

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, I ² S, POR, PWM, WDT
Number of I/O	22
Program Memory Size	29.5KB (29.5k x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	2.1V ~ 5.5V
Data Converters	A/D 8x12b
Oscillator Type	External
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	28-TSSOP (0.173", 4.40mm Width)
Supplier Device Package	28-TSSOP
Purchase URL	https://www.e-xfl.com/product-detail/nuvoton-technology-corporation-america/mini57ede

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Hardware fault brake and software brake protections
- Supports rising, falling, central, period, and fault break interrupts
- Supports duty/period trigger A/D conversion
- Timer comparing matching event trigger PWM to do phase change
- Supports comparator event trigger PWM to force PWM output low for current period
- Provides interrupt accumulation function
- USCI (Universal Serial Control Interface Controller)
 - Two USCI devices
 - Supports to be configured as UART, SPI or I²C individually
 - Supports programmable baud-rate generator
- ADC (Analog-to-Digital Converter)
 - 12-bit ADC with 700 kSPS
 - Supports 2 sample/hold
 - Up to 8-ch single-end input from I/O and one internal input from band-gap.
 - Conversion started either by software trigger, PWM trigger, ACMP trigger or external pin trigger
 - Supports temperature sensor for measurement chip temperature
 - Supports Simultaneous and Sequential function to continuous conversion 4 channels maximum.
- Programmable Gain Amplifier (PGA)
 - Supports 8 level gain selects from 1, 2, 3, 5, 7, 9, 11 and 13
 - Unity gain frequency up to 8 MHz
- Analog Comparator
 - Two analog comparators with programmable 16-level internal voltage reference
 - Built-in CRV (comparator reference voltage)
 - Supports Hysteresis function
 - Interrupt when compared results changed
- Hardware Divider
 - Signed (two's complement) integer calculation
 - 32-bit dividend with 16-bit divisor calculation capacity
 - 32-bit quotient and 32-bit remainder outputs (16-bit remainder with sign extends to 32-bit)
 - Divided by zero warning flag
 - 6 HCLK clocks taken for one cycle calculation
 - Waiting for calculation ready automatically when reading quotient and remainder
 - ISP (In-System Programming) and ICP (In-Circuit Programming)

- BOD (Brown-out Detector)
 - 8 programmable threshold levels: 4.3V/4.0V/3.7V/3.0V/2.7V/2.4V/2.2V/2.0V
 - Supports Brown-out interrupt and reset option
- 96-bit unique ID
- LVR (Low Voltage Reset)
- Operating Temperature: -40°C ~105°C
- Reliability: EFT > ± 4KV, ESD HBM pass 4KV
- Packages:
 - Green package (RoHS)
 - 20-pin TSSOP, 28-pin TSSOP, 33-pin QFN

3 ABBREVIATIONS

Acronym	Description
ACMP	Analog Comparator Controller
ADC	Analog-to-Digital Converter
АНВ	Advanced High-Performance Bus
APB	Advanced Peripheral Bus
BOD	Brown-out Detection
BPWM	Basic Pulse Width Modulation
DAP	Debug Access Port
EPWM	Enhanced Pulse Width Modulation
FIFO	First In, First Out
FMC	Flash Memory Controller
GPIO	General-Purpose Input/Output
HCLK	The Clock of Advanced High-Performance Bus
HIRC	48 MHz Internal High Speed RC Oscillator
НХТ	4~24 MHz External High Speed Crystal Oscillator
ICP	In Circuit Programming
ISP	In System Programming
ISR	Interrupt Service Routine
LDO	Low Dropout Regulator
LIRC	10 kHz internal low speed RC oscillator (LIRC)
LXT	32.768 kHz External Low Speed Crystal Oscillator
NVIC	Nested Vectored Interrupt Controller
PCLK	The Clock of Advanced Peripheral Bus
PWM	Pulse Width Modulation
SPI	Serial Peripheral Interface
SPS	Samples per Second
TMR	Timer Controller
UART	Universal Asynchronous Receiver/Transmitter
UCID	Unique Customer ID
WDT	Watchdog Timer

