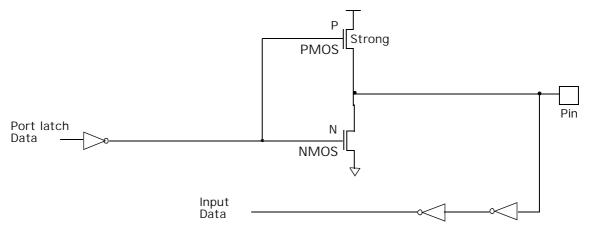
E·XFL

Welcome to E-XFL.COM

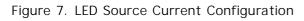
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Product Status	Obsolete
Core Processor	80C51
Core Size	8-Bit
Speed	16MHz
Connectivity	SmartCard, UART/USART
Peripherals	LED, POR, WDT
Number of I/O	14
Program Memory Size	16KB (16K x 8)
Program Memory Type	Flash RAM
EEPROM Size	16К х 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.85V ~ 5.4V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	24-SSOP (0.209", 5.30mm Width)
Supplier Device Package	24-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/at89c5121-icsul


Email: info@E-XFL.COM

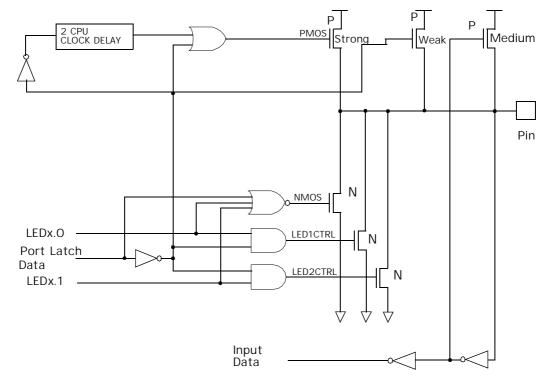

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 6. Push-pull Output Configuration

LED Output Configuration The input only configuration is shown in Figure 7.

Note: The port can be configured in quasi bi-directional mode and the level of current can be programmed by means of LEDC and LEDCON1 registers before switching the led on by writing a logical O in Port latch.

A/T8xC5121

Table 2. SFR Addresses and Reset Values

	0/8	1/9	2/A	3/B		4/C		5/D		6/E	7/F	
F8h												FFh
F0h	B 0000 0000	LEDCON XXXX 0000										F7h
E8h												EFh
E0h	ACC 0000 0000											E7h
D8h												DFh
D0h	PSW 0000 0000	RCON XXXX OXXX										D7h
C8h												CFh
C0h												C7h
B8h	IPL0 XXX0 0000	SADEN 0000 0000	ISEL 0000 0100								DCCKPS XXXX XX11	BFh
B0h	P3 1111 1111	IE1 XXXX 0XXX	IPL1 XXXX 0XXX	IPH1 XXXX 0XXX	0	SCWT0 * 1000 0000	0	SCWT1 * 0010 0101	0	SCWT2 * 0000 0000	IPH0 XXX0 0000	B7h
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1000000000	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1	SCGT0 * 0000 1100	1	SCGT1* 0000 0000	1	SCICR * 0000 0000		
A8h	IE0 0XX0 0000	SADDR 0000 0000	SCTBUF* 0000 0000	SCSR XXX0 1000	0	SCCON * 0X000	0	SCISR* 10X0 0000	0	SCIIR* 0X00 0000	CKCON1 XXXX 0XXX	AFh
			SCRBUF 0000 000		1	SCETU0 0111 0100	1	SCETU1 0XXX	1	SCIER * 0X00 0000		
A0h	P2 1111 1111		AUXR1 XXX XXX0							WDTRST XXXX XXXX	WDTPRG XXXX X0000	A7h
98h	SCON XXX0 0000	SBUF XXXX XXXX	BRL 0000 0000	BDRCON XXX0 0000								9Fh
90h	P1 XX11 1111	SIOCON 00XX 0000									CKRL XXXX 111X	97h
88h	TCON 0000 0000	TMOD 0000 0000	TL0 0000 0000	TL1 0000 0000		TH0 0000 0000		TH1 0000 0000		AUXR 00XX XX00	CKCON0 X0X0 X000	8Fh
80h	P0 1111 1111	SP 0000 0111	DPL 0000 0000	DPH 0000 0000		20					PCON 00XX XX00	87h
	0/8	1/9	2/A	3/B		4/C		5/D		6/E	7/F	

Reserved

SCRS Bit (SCSR.0)	(*)
0	SFR value
1	SFR value

The ports status under Power-down is the status which was valid before entering mode.

