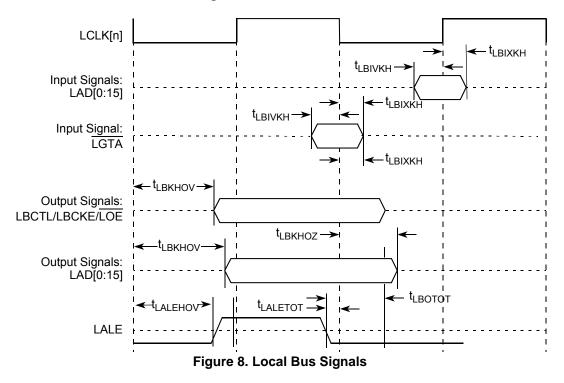
The typical power dissipation for this family of MPC8306 devices is shown in the following table.

Core Frequency (MHz)	QUICC Engine Frequency (MHz)	CSB Frequency (MHz)	Typical	Maximum	Unit	Note
133	133	133	0.272	0.618	W	1, 2, 3
200	233	133	0.291	0.631	W	1, 2, 3
266	233	133	0.451	0.925	W	1, 2, 3
333	233	133	0.471	0.950	W	1, 2, 3

 Table 5. MPC8306 Power Dissipation


Notes:

1. The values do not include I/O supply power (OV_{DD} and GV_{DD}), but it does include V_{DD} and AV_{DD} power. For I/O power values, see Table 6.


 Typical power is based on a nominal voltage of V_{DD} = 1.0 V, ambient temperature, and the core running a Dhrystone benchmark application. The measurements were taken on the evaluation board using WC process silicon.

3. Maximum power is based on a voltage of V_{DD} = 1.05 V, WC process, a junction T_J = 105°C, and a smoke test code.

The following figure provides the AC test load for the local bus.

The following figures show the local bus signals. These figures has been given indicate timing parameters only and do not reflect actual functional operation of interface.

Table 25. MII Management AC Timing Specifications (continued)

At recommended operating conditions with OV_{DD} is 3.3 V ± 300mV.

Parameter/Condition	Symbol ¹	Min	Typical	Max	Unit	Note
MDC to MDIO delay	t _{MDKHDX}	10	—	70	ns	—
MDIO to MDC setup time	t _{MDDVKH}	8.5	—	—	ns	—
MDIO to MDC hold time	t _{MDDXKH}	0	—	—	ns	-
MDC rise time	t _{MDCR}	_	_	10	ns	—
MDC fall time	t _{MDHF}	_	_	10	ns	—

Note:

The symbols used for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t<sub>(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{MDKHDX} symbolizes management data timing (MD) for the time t_{MDC} from clock reference (K) high (H) until data outputs (D) are invalid (X) or data hold time. Also, t_{MDDVKH} symbolizes management data timing (MD) vith respect to the time data input signals (D) reach the valid state (V) relative to the t_{MDC} clock reference (K) going to the high (H) state or setup time. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).
</sub></sub>

The following figure shows the MII management AC timing diagram.

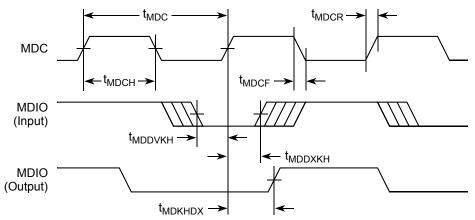


Figure 17. MII Management Interface Timing Diagram

8.3.3 IEEE 1588 DC Specifications

The IEEE 1588 DC timing specifications are given in the following table.

Characteristic	Symbol	Condition	Min	Max	unit
Output high voltage	V _{OH}	I _{OH} = -8.0 mA	2.4	_	V
Output low voltage	V _{OL}	I _{OL} = 8.0 mA	—	0.5	V
Output low voltage	V _{OL}	I _{OL} = 3.2mA	—	0.4	V

is the active edge.

Figure 23 and Figure 24 represent the AC timing from Table 31. Note that although the specifications generally reference the rising edge of the clock, these AC timing diagrams also apply when the falling edge

The following figure shows the timing with external clock.

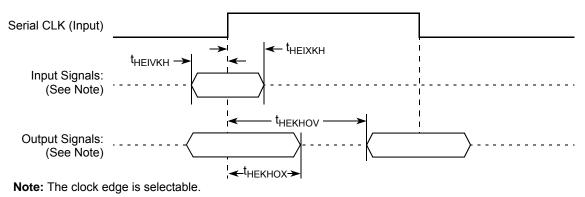


Figure 23. AC Timing (External Clock) Diagram

The following figure shows the timing with internal clock.

