E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	80C51
Core Size	8-Bit
Speed	16MHz
Connectivity	SmartCard, UART/USART
Peripherals	LED, POR, WDT
Number of I/O	14
Program Memory Size	16KB (16K x 8)
Program Memory Type	Code RAM
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.85V ~ 5.4V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	24-SSOP (0.209", 5.30mm Width)
Supplier Device Package	24-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/t85c5121-icsil

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 4. PLCC52 Pinout

4

The different ports structures are described as follows.

Port Structure Description

Quasi Bi-directional Output Configuration

The default port output configuration for standard I/O ports is the quasi bi-directional output that is common on the 80C51 and most of its derivatives. This output type can be used as both an input and output without the need to reconfigure the port. This is possible because when the port outputs a logic high, it is weakly driven, allowing an external device to pull the pin low. When the port outputs a logic low state, it is driven strongly and able to sink a fairly large current. These features are somewhat similar to an open drain output except that there are three pull-up transistors in the quasi bi-directional output that serve different purposes. One of these pull-ups, called the weak pull-up, is turned on whenever the port latch for the pin contains a logic 1. The weak pull-up sources a very small current that will pull the pin high if it is left floating. A second pullup, called the medium pull-up, is turned on when the port latch for the pin contains a logic 1 and the pin itself is also at a logic 1 level. This pull-up provides the primary source current for a quasi bi-directional pin that is outputting a 1. If a pin that has a logic 1 on it is pulled low by an external device, the medium pull-up turns off, and only the weak pull-up remains on. In order to pull the pin low under these conditions, the external device has to sink enough current to overpower the medium pull-up and take the voltage on the port pin below its input threshold.

Figure 5. Quasi Bi-directional Output Configuration

Push-pull Output Configuration

The Push-pull output configuration has the same pull-down structure as the quasi bidirectional output modes, but provides a continuous strong pull-up when the port latch contains a logic 1. The Push-pull mode may be used when more source current is needed from a port output. The Push-pull port configuration is shown in Figure 5.

Such device when it is integrated in a microcontroller, forces the CPU in reset mode when V_{DD} reaches a voltage condition which is out of the specification.

The thresholds and their functions are:

- V_{PFDP}: the output voltage of the regulator has reached a minimum functional value at the power-up. The circuit leaves the RESET mode.
- V_{PFDM}: the output voltage of the regulator has reached a low threshold functional value for the microcontroller. An internal RESET is set.

Glitch filtering prevents the system from RESET when short duration glitches are carried on V_{DD} power supply.

The electrical parameters V_{PFDP} $V_{\text{PFDM}},$ $t_{\text{rise}},$ $t_{\text{fall}},$ t_{G} are specified in the DCparameters section.

Table 4. AUXR Register

AUXR (S:8Eh) Auxiliary Register

7	6	5	4	3	2	1	0			
-	LP	-	-	-	-	EXTRAM	AO			
Bit Number	Bit Mnemonic	Descriptio	Description							
7	-	Reserved The value	read from this	s bit is indeter	minate. Do n	ot set this bit.				
6	LP	Low Powe Clear to see Set to sele	er mode sele elect standard ect low consul	ction I mode mption mode						
5	-	Reserved The value	Reserved The value read from this bit is indeterminate. Do not set this bit.							
4	-	Reserved The value	Reserved The value read from this bit is indeterminate. Do not set this bit.							
3	-	Reserved The value	read from this	s bit is indeter	minate. Do n	ot set this bit.				
2	-	Reserved The value	read from this	s bit is indeter	minate. Do n	ot set this bit.				
1	EXTRAM	EXTRAM (ONLY for Clear to m Set to map	EXTRAM select (ONLY for PLCC52 version) Clear to map XRAM datas in internal XRAM memory. Set to map XRAM datas in external XRAM memory.							
0	AO	ALE Outp (ONLY for Clear to re Set to disa	ut bit PLCC52 ver store ALE op ble ALE oper	rsion) eration during ration during ir	internal fetcl nternal fetche	nes. s.				