The INT1 interrupt is a multiplexed input (see Interrupt paragraph) with CPRES (Cal detection) and Rxd (UART Rx). So these three inputs can be used to exit from Powe down mode. The configurations which must be set are detailed below:

Rxd input:

RXEN (ISEL.O) must be set

EX1 (IEO.2) must be set

A low level detected during more than 100 microseconds exit from Powerdown

CPRES input:

PRSEN (ISEL.1) must be set

EX1 (IEO.2) must be set

EA (IEO.7) must be set

In the INT1 interrupt vector, the CPLEV Bit (ISEL.7) must be inverted and PRESIT Bit (ISEL.5) must be reset.

Figure 10. Power-down Exit Waveform

INTO —	
INT1	
XTAL1	
_	Active phase Power-down phase 🗶 Oscillator restart phaseActive phase
	Exiting from Power-down by reset redefines all the SFRs, exiting from Power-down external interrupt does no affect the SFRs.
	Exiting from Power-down by either reset or external interrupt does not affect the in RAM content.
	Note: If idle mode is activated with Power-down mode (IDL and PD bits set), the exit sequer is unchanged, when execution is vectored to interrupt, PD and IDL bits are cleared an idle mode is not entered.
SCI Control	Prior to entering Power-down mode, a de-activation of the Smart Card system mus performed.
LED Control	Prior to entering Power-down mode, if the LED mode output is used, the medium pull must be disconnected by setting the LEDPD bit in the PCON Register (PCON 3).
Low Power Mode	Only in Power-down mode, in order to reduce the power consumption, the user c choose to select this low-power mode.
	The activation reference is the following.
	First select the Low-power mode by setting the LP bit in the AUXR Register (AUXI 6)
	The activation of Power-down can then be done.

Reduced EMI Mode

The ALE signal is used to demultiplex address and data buses on port O when used w external program or data memory. Nevertheless, during internal code execution, AL signal is still generated.

Only in case of PLCC52 version, in order to reduce EMI, ALE signal can be disabled by setting AO bit.

The AO bit is located in AUXR register at bit location O (See Table 4). As soon as AO set, ALE is no longer output but remains active during MOVX and MOVC instructio and external fetches. During ALE disabling, ALE pin is weakly pulled high.

Power Modes Control Registers Table 3. PCON Register

PCON (S:87h) Power Configuration Register

7	6	5	4	3	2	1	0			
SMOD1	SMODO	-	-	LEDPD	GFO	PD	IDL			
Bit Number	Bit Mnemonic	Description	scription							
7	SMOD1		ble Baud Rate bit to double the Baud Rate when Timer 1 is used and mode 1, 2 or 3 is selec N register.							
6	SMODO	accesses to S When set, rea	N Select bit n cleared, read/write accesses to SCON.7 are to SMO bit and read/writ sses to SCON.6 are to SM1 bit. n set, read/write accesses to SCON.7 are to FE bit and read/write acce N.6 are to OVR bit. SCON is Serial Port Control register.							
5		Reserved						1		
4		Reserved						1		
3	LEDPD	When cleaned	ED Control Power-Down Mode bits /hen cleaned the I/O pull-up is the standard C51 pull-up control. When set redium pull-up is disconnected.							
2	GFO	General-purpo One use is to during Idle mo	indicate we	ther an inter	rupt occurre	ed during nor	mal operatio	n or		
1	PD	Cleared by har Set to activat	ower-down Mode bit eared by hardware when an interrupt or reset occurs. et to activate the Power-down mode. IDL and PD are both set, PD takes precedence.							
0	IDL	Idle Mode bit Cleared by har Set to activat If IDL and PD a	te the Idle m	node.		ccurs.				