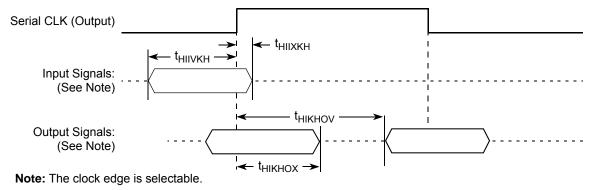


Figure 24. AC Timing (Internal Clock) Diagram

I²C

Table 41. I²C AC Electrical Specifications (continued)

All values refer to V_{IH} (min) and V_{IL} (max) levels (see Table 40).

Parameter	Symbol ¹	Min	Мах	Unit
Fall time of both SDA and SCL signals	t _{I2CF}	20 + 0.1 C _B ⁴	300	ns
Setup time for STOP condition	t _{I2PVKH}	0.6	—	μS
Bus free time between a STOP and START condition	t _{I2KHDX}	1.3	—	μS
Noise margin at the LOW level for each connected device (including hysteresis)	V _{NL}	$0.1 \times OV_{DD}$	—	V
Noise margin at the HIGH level for each connected device (including hysteresis)	V _{NH}	$0.2 \times OV_{DD}$	_	V

Notes:

- 1. The symbols used for timing specifications follow the pattern of t_{(first two letters of functional block)(signal)(state)(reference)(state)} for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{12DVKH} symbolizes I²C timing (I2) with respect to the time data input signals (D) reach the valid state (V) relative to the t_{12C} clock reference (K) going to the high (H) state or setup time. Also, t_{12SXKL} symbolizes I²C timing (I2) for the time that the data with respect to the start condition (S) went invalid (X) relative to the t_{12C} clock reference (K) going to the stop condition (P) reaching the valid state (V) relative to the t_{12C} clock reference (K) going to the high (H) state or setup time. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).
- 2. MPC8306 provides a hold time of at least 300 ns for the SDA signal (referred to the V_{IH}(min) of the SCL signal) to bridge the undefined region of the falling edge of SCL.
- 3. The maximum t_{12DVKL} has only to be met if the device does not stretch the LOW period (t_{12CL}) of the SCL signal.
- 4. C_B = capacitance of one bus line in pF.

The following figure provides the AC test load for the I^2C .

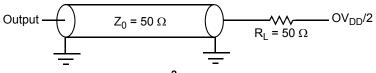


Figure 29. I²C AC Test Load

The following figure shows the AC timing diagram for the I^2C bus.

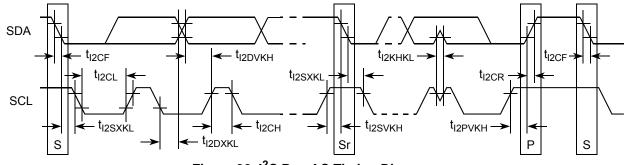


Figure 30. I²C Bus AC Timing Diagram

The following figure provides the boundary-scan timing diagram.

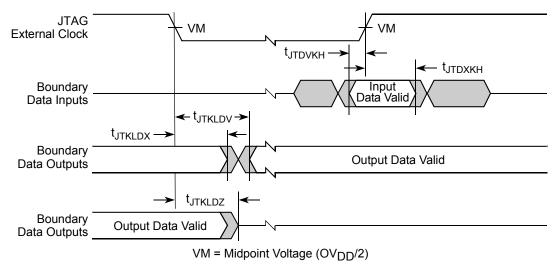


Figure 39. Boundary-Scan Timing Diagram

The following figure provides the test access port timing diagram.

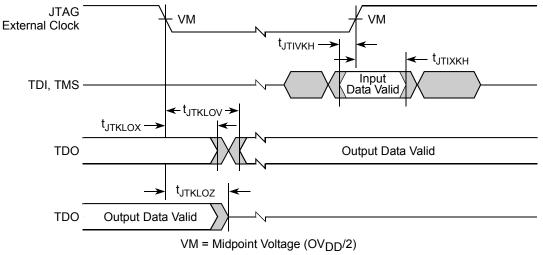


Figure 40. Test Access Port Timing Diagram

21 Package and Pin Listings

This section details package parameters, pin assignments, and dimensions. The MPC8306 is available in a thermally enhanced MAPBGA (mold array process-ball grid array); see Section 21.1, "Package Parameters for the MPC8306," and Section 21.2, "Mechanical Dimensions of the MPC8306 MAPBGA," for information on the MAPBGA.