Table 3-1 List of Abbreviations

Pin No.	Pin Name	Туре	MFP*	Description
	BPWM_CH0	I/O	MFP3	PWM channel0 output/capture input.
	ACMP1_P0	А	MFP5	Analog comparator1 positive input pin.
	I2C1_SCL	I/O	MFP8	l²C1 clock pin.
	SPI0_SS		MFP9	SPI0 slave select pin.
	SPI1_CLK	I/O	MFPA	SPI1 serial clock pin
	UART1_TXD	0	MFPB	Data transmitter output pin for UART1.
16	PD.4	I/O	MFP0	General purpose digital I/O pin.
	BPWM_CH0	I/O	MFP3	PWM channel0 output/capture input.
	UART1_RXD	I	MFPB	Data receiver input pin for UART1.
17	PD.1	I/O	MFP0	General purpose digital I/O pin.
	ICE_CLK	I	MFP1	Serial wired debugger clock pin
	ACMP1_P2	А	MFP5	Analog comparator1 positive input pin.
	I2C0_SCL	I/O	MFP8	l ² C0 clock pin.
	SPI0_CLK	I/O	MFP9	SPI0 serial clock pin.
	SPI1_SS	I/O	MFPA	SPI1 slave select pin
	UART0_TXD	0	MFPB	Data transmitter output pin for UART0.
18	PC.3	I/O	MFP0	General purpose digital I/O pin.
	ACMP1_O	0	MFP5	Analog comparator1 output.
	PGA_O	А	MFP6	PGA output pin
	SPI0_CLK	I/O	MFP9	SPI0 serial clock pin.
	SPI1_SS	I/O	MFPA	SPI1 slave select pin
19	PD.5	I/O	MFP0	General purpose digital I/O pin.
	UART0_TXD	0	MFPB	Data transmitter output pin for UART0.
20	PA.5	I/O	MFP0	General purpose digital I/O pin.
	XT_OUT	0	MFP1	External 4~24 MHz (high speed) crystal output pin.
	EPWM_CH5	I/O	MFP3	PWM channel5 output/capture input.
	ACMP0_O	0	MFP4	Analog comparator0 output.
21	PA.4	I/O	MFP0	General purpose digital I/O pin.
	XT_IN	I	MFP1	External 4~24 MHz (high speed) crystal input pin.
	EPWM_CH4	I/O	MFP3	PWM channel4 output/capture input.
22	PA.3	I/O	MFP0	General purpose digital I/O pin.
	EPWM_CH3	I/O	MFP3	PWM channel3 output/capture input.
	h	I/O	MFP8	l ² C0 clock pin.

Pin No.	Pin Name	Туре	MFP*	Description
	ADC1_CH2	А	MFP2	ADC1 channel2 analog input.
	BRAKE	I	MFP3	Brake input pin of EPWM.
	CCAP_P1	I	MFP7	Timer Continuous Capture input pin
	I2C1_SDA	I/O	MFP8	I ² C1 data input/output pin.
	SPI0_MISO	I/O	MFP9	SPI0 1st MISO (Master In, Slave Out) pin.
	SPI1_MOSI	I/O	MFPA	SPI1 MOSI (Master Out, Slave In) pin.
	UART1_RXD	I	MFPB	Data receiver input pin for UART1.
10	PD.2	I/O	MFP0	General purpose digital I/O pin.
	ICE_DAT	I/O	MFP1	Serial wired debugger data pin
	ADC1_CH1	А	MFP2	ADC1 channel1 analog input.
	CCAP_P0	I	MFP7	Timer Continuous Capture input pin
	I2C0_SDA	I/O	MFP8	I ² C0 data input/output pin.
	SPI0_MOSI	I/O	MFP9	SPI0 1st MOSI (Master Out, Slave In) pin.
	SPI1_MISO	I/O	MFPA	SPI1 MISO (Master In, Slave Out) pin.
	UART0_RXD	I	MFPB	Data receiver input pin for UART0.
11	PC.0	I/O	MFP0	General purpose digital I/O pin.
	ADC0_CH3	А	MFP2	ADC0 channel3 analog input.
	BPWM_CH0	I/O	MFP3	PWM channel0 output/capture input.
	ACMP1_P0	А	MFP5	Analog comparator1 positive input pin.
	I2C1_SCL	I/O	MFP8	I ² C1 clock pin.
	SPI0_SS	I/O	MFP9	SPI0 slave select pin.
	SPI1_CLK	I/O	MFPA	SPI1 serial clock pin
	UART1_TXD	0	MFPB	Data transmitter output pin for UART1.
12	PD.1	I/O	MFP0	General purpose digital I/O pin.
	ICE_CLK	I	MFP1	Serial wired debugger clock pin
	ACMP1_P2	А	MFP5	Analog comparator1 positive input pin.
	I2C0_SCL	I/O	MFP8	I ² C0 clock pin.
	SPI0_CLK	I/O	MFP9	SPI0 serial clock pin.
	SPI1_SS	I/O	MFPA	SPI1 slave select pin
	UART0_TXD	0	MFPB	Data transmitter output pin for UART0.
13	PC.3	I/O	MFP0	General purpose digital I/O pin.
	ACMP1_O	0	MFP5	Analog comparator1 output.
	PGA_O	А	MFP6	PGA output pin