Reset Value = 00XX XX00b

Table 18. SCIIR Register

SCIIR (S:AEh, SCRS = 0) Smart Card UART Interrupt Identification Register (read only)

7	6		5	4	3	2	1	0	
SCTBI	-	Clco	CERR	CVccERR	SCWTI	SCTI	SCRI	SCPI	
Bit Number	Bit Mnem	onic	Descri	ption					
7	SCTE	31	SCIB transmit buffer interrupt This bit is set by hardware when the Transmit Buffer is copied to the transmishift register of the Smart Card UART. It is cleared by hardware when this register is read.						
6	-		Reser The va	ved lue read from th	is bit is indeter	minate. Do no	ot change this	bit or write 0.	
5	ClccEF	R	Card current status This bit is set when the output current goes out of the current range. It is cleared by hardware when this register is read.						
4	CVccE	RR	Card voltage status This bit is set when the output voltage goes out of the voltage range specified by CVcc field. It is cleared by hardware when this register is read.						
3	scw	ГІ	Smart This bi It is cle	card wait Time t is set by hardw ared by hardwa	out interrupt vare when the re when this re	Smart Card T egister is reac	ïmer 0 times o I.	out.	
2	SCT	I	Smart This bi charac It is cle	Smart card transmit interrupt This bit is set by hardware when the Smart Card UART completes a character transmission. It is cleared by hardware when this register is read.					
1	SCR	I	Smart card receive interrupt This bit is set by hardware when the Smart Card UART completes a character reception. It is cleared by hardware when this register is read.						
0	SCP	I	Smart This bi It is cle	card parity error t is set at the sa eared by hardwa	or interrupt me time as SC re when this re	CTI or SCRI if egister is read	a parity error I.	is detected.	

Reset Value = 0X00 0000b

Table 22. SCRBUF Register

SCRBUF (S:AA read-only, SCRS = 1) Smart Card Receive Buffer Register

7	6	5	4	3	2	1	0
_	_	_	_	_	_	_	_
Bit Number	Bit Mnemonic	Description					
_	_	Provides the	e byte receiv	ed from the I/	O pin when S	SCRI is set.	

Reset Value = 0000 0000b

Table 23. SCETU1 Register

SCETU1 (S:ADh, SCRS = 1) Smart Card ETU Register 1

7	6	5	4	3	2	1	0		
COMP	-	-	-	-	ETU10	ETU9	ETU8		
Bit Number	Bit Mnemonic	Description	Description						
7	COMP	Compensati Clear this bit CLK period r period). Set this bit of bits.	Compensation Clear this bit when no time compensation is needed (i.e. when the ETU to Card CLK period ratio is close to an integer with an error less than 1/4 of Card CLK period). Set this bit otherwise and reduce the ETU period by 1 Card CLK cycle for even bits.						
6-3	-	Reserved The value rea	Reserved The value read from these bits is indeterminate. Do not change these bits .						
2-0	ETU[10:8]	ETU MSB Used togethe	er with the ET	U LSB (see S	CETU0 Regis	ter).			

Reset Value = 0XXX X001b

Table 35. ISEL Register

7	6	5	4	3	2	1	0		
CPLEV	OEIT	PRESIT	RXIT	OELEV	OEEN	PRESEN	RXEN		
Bit Number	Bit Mnemonic	Descriptior	ı						
7	CPLEV	Card prese This bit india Set this bit t level. Clear this bit level.	Card presence detection level This bit indicates which CPRES level will bring about an interrupt Set this bit to indicate that Card Presence IT will appear if CPRES is at high level. Clear this bit to indicate that Card Presence IT will appear if CPRES is at low level.						
6	-	Reserved The value re	ead from this	bit is indeterm	inate. Do not	set this bit.			
5	PRESIT	Card prese Set by hard Must be clea	Card presence detection interrupt flag Set by hardware Must be cleared by software						
4	RXIT	Received d Set by hard Must be clea	ata interrupt ware ared by softw	flag are					
3	OELEV	OE/INT1 sig Set this bit t Clear this bi	gnal active le o indicate tha it to indicate t	e vel It high level is hat low level is	active. active.				
2	OEEN	OE/INT1 Int Clear to disa Set to enab	terrupt Disat able INT1 inte le INT1 interre	ble bit errupt upt					
1	PRESEN	Card prese Clear to disa Set to enab	Card presence detection Interrupt Enable bit Clear to disable the card presence detection interrupt coming from SCIB. Set to enable the card presence detection interrupt coming from SCIB.						
0	RXEN	Received d Clear to disa Set to enab wake up fro	ata Interrupt able the RxD le the RxD int m Power-Dov	Enable bit interrupt. errupt (a minir vn).	nal bit width c	of 0.1 ms is rec	quired to		