21.1 Package Parameters for the MPC8306

The package parameters are as provided in the following list.

19 mm × 19 mm
MAPBGA
369
0.80 mm
1.48 mm; Min = 1.31mm and Max 1.61mm
96 Sn / 3.5 Ag / 0.5 Cu (VM package)
0.40 mm

21.2 Mechanical Dimensions of the MPC8306 MAPBGA

The following figure shows the mechanical dimensions and bottom surface nomenclature of the MPC8306, 369-MAPBGA package.

Signal	Package Pin Number	Pin Type	Power Supply	Notes
LA[17]	B14	0	OV _{DD}	
LA[18]	A14	0	OV _{DD}	
LA[19]	A15	0	OV _{DD}	
LA[20]	A16	0	OV _{DD}	
LA[21]	B16	0	OV _{DD}	
LA[22]	A17	0	OV _{DD}	
LA[23]	B17	0	OV _{DD}	
LA[24]	A18	0	OV _{DD}	
LA[25]	B19	0	OV _{DD}	
LCS_B[0]	A19	0	OV _{DD}	3
LCS_B[1]	B20	0	OV _{DD}	3
LCS_B[2]	A20	0	OV _{DD}	3
LCS_B[3]	A21	0	OV _{DD}	3
LCLK[0]	D13	0	OV _{DD}	
LGPL[0]/LFCLE	B22	0	OV _{DD}	
LGPL[1]/LFALE	D16	0	OV _{DD}	
LGPL[2]/LOE_B/LFRE_B	D19	0	OV _{DD}	
LGPL[3]/LFWP_B	D17	0	OV _{DD}	
LGPL[4]/LGTA_B/LUPWAIT/LFRB_B	E18	10	OV _{DD}	—
LGPL[5]	E19	0	OV _{DD}	—
LWE_B[0]/LFWE_B[0]/LBS_B[0]	D15	0	OV _{DD}	—
LWE_B[1]/LBS_B[1]	D14	0	OV _{DD}	—
LBCTL	A22	0	OV _{DD}	
LALE	B23	0	OV _{DD}	
	JTAG			
ТСК	A3	I	OV _{DD}	_
TDI	B5	I	OV _{DD}	3
TDO	D7	0	OV _{DD}	—
TMS	A4	I	OV _{DD}	3
TRST_B	D8	I	OV _{DD}	3
	Test Interface			
TEST_MODE	A5	I	OV _{DD}	
	System Control Signals			
HRESET_B	U20	10	OV _{DD}	1
PORESET_B	V20	I	OV _{DD}	—

Signal	Package Pin Number	Pin Type	Power Supply	Notes
USBDR_TXDRXD[7]/GPIO[37]/QE_BRG[11]	Y5	10	OV _{DD}	
	DUART			
UART1_SOUT[1]/LSRCID4/LCS_B[4]	C23	0	OV _{DD}	—
UART1_SIN[1]/LDVAL/LCS_B[5]	F19	IO	OV _{DD}	_
UART1_SOUT[2]/UART1_RTS_B1/LCS_B[6]	D23	0	OV _{DD}	
UART1_SIN[2]/UART1_CTS_B[1]/LCS_B[7]	D22	IO	OV _{DD}	_
	Interrupts			
IRQ_B0_MCP_IN_B/CE_PI_0	E20	10	OV _{DD}	—
IRQ_B1/MCP_OUT_B	E23	IO	OV _{DD}	—
IRQ_B2/CKSTOP_OUT_B	E22	IO	OV _{DD}	—
IRQ_B3/CKSTOP_IN_B	F20	I	OV _{DD}	—
	12C / SPI			1
IIC_SDA1	G20	IO	OV _{DD}	2
IIC_SCL1	J20	10	OV _{DD}	2
LCLK1/IIC_SCL2/CKSTOP_IN_B	H20	10	OV _{DD}	2
SPISEL_BOOT/IIC_SDA2/CKSTOP_OUT_B	F23	0	OV _{DD}	2
SPIMOSI/LSRCID[2]	G22	IO	OV _{DD}	—
SPIMISO/LSRCID[3]	K20	10	OV _{DD}	—
SPICLK/LSRCID[0]	G23	IO	OV _{DD}	—
SPISEL/LSRCID[1]	H22	Ι	OV _{DD}	
	FEC Management			
FEC_MDC	H23	0	OV _{DD}	—
FEC_MDIO	L20	IO	OV _{DD}	
	FEC1/GTM/GPIO			
FEC1_COL/GTM1_TIN[1]/GPIO[16]	AB20	10	OV _{DD}	
FEC1_CRS/GTM1_TGATE1_B/GPIO[17]	AC21	IO	OV _{DD}	—
FEC1_RX_CLK/GPIO[18]	Y17	10	OV _{DD}	—
FEC1_RX_DV/GTM1_TIN[2]/GPIO[19]	Y18	IO	OV _{DD}	—
FEC1_RX_ER/GTM1_TGATE[2]_B/GPIO[20]	AB19	IO	OV _{DD}	—
FEC1_RXD0/GPIO[21]	AC20	10	OV _{DD}	—
FEC1_RXD1/GTM1_TIN[3]/GPIO[22]	AC19	IO	OV _{DD}	—
FEC1_RXD2/GTM1_TGATE[3]_B/GPIO[23]	AC18	Ю	OV _{DD}	—
FEC1_RXD3/GPIO[24]	AB17	IO	OV _{DD}	—
FEC1_TX_CLK/GTM1_TIN4/GPIO[25]	Y15	Ю	OV _{DD}	—
FEC1_TX_EN/GTM1_TGATE[4]_B/GPIO[26]	Y16	IO	OV _{DD}	—