Reset Value = XOXX XXOOb

Table 5. IEO Register

IEO

Interrupt Enable Register (A8h)

7	6	5	4	3	2	1	0		
EA	-	-	ES	ET1	EX1	ETO	EXO		
Bit Number	Bit Mnemonic	Descriptio	on						
7	EA	Clear to o Set to en If EA = 1,	able All interrupt bit ar to disable all interrupts. • to enable all interrupts. A = 1, each interrupt source is individually enabled or disabled by settin aring its interrupt enable bit.						
6	-	Reserved The value	eserved ne value read from this bit is indeterminate. Do not set this bit.						
5	-	Reserved The value	read from t	his bit is ind	eterminate. I	Do not set tl	nis bit.		
4	ES	Clear to d	Serial port Enable bit Clear to disable serial port interrupt. Set to enable serial port interrupt.						
3	ET1	Clear to d	Timer 1 overflow interrupt Enable bit Clear to disable Timer 1 overflow interrupt. Set to enable Timer 1 overflow interrupt.						
2	EX1	Clear to d	External interrupt 1 Enable bit Clear to disable external interrupt 1. Set to enable external interrupt 1.						
1	ETO	Clear to d	Timer O overflow interrupt Enable bit Clear to disable Timer O overflow interrupt. Set to enable Timer O overflow interrupt.						
0	EXO	Clear to d		nable bit nal interrupt Il interrupt O					

Reset Value = OXXO 0000b

the different counters. One of the most important counters is the guard time counter gives time slots corresponding to the character frame.

It is enabled only in UART mode.

The transition from the receipt mode to the transmit mode is done automatically. Pri is given to the transmission.

ETU Counter The ETU (Elementary Timing Unit) counter controls the working frequency of the bar shifter, in fact, it generates the enable signal of the barrel shifter.

It is 11 bits wide and there is a special compensation mode activated with the most nificant bit that allows non integer ETU value with a working clock equal to the clock.

But the decimal value is limited to a half clock cycle. In fact the bit duration is not fix takes turns in n clock cycles and n-1 clock cycles. The character duration (10 bits also equal to $10^{*}(n+1/2)$ clock cycles.

This allows to reach the required precision of the character duration specified by ISO7816 standard.

example: F = 372 D = 32 = > ETU = 11.625 clock cycles.

ETU = (ETU[10-0] -0.5 * COMP)*f with ETU[10-0] = 12, COMP = 1 (bit 7 of SCETU1)

To achieve this clock rate we activated the compensation mode and we programm the ETU duration to 12 clock cycles.

The result will be a full character duration (10 bits) equal to 11.5 clock cycles.

Guard Time Counter The minimum time between the leading edge of the start bit of a character and the ling edge of the start bit of the following character transmitted (Guard time) is control by one counter.

It is 9 bits wide and is incremented at the ETU rate.

Figure 15. Guard Time Counter

ETU Counter	_		

Waiting Time Counter (WT) The WT counter is a 24 bits down counter which can be loaded with the value conta in the SCWT2, SCWT1, SCWT0 registers. Its main purpose is time out signal genera tion. It is 24 bits wide and is decremented at the ETU rate. The ETU counter acts a prescaler (See Figure 16).

When the WT counter timeout, an interrupt is generated and the SCIB function locked: reception and emission are disabled. It can be enabled by resetting the macro reloading the counter.

Figure 16. Waiting Time Counter

The counter is loaded, if WTEN = 0, during the write of SCWT2 register.