	PB.3	I/O	MFP0	General purpose digital I/O pin.		
	ACMP1_N	A	MFP5	Analog comparator1 negative input pin.		
11	PGA I	A	MFP6	PGA input pin		
	т 07_1	1/0	MFP7	Timer0event counter input / toggle output		
	PC.2	1/O	MFP0	General purpose digital I/O pin.		
			MFP0			
	ADC1_CH2	A		ADC1 channel2 analog input.		
	BRAKE	 .	MFP3	Brake input pin of EPWM.		
12	CCAP_P1		MFP7	Timer Continuous Capture input pin		
	I2C1_SDA	I/O	MFP8	I ² C1 data input/output pin.		
	SPI0_MISO	I/O	MFP9	SPI0 1st MISO (Master In, Slave Out) pin.		
	SPI1_MOSI	I/O	MFPA	SPI1 MOSI (Master Out, Slave In) pin.		
	UART1_RXD	I	MFPB	Data receiver input pin for UART1.		
	PD.2	I/O	MFP0	General purpose digital I/O pin.		
	ICE_DAT	I/O	MFP1	Serial wired debugger data pin		
	ADC1_CH1	А	MFP2	ADC1 channel1 analog input.		
13	CCAP_P0	I	MFP7	Timer Continuous Capture input pin		
10	I2C0_SDA	I/O	MFP8	I ² C0 data input/output pin.		
	SPI0_MOSI	I/O	MFP9	SPI0 1st MOSI (Master Out, Slave In) pin.		
	SPI1_MISO	I/O	MFPA	SPI1 MISO (Master In, Slave Out) pin.		
	UART0_RXD	I	MFPB	Data receiver input pin for UART0.		
	PD.3	I/O	MFP0	General purpose digital I/O pin.		
14	BPWM_CH1	I/O	MFP3	PWM channel1 output/capture input.		
	UART1_TXD	0	MFPB	Data transmitter output pin for UART1.		
15	NC			No Connection		
16	NC			No Connection		
17	NC			No Connection		
18	NC			No Connection		
	PD.5	I/O	MFP0	General purpose digital I/O pin.		
19	UART0_TXD	0	MFPB	Data transmitter output pin for UART0.		
	PA.5	I/O	MFP0	General purpose digital I/O pin.		
	XT_OUT	0	MFP1	External 4~24 MHz (high speed) crystal output pin.		
20	EPWM_CH5	I/O	MFP3	PWM channel5 output/capture input.		
	ACMP0_O	0	MFP4	Analog comparator0 output.		
21	PA.4	I/O	MFP0	General purpose digital I/O pin.		
			-			

Μ	:	:
Ινι	IN	137

	XT_IN	I	MFP1	External 4~24 MHz (high speed) crystal input pin.		
	 EPWM_CH4	I/O	MFP3	PWM channel4 output/capture input.		
22	NC			No Connection		
	PA.3	I/O	MFP0	General purpose digital I/O pin.		
	EPWM_CH3	I/O	MFP3	PWM channel3 output/capture input.		
	I2C0_SCL	I/O	MFP8	l ² C0 clock pin.		
23	SPI0_CLK	I/O	MFP9	SPI0 serial clock pin.		
	SPI1_SS	I/O	MFPA	SPI1 slave select pin		
	UART0_TXD	0	MFPB	Data transmitter output pin for UART0.		
	PA.2	I/O	MFP0	General purpose digital I/O pin.		
	EPWM_CH2	I/O	MFP3	PWM channel2 output/capture input.		
	I2C0_SDA	I/O	MFP8	l²C0 data input/output pin.		
24	SPI0_MOSI	I/O	MFP9	SPI0 1st MOSI (Master Out, Slave In) pin.		
	SPI1_MISO	I/O	MFPA	SPI1 MISO (Master In, Slave Out) pin.		
	UART0_RXD	I	MFPB	Data receiver input pin for UART0.		
	PA.1	I/O	MFP0	General purpose digital I/O pin.		
	EPWM_CH1	I/O	MFP3	PWM channel1 output/capture input.		
	I2C1_SDA	I/O	MFP8	l²C1 data input/output pin.		
25	SPI0_MISO	I/O	MFP9	SPI0 1st MISO (Master In, Slave Out) pin.		
	SPI1_MOSI	I/O	MFPA	SPI1 MOSI (Master Out, Slave In) pin.		
	UART1_RXD	I	MFPB	Data receiver input pin for UART1.		
	PA.0	I/O	MFP0	General purpose digital I/O pin.		
	CLKO	0	MFP1	Clock Out		
	EPWM_CH0	I/O	MFP3	PWM channel0 output/capture input.		
26	I2C1_SCL	I/O	MFP8	l ² C1 clock pin.		
	SPI0_SS	I/O	MFP9	SPI0 slave select pin.		
	SPI1_CLK	I/O	MFPA	SPI1 serial clock pin		
	UART1_TXD	0	MFPB	Data transmitter output pin for UART1.		
27	PC.4	I/O	MFP0	General purpose digital I/O pin.		
21	ECAP_P3	I	MFP7	Enhanced Input Capture input pin		
	PC.0	I/O	MFP0	General purpose digital I/O pin.		
28	ADC0_CH3	А	MFP2	ADC0 channel3 analog input.		
28	BPWM_CH0	I/O	MFP3	PWM channel0 output/capture input.		
	ACMP1_P0	А	MFP5	Analog comparator1 positive input pin.		