Table 52. MPC8306	Pinout Listing (continued)
-------------------	----------------------------

Signal	Package Pin Number	Pin Type	Power Supply	Notes	
FEC3_TXD0/FEC_TMR_PP2/GPIO[60]	R20	IO	OV _{DD}		
FEC3_TXD1/FEC_TMR_PP3/GPIO[61]	T22	IO	OV _{DD}	_	
FEC3_TXD2/FEC_TMR_ALARM1/GPIO[62]	T23	IO	OV _{DD}	_	
FEC3_TXD3/FEC_TMR_ALARM2/GPIO[63]	T20	IO	OV _{DD}	_	
	HDLC/GPIO/TDM		I		
HDLC1_RXCLK/TDM1_RCK/GPIO[1]	U23	IO	OV _{DD}		
HDLC1_RXD/TDM1_RD/GPIO[3]	U22	IO	OV _{DD}	—	
HDLC1_TXCLK/GPIO[0]/TDM1_TCK/ QE_BRG[5]	AC22	Ю	OV _{DD}	_	
HDLC1_TXD/GPIO[2]/TDM1_TD/ CFG_RESET_SOURCE[0]	W18	Ю	OV _{DD}	—	
HDLC1_CD_B/GPIO[4]/TDM1_TFS	W19	IO	OV _{DD}	—	
HDLC1_CTS_B/GPIO[5]/TDM1_RFS	Y20	IO	OV _{DD}	—	
HDLC1_RTS_B/GPIO[6]/TDM1_STROBE_B/ CFG_RESET_SOURCE[1]	AB22	IO	OV _{DD}	—	
HDLC2_TXCLK/GPIO[16]/TDM2_TCK/ QE_BRG[7]	AB23	Ю	OV _{DD}	—	
HDLC2_RXCLK/GPIO[17]/TDM2_RCK/ QE_BRG[8]	AA23	Ю	OV _{DD}	—	
HDLC2_TXD/GPIO[18]/TDM2_TD/ CFG_RESET_SOURCE[2]	W20	Ю	OV _{DD}	—	
HDLC2_RXD/GPIO[19]/TDM2_RD	Y23	IO	OV _{DD}	—	
HDLC2_CD_B/GPIO[20]/TDM2_TFS	Y22	IO	OV _{DD}	—	
HDLC2_CTS_B/GPIO[21]/TDM2_RFS	W23	IO	OV _{DD}	—	
HDLC2_RTS_B/GPIO[22]/TDM2_STROBE_B/ CFG_RESET_SOURCE[3]	W22	Ю	OV _{DD}	—	
	Power		•	•	
AV _{DD1}	L16	—	—	_	
AV _{DD2}	M16	_	—	—	
AV _{DD3}	N8	_	—	—	
GV _{DD}	G5, H5, J5, K5, L5, M5, N5, P5, R5, T5, U5	—	_	_	
OV _{DD}	E7,E8,E9,E10,E11,E12, E13,E14, E15, E16,E17,G19,H19,J19,K 19,L19,M19, N19,P19,R19,T19,U19, W7,W8,W9, W10,W11, W12,W13, W14,W15, W16, W17	_			