This counter is available in both UART and manual modes. But the behaviour depends

A/T8xC5121

Table 16. SCCON Register

SCCON (S:ACh, SCRS = 0) Smart Card Contacts Register

7	6	5	4	3	2	1	1 0			
CLK	-	CARDC8	CARDC4	CARDIO	CARDCLK	CARDRST	CARDVCC]		
Bit Number	Bit Mnemoni	nic Descript	tion]		
7	CLK	Clear th Set this Note: int	rd Clock Selection ar this bit to use the CardClk bit (CARDCLK) to drive Card CLK pin. t this bit to use XTAL signal to drive the Card CLK pin. te: internal synchronization avoids any glitch on the CLK pin when itching this bit.							
6	-	Reserved The valu	-	this bit is	indetermina	ate. Do not	change this bit o	or write		
5	CARDC8		rd C8 ear this bit to drive a low level on the Card C8 pin. t this bit to set a high level on the Card C8 pin.							
4	CARDC4									
3	CARDIO	driven to Then thi								
2	CARDCLK				SCCON Reg	ister, the va	alue of this bit is	driven		
1	CARDRST	Set this	T his bit to driv bit to set a not allowed	a high level	I on the Card		I.			
0	CARDV _{CC}	Clear th bits of S Set this	SCC register	r have no e er-on the C	effect while	this bit is c	et its power-off. cleared. vation sequence			

Reset Value = 0X00 0000b

A/T8xC5121

Table 24. SCETUO Register

SCETUO (S:ACh, SCRS = 1) Smart Card ETU Register O

7	6	5	4	3	2	1	0	
ETU7	ETU6	ETU5	ETU4	ETU3	ETU2	ETU1	ETUO	
Bit Number	Bit Mnemonic	Description						
7-0	ETU[7:0]	frequency. According t	o ISO7816, E	it is (ETU[10 ETU[10:0] car of ETU[10:0]	n be set bet	ween 11 and		d CLK

Reset Value = 0111 0100b

Table 25. SCGT1 Register

SCGT1 (S:B5h, SCRS = 1) Smart Card Transmit Guard Time Register 1

7	6	5	4	3	2	1	0		
							GT8		
Bit Number	Bit Mnemonic	Description							
7-1		Reserved The value re	Reserved The value read from these bits is indeterminate. Do not change these bits .						
0	GT8		ard Time MS her with the		ard Time LSE	3 (see SCGTO	Register).		

Reset Value = XXXX XXXOb

Table 26. SCGTO Register

SCGTO (S:B4h, SCRS = 1) Smart Card Transmit Guard Time Register 0

7	6	5	4	3	2	1	0	
GT7	GT6	GT5	GT4	GT3	GT2	GT1	GTO	
Bit Number	Bit Mnemonic	Description						
7-0	GT[7:0]	The minimul GT[8:0] * ET	Ū.	een two cor			ansmit mode (11 to 254+1)	

Reset Value = 0000 1100b

Interrupt System

The T8xC5121 has a total of 6 interrupt vectors: four external interrup ItsT(IKOP, CPRES, RxD), two Timer 0 interrupts (Timer 0s 0 and 1), serial port interrupt and Sm Card Interface interrupt. These interrupts are shown in Figure 23.

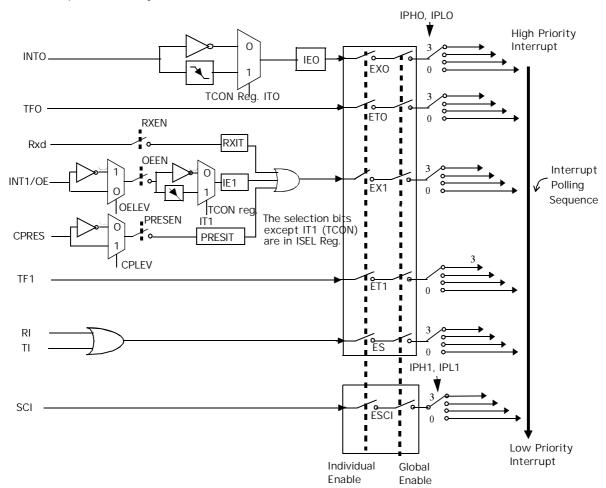


Figure 23. Interrupt Control System

Each of the interrupt sources can be individually enabled or disabled by setting or cleing a bit in the Interrupt Enable register (see Figure 32). This register also contain global disable bit, which must be cleared to disable all interrupts at once.