	DDAKE		MEDO			
	BRAKE	PC.2	MFP3		EPWM brake pin.	
	EPWM_CH5	PA.5	MFP3	0	Enhanced PWM output pin.	
	EPWM_CH4	PA.4	MFP3	0	Enhanced PWM output pin.	
EPWM	EPWM_CH3	PA.3	MFP3	0	Enhanced PWM output pin.	
	EPWM_CH2	PA.2	MFP3	0	Enhanced PWM output pin.	
	EPWM_CH1	PA.1	MFP3	0	Enhanced PWM output pin.	
	EPWM_CH0	PA.0	MFP3	0	Enhanced PWM output pin.	
	I2C1_SDA	PC.2	MFP8	I/O	l ² C1 data pin.	
	I2C0_SDA	PD.2	MFP8	I/O	l²C0 data pin.	
	I2C0_SCL	PD.1	MFP8	I/O	l ² C0 clock pin.	
l ² C	I2C1_SCL	PC.0	MFP8	I/O	l²C1 clock pin.	
i C	I2C0_SCL	PA.3	MFP8	I/O	l ² C0 clock pin.	
	I2C0_SDA	PA.2	MFP8	I/O	l²C0 data pin.	
	I2C1_SDA	PA.1	MFP8	I/O	l²C1 data pin.	
	I2C1_SCL	PA.0	MFP8	I/O	l²C1 clock pin.	
	ICE_DAT	PD.2	MFP1	I/O	Serial wired debugger data pin	
ICE	ICE_CLK	PD.1	MFP1	I	Serial wired debugger clock pin	
nRESET	nRESET			I	External reset pin, internal pull-high.	
DO 4	PGA_I	PB.3	MFP6	А	PGA analog input pin.	
PGA	PGA_O	PC.3	MFP6	А	PGA analog output pin.	
	SPI0_MOSI	PC.1	MFP9	I/O	SPI0 MOSI (Master Out, Slave In) pin.	
	SPI0_MISO	PC.2	MFP9	I/O	SPI0 MISO (Master In, Slave Out) pin.	
	SPI0_MOSI	PD.2	MFP9	I/O	SPI0 MOSI (Master Out, Slave In) pin.	
	SPI0_CLK	PC.3	MFP9	I/O	SPI0 clock pin.	
	SPI0_CLK	PD.1	MFP9	I/O	SPI0 clock pin.	
SPI0	SPI0_SS	PC.0	MFP9	I	SPI0 slave selection pin.	
	SPI0_CLK	PA.3	MFP9	I/O	SPI0 clock pin.	
	SPI0_MOSI	PA.2	MFP9	I/O	SPI0 MOSI (Master Out, Slave In) pin.	
	SPI0_MISO	PA.1	MFP9	I/O	SPI0 MISO (Master In, Slave Out) pin.	
	SPI0_SS	PA.0	MFP9	I	SPI0 slave selection pin.	
	SPI1_MISO	PC.1	MFPA	I/O	SPI1 MISO (Master In, Slave Out) pin	
	SPI1_MOSI	PC.2	MFPA	I/O	SPI1 MOSI (Master Out, Slave In) pin.	
SPI1	SPI1_MISO	PD.2	MFPA	I/O	SPI1 MISO (Master In, Slave Out) pin	
	SPI1_SS	PC.3	MFPA	I/O	SPI1 Slave Select	
	_					

6.2 System Manager

6.2.1 Overview

System management includes the following sections:

- System Reset
- System Power Architecture
- System Memory Map
- System management registers for Part Number ID, chip reset and on-chip controllers reset, and multi-functional pin control
- System Timer (SysTick)
- Nested Vectored Interrupt Controller (NVIC)
- System Control registers

6.2.2 System Reset

The system reset can be issued by one of the events listed below. These reset event flags can be read from SYS_RSTSTS register to determine the reset source. Hardware reset can reset chip through peripheral reset signals. Software reset can trigger reset through control registers.