RCWL[SPMF]	System PLL Multiplication Factor			
0000	Reserved			
0001	Reserved			
0010	× 2			
0011	× 3			
0100	× 4			
0101	× 5			
0110	× 6			
0111–1111	Reserved			

Table 55. System PLL Multiplication Factors

coherent system bus clock (*csb_clk*). The following table shows the expected frequency values for the CSB frequency for selected *csb_clk* to *SYS_CLK_IN* ratios.

		SYS_CLK_IN(MHz)		
SPMF	csb_clk : sys_clk_in Ratio	25	33.33	66.67
		csb_clk Frequency (MHz)		
0010	2:1			133
0011	3:1			
0100	4:1		133	
0101	5:1	125	167	
0110	6:1			

Table 56. CSB Frequency Options

22.3 Core PLL Configuration

RCWL[COREPLL] selects the ratio between the internal coherent system bus clock (*csb_clk*) and the e300 core clock (*core_clk*). The following table shows the encodings for RCWL[COREPLL]. COREPLL values not listed, and should be considered reserved.

Table 57. e300 Core PLL Configuration

RCWL[COREPLL]		.L]	aara alki aab alk Batia		
0-1	2-5	6	core_clk : csb_clk Ratio	VCO Divider	
nn	0000	n	PLL bypassed (PLL off, <i>csb_clk</i> clocks core directly)	PLL bypassed (PLL off, <i>csb_clk</i> clocks core directly)	
00	0001	0	1:1	÷2	
01	0001	0	1:1	÷4	
10	0001	0	1:1	÷8	
11	0001	0	1:1	÷8	

- T_A = ambient temperature for the package (°C)
- $R_{\theta IA}$ = junction-to-ambient thermal resistance (°C/W)
- P_D = power dissipation in the package (W)

The junction-to-ambient thermal resistance is an industry standard value that provides a quick and easy estimation of thermal performance. As a general statement, the value obtained on a single layer board is appropriate for a tightly packed printed-circuit board. The value obtained on the board with the internal planes is usually appropriate if the board has low power dissipation and the components are well separated. Test cases have demonstrated that errors of a factor of two (in the quantity $T_I - T_A$) are possible.

23.1.3 Estimation of Junction Temperature with Junction-to-Board Thermal Resistance

The thermal performance of a device cannot be adequately predicted from the junction-to-ambient thermal resistance. The thermal performance of any component is strongly dependent on the power dissipation of surrounding components. In addition, the ambient temperature varies widely within the application. For many natural convection and especially closed box applications, the board temperature at the perimeter (edge) of the package is approximately the same as the local air temperature near the device. Specifying the local ambient conditions explicitly as the board temperature provides a more precise description of the local ambient conditions that determine the temperature of the device.

At a known board temperature, the junction temperature is estimated using the following equation:

$$T_J = T_B + (R_{\theta} J_B \times P_D)$$
 Eqn. 2

where:

 T_J = junction temperature (°C)

 T_B = board temperature at the package perimeter (°C)

 $R_{\theta IB}$ = junction-to-board thermal resistance (°C/W) per JESD51-8

 P_D = power dissipation in package (W)

When the heat loss from the package case to the air can be ignored, acceptable predictions of junction temperature can be made. The application board should be similar to the thermal test condition: the component is soldered to a board with internal planes.

23.1.4 Experimental Determination of Junction Temperature

To determine the junction temperature of the device in the application after prototypes are available, the thermal characterization parameter (Ψ_{JT}) can be used to determine the junction temperature with a measurement of the temperature at the top center of the package case using the following equation:

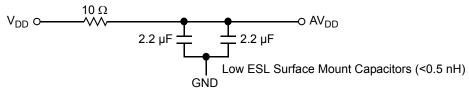
$$T_J = T_T + (\Psi_{JT} \times P_D)$$
 Eqn. 3

where:

 T_I = junction temperature (°C)

System Design Information

24.2 PLL Power Supply Filtering


Each of the PLLs listed above is provided with power through independent power supply pins. The voltage level at each $AV_{DD}n$ pin should always be equivalent to V_{DD} , and preferably these voltages are derived directly from V_{DD} through a low frequency filter scheme such as the following.