Each interrupt source can also be individually programmed to one of four priority levels setting or clearing a bit in the Interrupt Priority register (see Figure 36) and in Interrupt Priority High register (see Figure 38). Table 30 shows the bit values and private levels associated with each combination.

IPH.x	IP.x	Interrupt Level Priority
0	0	0 (Lowest)
0	1	1
1	0	2
1	1	3 (Highest)

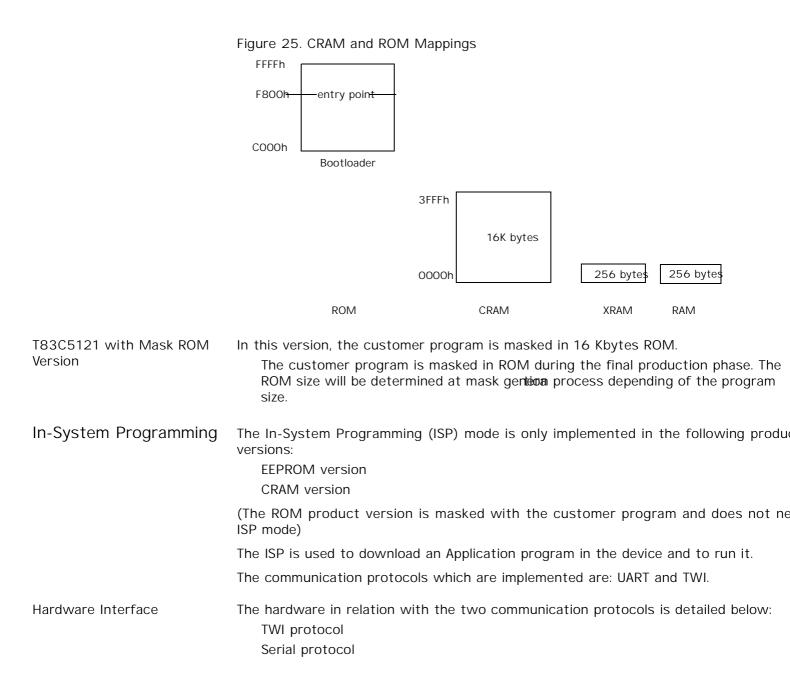
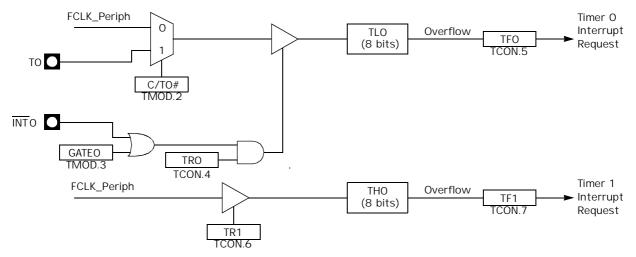
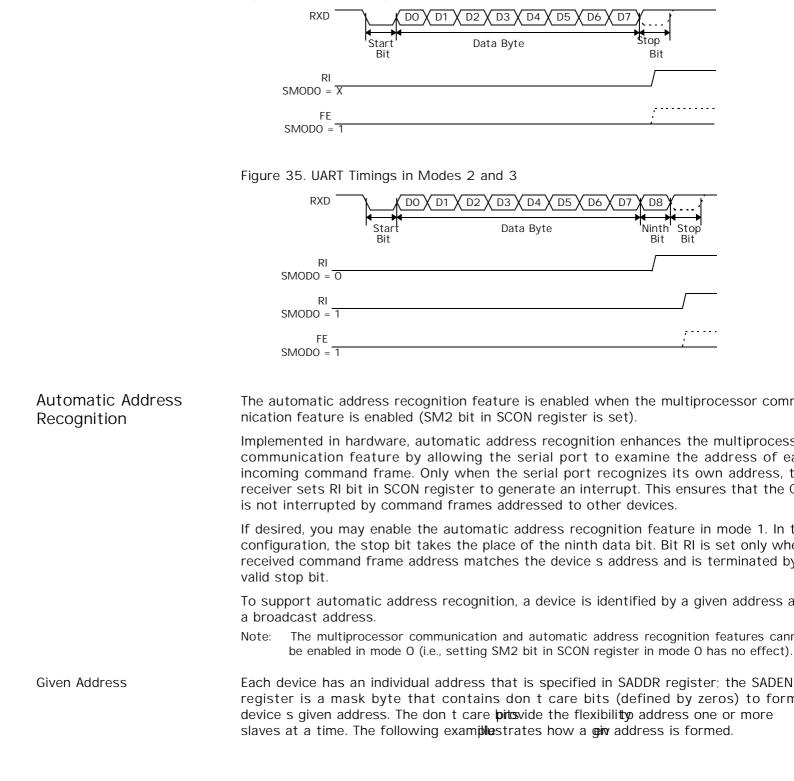