- Hardware Reset Sources
 - Power-on Reset (POR)
 - Low level on the nRESET pin
 - Watchdog Timer Time-out Reset (WDT)
 - Low Voltage Reset (LVR)
 - Brown-out Detector Reset (BOD Reset)
- Software Reset Sources
 - CHIP Reset will reset whole chip by writing 1 to CHIPRST (SYS_IPRST0[0])
 - MCU Reset to reboot but keeping the booting setting from APROM or LDROM by writing 1 to SYSRESETREQ (SCS_AIRCR[2])
 - CPU Reset for Cortex[®]-M0 core Only by writing 1 to CPURST (SYS_IPRST0[1])

6.2.8 System Timer (SysTick)

The Cortex[®]-M0 includes an integrated system timer, SysTick, which provides a simple, 24-bit cleared-on-write, decrementing, wrap-on-zero counter with a flexible control mechanism. The counter can be used in several different ways, for example:

An RTOS tick timer fires at a programmable rate (for example 100Hz) and invokes a SysTick routine.

A high-speed alarm timer uses Core clock.

A variable rate alarm or signal timer – the duration range is dependent on the reference clock used and the dynamic range of the counter.

A simple counter can be used by software to measure task completion time.

An internal Clock Source control based on missing/meeting durations. The COUNTFLAG bit-field in the control and status register can be used to determine if an action completed within a set duration, as part of a dynamic clock management control loop.

When enabled, the timer will count down from the value in the SysTick Current Value Register (SYST_CVR) to 0, and reload (wrap) to the value in the SysTick Reload Value Register (SYST_RVR) on the next clock edge, and then decrement on subsequent clocks. When the counter transitions to 0, the COUNTFLAG status bit is set. The COUNTFLAG bit clears on read.

The SYST_CVR value is UNKNOWN on reset. Software should write to the register to clear it to 0 before enabling the feature. This ensures the timer will count from the SYST_RVR value rather than an arbitrary value when it is enabled.

If the SYST_RVR is zero, the timer will be maintained with a current value of zero after it is reloaded with this value. This mechanism can be used to disable the feature independently from the timer enable bit.

For more detailed information, please refer to the "ARM[®] Cortex[®]-M0 Technical Reference Manual" and "ARM[®] v6-M Architecture Reference Manual".

34	18	Reserved	Reserved
35	19	Reserved	Reserved
36	20	Reserved	Reserved
37	21	HIRCTRIM_INT	HIRC TRIM interrupt
38	22	TMR0_INT	Timer 0 interrupt
39	23	TMR1_INT	Timer 1 interrupt
40	24	Reserved	Reserved
41	25	Reserved	Reserved
42	26	ACMP_INT	Analog Comparator 0 or Comparator 1 interrupt
43	27	Reserved	Reserved
44	28	PWRWU_INT	Chip wake-up from Power-down state interrupt
45	29	ADC0_INT	ADC0 interrupt
46	30	ADC1_INT	ADC1 interrupt
47	31	ADCWCMP_INT	ADC Window Compare interrupt

Table 6.2-9 System Interrupt Map Vector Table

6.2.9.4 Vector Table

When an interrupt is accepted, the processor will automatically fetch the starting address of the interrupt service routine (ISR) from a vector table in memory. For ARMv6-M, the vector table based address is fixed at 0x00000000. The vector table contains the initialization value for the stack pointer on reset, and the entry point addresses for all exception handlers. The vector number on previous page defines the order of entries in the vector table associated with the exception handler entry as illustrated in previous section.

Vector Table Word Offset (Bytes)	Description
0x00	Initial Stack Pointer Value
Exception Number * 0x04	Exception Entry Pointer using that Exception Number

Table 6.2-10 Vector Table Format

6.2.9.5 Operation Description

The NVIC interrupts can be enabled and disabled by writing to their corresponding Interrupt Set-Enable or Interrupt Clear-Enable register bit-field. The registers use a write-1-to-enable and write-1-to-clear policy, both registers reading back the current enabled state of the corresponding interrupts. When an interrupt is disabled, interrupt assertion will cause the interrupt to become Pending, however, the interrupt will not activate. If an interrupt is Active when it is disabled, it remains in its Active state until cleared by reset or an exception return. Clearing the enable bit prevents new activations of the associated interrupt.