There are a number of ways to reliably provide power to the PLLs, but the recommended solution is to provide independent filter circuits as illustrated in Figure 44, one to each of the three AV_{DD} pins. By providing independent filters to each PLL the opportunity to cause noise injection from one PLL to the other is reduced.

This circuit is intended to filter noise in the PLLs resonant frequency range from a 500 kHz to 10 MHz range. It should be built with surface mount capacitors with minimum effective series inductance (ESL). Consistent with the recommendations of Dr. Howard Johnson in *High Speed Digital Design: A Handbook of Black Magic* (Prentice Hall, 1993), multiple small capacitors of equal value are recommended over a single large value capacitor.

Each circuit should be placed as close as possible to the specific AV_{DD} pin being supplied to minimize noise coupled from nearby circuits. It should be possible to route directly from the capacitors to the AV_{DD} pin, which is on the periphery of package, without the inductance of vias.

The following figure shows the PLL power supply filter circuit.

24.3 Decoupling Recommendations

Due to large address and data buses, and high operating frequencies, the MPC8306 can generate transient power surges and high frequency noise in its power supply, especially while driving large capacitive loads. This noise must be prevented from reaching other components in the MPC8306 system, and MPC8306 itself requires a clean, tightly regulated source of power. Therefore, it is recommended that the system designer place at least one decoupling capacitor at each V_{DD} , OV_{DD} , and GV_{DD} pins of the MPC8306. These decoupling capacitors should receive their power from separate V_{DD} , OV_{DD} , GV_{DD} , and GND power planes in the PCB, utilizing short traces to minimize inductance. Capacitors may be placed directly under the device using a standard escape pattern. Others may surround the part.

These capacitors should have a value of 0.01 or 0.1 μ F. Only ceramic SMT (surface mount technology) capacitors should be used to minimize lead inductance, preferably 0402 or 0603 sizes.

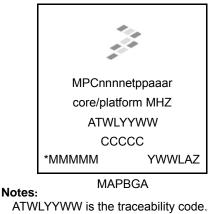
In addition, it is recommended that there be several bulk storage capacitors distributed around the PCB, feeding the V_{DD} , OV_{DD} , and GV_{DD} planes, to enable quick recharging of the smaller chip capacitors. These bulk capacitors should have a low ESR (equivalent series resistance) rating to ensure the quick response time necessary. They should also be connected to the power and ground planes through two vias

Ordering Information

MPC	nnnn	С	VM	AF	D	С	Α
Product Code	Part Identifier	Temperature Range ¹	Package ²	e300 Core Frequency ³	DDR2 Frequency	QUICC Engine Frequency	Revision Level
MPC	8306	Blank = 0 to 105°C C = –40 to 105°C	VM = Pb-free	AB = 133MHz AC = 200 MHz AD = 266 MHz AF = 333 MHz	D = 266 MHz F = 333 MHz	C = 233 MHz	Contact local Freescale sales office

Table 63. Part Numbering Nomenclature

Notes:


1. Contact local Freescale office on availability of parts with C temperature range.

2. See Section 21, "Package and Pin Listings," for more information on available package types.

3. Processor core frequencies supported by parts addressed by this specification only. Not all parts described in this specification support all core frequencies. Additionally, parts addressed by Part Number Specifications may support other maximum core frequencies.

25.2 Part Marking

Parts are marked as in the example shown in the following figure.

ATWLYYWW is the traceability code. CCCCC is the country code. MMMMM is the mask number. YWWLAZ is the assembly traceability code.

Figure 46. Freescale Part Marking for MAPBGA Devices

The following table shows the SVR Settings.

Table 64. SVR Settings

Device Package		SVR (Rev 1.0)	SVR (Rev 1.1)				
MPC8306 MAPBGA		0x8110_0210	0x8110_0211				
Note: PVR = 0x8085_0020							

How to Reach Us:

Home Page: www.freescale.com

Web Support: http://www.freescale.com/support

Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale, the Freescale logo, CodeWarrior, ColdFire, PowerQUICC, StarCore, and Symphony are trademarks of Freescale Semiconductor, Inc. Reg. U.S. Pat. & Tm. Off. CoreNet, QorlQ, QUICC Engine, and VortiQa are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org.

© 2011, 2014 Freescale Semiconductor, Inc.

Document Number: MPC8306EC Rev. 3 12/2014