Table 33. IE1 Register

7	6	5	4	3	2	1	0	
-	-	-	-	ESCI	-	-	-	
Bit Number	Bit Mnemonic	Descriptio	Description					
7	-	Reserved The value	Reserved The value read from this bit is indeterminate. Do not set this bit.					
6	-	Reserved The value	Reserved The value read from this bit is indeterminate. Do not set this bit.					
5	-	Reserved The value	Reserved The value read from this bit is indeterminate. Do not set this bit.					
4	-	Reserved The value	Reserved The value read from this bit is indeterminate. Do not set this bit.					
3	ESCI	Clear to d	SCI Interrupt Enable Clear to disable the SCI interrupt. Set to enable the SCI interrupt.					
2	-	Reserved The value read from this bit is indeterminate. Do not set this bit.						
1	-	Reserved The value	Reserved The value read from this bit is indeterminate. Do not set this bit.					
0	_	Reserved The value	Reserved The value read from this bit is indeterminate. Do not set this bit.					


Reset Value = XXXX OXXXb



Electrical Characteristics

Absolute Maximum Ratings

Ambiant Temperature Under Bias25C to 85C
Storage Temperature
Voltage onV $_{\rm CC}$ to $V_{\rm S}$ 0.5V to + 6.0V
Voltage on Any Pin to_sy0.5V to $~v_{cc}$ + 0.5V

Note: Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

DC Parameters

Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
V _{IL}	Input Low Voltage	-0.5		0.2 _{€C} V- 0.1	V	
V _{IH}	Input High Voltage except XTAL1, RST	.2 V _{CC} + .9		V _{CC} + 0.5	V	
V _{IH1}	Input H <u>igh V</u> oltage, XTAL1, RST	0.7 V _{CC}		V _{CC} + 0.5	V	
V _{OL}	Output Low Voltage Port O and 2			0.45	V	δ _{L =} 1.6 mA
V _{OH}	Output High Voltage Port O and 2	0.9 x V _C			V	Ι _{OH} = -40 μΑ
DI _{CC}	Digital Supply Outpu Current		6	10	mA	G_ = 100 nF
DV _{CC}	Digital Supply Voltage	2.5	2 .9	3.0	V	C _L = 100 nF DIcc=10mA
lcc	Normal Power Down mode		80	100	μA	25°C
lcc	Pulsed Power Down mode		20	30	μA	50°C Vcc=3V
Іссор	Power Supply current	I_{ccop} = 0.25 Freq (MHz) +4 mA I_{ccIDLE} = 0.03 Freq (MHz) +5 mA			V _{CC} = 5.4V and Bootloader execution	
V _{PFDP}	Power-fail high leve threshold		2 .55		V	
V _{PFDM}	Power-fail low level threshold		2 .45		V	
t _G	Power Fail glitch time			50	ns	
t _{rise,} t _{fall}	V_{DD} rise and fall time	1 µs		600	sec.	

Table 72. Core DC Parameters (XTAL, RST PO, P2, ALE, PSEN, EA)