NVIC interrupts can be pended/un-pended using a complementary pair of registers to those used

IRQ0 ~ IRQ31 Set-pending Control Register (NVIC_ISPR)

Register	Offset	R/W	Description	Reset Value
NVIC_ISPR	SCS_BA+0x200	R/W	IRQ0 ~ IRQ31 Set-Pending Control Register	0x0000_0000

31	30	29	28	27	26	25	24			
	SETPEND									
23	22	21	20	19	18	17	16			
	SETPEND									
15	14	13	12	11	10	9	8			
			SETF	PEND						
7	6	5	4	3	2	1	0			
			SETF	PEND						

Bits	Description	Description					
[31:0]	SETPEND	Set Interrupt Pending Register Write operation: 0 = No effect. 1 = Write 1 to set pending state. Each bit represents an interrupt number from IRQ0 ~ IRQ31 (Vector number from 16 ~ 47). Read operation:					
		 0 = Associated interrupt in not in pending status. 1 = Associated interrupt is in pending status. Note: Read value indicates the current pending status. 					

IRQ0 ~ IRQ31 Clear-pending Control Register (NVIC_ICPR)

Register	Offset	R/W	Description	Reset Value
NVIC_ICPR	SCS_BA+0x280	R/W	IRQ0 ~ IRQ31 Clear-Pending Control Register	0x0000_0000

31	30	29	28	27	26	25	24		
	CLRPEND								
23	22	21	20	19	18	17	16		
	CLRPEND								
15	14	13	12	11	10	9	8		
	CLRPEND								
7	6	5	4	3	2	1	0		
			CLRF	PEND					

Bits	Description						
[31:0]	CLRPEND	Clear Interrupt Pending Register Write operation: 0 = No effect. 1 = Write 1 to clear pending state. Each bit represents an interrupt number from IRQ0 ~ IRQ31 (Vector number from 16 ~ 47). Read operation: 0 = Associated interrupt in not in pending status. 1 = Associated interrupt is in pending status. Note: Read value indicates the current pending status.					

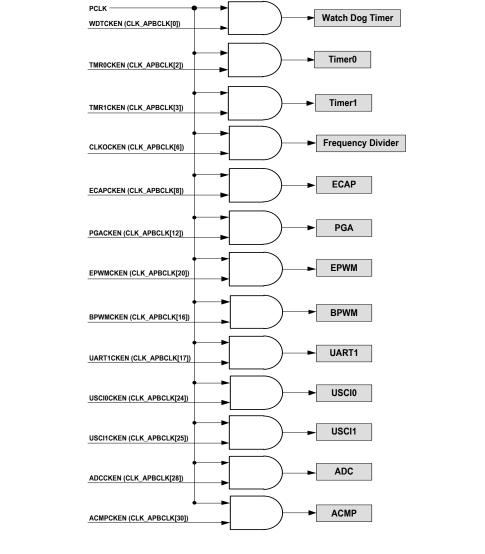


Figure 6.3-5 Peripherals Bus Clock Source Selection for PCLK

	Peripheral Clock Selectable	Ext. CLK (HXT Or LXT)	HIRC	LIRC	HCLK
WDT	Yes	Yes	No	Yes	Yes
WWDT	Yes	Yes	No	Yes	Yes
Timer0	Yes	Yes	Yes	Yes	Yes
Timer1	Yes	Yes	Yes	Yes	Yes
USCI0	Yes	Yes	Yes	Yes	Yes
USCI1	Yes	Yes	Yes	Yes	Yes
ADC	Yes	Yes	Yes	No	Yes
ACMP	No	No	No	No	Yes
ECAP	No	No	No	No	Yes
EBWM	No	No	No	No	Yes
BPWM	No	No	No	No	Yes
HDIV	No	No	No	No	Yes

Table 6.3-1 Peripheral Clock Source Selection Table

Note: For the peripherals those peripheral clock are not selectable, its clock source is fixed to PCLK.

6.3.5 Power-down Mode Clock

When entering Power-down mode, system clocks, some clock sources and some peripheral clocks are disabled. Some clock sources and peripherals clock are still active in Power-down mode.

The clocks still kept active are listed below:

- Clock Generator
- 10 kHz internal low speed oscillator (LIRC) clock
- 32.768 kHz external low speed crystal oscillator (LXT) clock (If PDLXT = 1 and XTLEN[1:0] = 10)
- Peripherals Clock (When 10 kHz low speed oscillator is adopted as clock source)
 - Watchdog Clock
 - Timer 0/1 Clock

6.3.6 Frequency Divider Output

This device is equipped with a power-of-2 frequency divider which is composed of 16 chained divide-by-2 shift registers. One of the 16 shift register outputs selected by a sixteen to one

- Supports High Drive and High Sink I/O mode
- Supports software selectable slew rate control
- Configurable default I/O mode of all pins after reset by CIOINI (CONFIG0[10]) setting
 - CIOIN = 0, all GPIO pins in Quasi-bidirectional mode after chip reset
 - CIOIN = 1, all GPIO pins in input mode after chip reset
- GPIOA supports the pull-up and pull-low resistor enabled in four I/O modes
- GPIOB to GPIOD internal pull-up resistor enabled only in Quasi-bidirectional I/O mode
- Enabling the pin interrupt function will also enable the wake-up function

6.5.3 GPIO Interrupt and Wake-up Function

Each GPIO pin can be set as chip interrupt source by setting correlative RHIEN (Px_INTEN[n+16])/FLIEN (Px_INTEN[n]) bit and TYPE (Px_INTTYPE[n]). There are five types of interrupt conditions to be selected: low level trigger, high level trigger, falling edge trigger, rising edge trigger and both rising and falling edge trigger. For edge trigger condition, user can enable input signal de-bounce function to prevent unexpected interrupt happened which caused by noise. The de-bounce clock source and sampling cycle period can be set through DBCLKSRC (GPIO_DBCTL[4]) and DBCLKSEL (GPIO_DBCTL[3:0]) register.

The GPIO can also be the chip wake-up source when chip enters Idle/Power-down mode. The setting of wake-up trigger condition is the same as GPIO interrupt trigger.

1. To ensure the I/O status before entering Idle/Power-down mode

When using toggle GPIO to wake-up system, user must make sure the I/O status before entering Idle/Power-down mode according to the relative wake-up settings.

For example, if configuring the wake-up event occurred by I/O rising edge/high level trigger, user must make sure the I/O status of specified pin is at low level before entering Idle/Power-down mode; and if configuring I/O falling edge/low level trigger to trigger a wake-up event, user must make sure the I/O status of specified pin is at high level before entering Power-down mode.

2. To disable the I/O de-bounce function before entering Idle/Power-down mode

If the specified wake-up I/O pin with enabling input signal de-bounce function, system will encounter two GPIO interrupt events while the system is woken up by this GPIO pin. One interrupt event is caused by wake-up function, the other is caused by I/O input de-bounce function. User should be disable the de-bounce function before entering Idle/Power-down mode to avoid the second interrupt event occurred after system woken up.

6.10 Watchdog Timer (WDT)

6.10.1 Overview

The Watchdog Timer is used to perform a system reset when system runs into an unknown state. This prevents system from hanging for an infinite period of time. Besides, the Watchdog Timer supports the function to wake-up system from Idle/Power-down mode.

6.10.2 Features

- 18-bit free running up counter for Watchdog Timer time-out interval
- Selectable time-out interval (24 ~ 218) WDT_CLK cycle and the time-out interval period is 104 ms ~ 26.3168 s if WDT_CLK = 10 kHz
- System kept in reset state for a period of (1 / WDT_CLK) * 63
- Supports Watchdog Timer time-out wake-up function only if WDT clock source is selected as 10 kHz

6.13 USCI – SPI Mode

6.13.1 Overview

The SPI protocol of USCI controller applies to synchronous serial data communication and allows full duplex transfer. It supports both master and Slave operation mode with the 4-wire bi-direction interface. SPI mode of USCI controller performs a serial-to-parallel conversion on data received from a peripheral device, and a parallel-to-serial conversion on data transmitted to a peripheral device. The SPI mode is selected by FUNMODE (USPI_CTL[2:0]) = 0x1.

The SPI protocol can operate as master or Slave mode by setting the SLAVE (USPI_PROTCTL[0]) to communicate with the off-chip SPI Slave or master device. The application block diagrams in master and Slave mode are shown as Figure 6.13-1 and Figure 6.13-2.

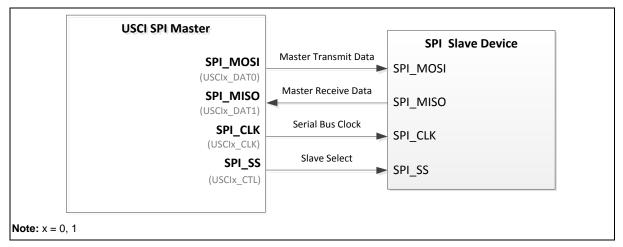


Figure 6.13-1 SPI Master Mode Application Block Diagram (x=0, 1)

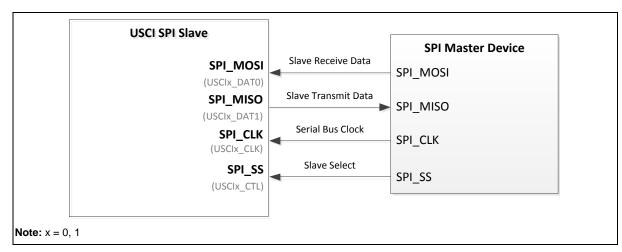
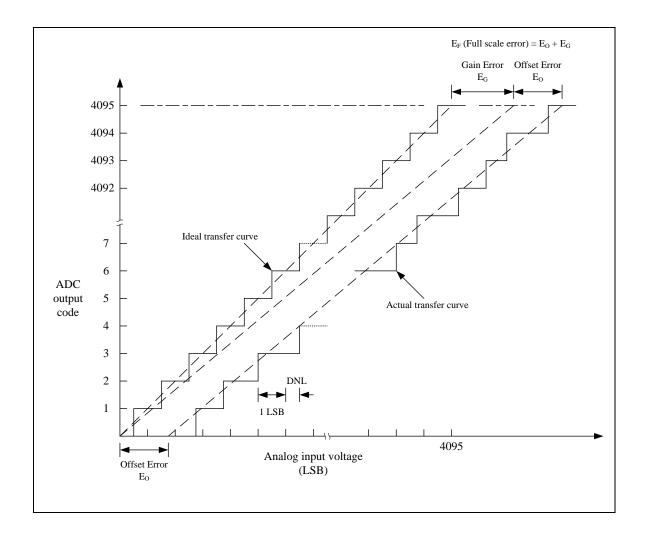


Figure 6.13-2 SPI Slave Mode Application Block Diagram (x=0, 1)


6.13.2 Features

8.4 Analog Characteristics

8.4.1 12-bit SAR ADC

Symbol	Parameter	Min	Тур	Max	Unit	Test Condition
-	Resolution	-	-	12	Bit	-
DNL	Differential Nonlinearity Error	-	2	-	LSB	V _{DD} = 3.0~5.5 V
INL	Integral Nonlinearity Error	-	±2	-	LSB	V _{DD} = 3.0~5.5 V
Eo	Offset Error	-	±1	-	LSB	V _{DD} = 3.0~5.5 V
E _G	Gain Error (Transfer Gain)	-	-1	-	LSB	V _{DD} = 3.0~5.5 V
EA	Absolute Error	-	±3	-	LSB	V _{DD} = 3.0~5.5 V
-	Monotonic		Guarantee	b	-	-
F _{ADC}	ADC Clock Frequency		12	16	MHz	V _{DD} = 3.0 ~5.5 V
Fs	Sample Rate (F _{ADC} /T _{CONV})			700	kSPS	V _{DD} = 3.0~5.5 V
T _{ACQ}	Acquisition Time (Sample Stage)	N+1			1/F _{ADC}	V_{DD} = 3.0 ~5.5 V N is sampling counter, N=1~1024
		200			ns	V _{DD} = 3.0~5.5 V
T _{CONV}	Conversion Time		1000	1050	ns	V _{DD} = 3.0~5.5 V
V _{DD}	Supply Voltage	3.0	-	5.5	V	-
I _{DDA}	Supply Current (Avg.)	-	1	-	mA	V _{DD} = 5.5 V
V _{IN}	Analog Input Voltage	0	-	AV_{DD}	V	-
C _{IN}	Input Capacitance	-	1.6	-	pF	-
R _{IN}	Input Load	-	2.5	-	kΩ	-

Note: ADC voltage reference is same with V_{DD}

8.4.2 LDO & Power Management

Symbol	Parameter	Min	Тур	Мах	Unit	Test Condition
V _{DD}	DC Power Supply	2.1	-	5.5	V	-
V _{LDO}	Output Voltage		1.5		V	-
ТА	Temperature	-40	25	105	°C	

Note: It is recommended a 0.1 μ F bypass capacitor is connected between V_{DD} and the closest V_{SS} pin of the device.

8.4.3 Low Voltage Reset

Symbol	Parameter	Min	Тур	Max	Unit	Test Condition
AV _{DD}	Supply Voltage	2.1	-	5.5	V	-
T _A	Temperature	-40	25	105	°C	-