Reset Value = 0000 0100b

If a serial communication device (as described above: TWI or RS232) is detected, the program download its content in the internal EEPROM and in CRAM.

Else, the program is internally downloaded from the internal EEPROM into the program CRAM memory (16 Kbytes)

Then, in the two cases, the Bootloader executes a Long Jump at address 0000h which initializes the Program counter at the lower address (0000h) of the executable CRAM.

Figure 24. CRAM with ROM and EEPROM Memory Mappings

T85C121 Code RAM Version

Two memory blocks are implemented:

- The ROM memory contains the Bootloader program.
- The CRAM is the Application program memory.

After Reset, the program is downloaded, as described in last paragraph, from either an external EEPROM or from an host connected on RS232 serial link into the program CRAM memory of 16 Kbytes. Then the Program Counter is set at address 0000h of the CRAM space and the program is executed.

Source	Target	Case	Protection
UART ISP	Intern. EEP	Programming	SSB level 1 must be set (done, if selected, at ISP Programming or Ext EEP Donwload)
UART ISP	CRAM	Program access	SSB level 1 IN Int EEP protects as, first, the Int EEP is programmed before CRAM
UART ISP	SSB in EEP and CRAM	level 2 to level 1	Protected by Bootloader
UART ISP	SSB in EEP and CRAM	level 1 to level 0	Protected by Bootloader

Timers/Counters

Introduction The T8xC5121 implements two general-purpose, 16-bit Timer 0s/Counters. Although they are identified as Timer 0, Timer 1, you can independently configure each to operate in a variety of modes as a Timer 0 or as an event Counter. When operating as a Timer 0, a Timer 0/Counter runs for a programmed length of time, then issues an interrupt request. When operating as a Counter, a Timer 0/Counter counts negative transitions on an external pin. After a preset number of counts, the Counter issues an interrupt request. The Timer 0 registers and associated control registers are implemented as addressable Special Function Registers (SFRs). Two of the SFRs provide programmable control of the Timer 0s as follows: Timer 0/Counter mode control register (TMOD) and Timer 0/Counter control register (TCON) control respectively Timer 0 and Timer 1. The various operating modes of each Timer 0/Counter are described below. **Timer 0/Counter** For example, a basic operation is Timer 0 registers THx and TLx (x = 0, 1) connected in cascade to form a 16-bit Timer 0. Setting the run control bit (TRx) in the TCON register Operations (see Figure 55) turns the Timer 0 on by allowing the selected input to increment TLx. When TLx overflows it increments THx and when THx overflows it sets the Timer 0 overflow flag (TFx) in the TCON register. Setting the TRx does not clear the THx and TLx Timer 0 registers. Timer 0 registers can be accessed to obtain the current count or to enter preset values. They can be read at any time but the TRx bit must be cleared to preset their values, otherwise the behavior of the Timer 0/Counter is unpredictable. The C/Tx# control bit selects Timer 0 operation or Counter operation by selecting the divided-down system clock or the external pin Tx as the source for the counted signal. The TRx bit must be cleared when changing the operating mode, otherwise the behavior of the Timer 0/Counter is unpredictable. For Timer 0 operation (C/Tx# = 0), the Timer 0 register counts the divided-down system clock. The Timer 0 register incremented once every peripheral cycle. Exceptions are the Timer 0 2 Baud Rate and Clock-Out modes in which the Timer 0 register is incremented by the system clock divided by two. For Counter operation (C/Tx# = 1), the Timer 0 register counts the negative transitions on the Tx external input pin. The external input is sampled during every S5P2 state. The Programmer's Guide describes the notation for the states in a peripheral cycle. When the sample is high in one cycle and low in the next one, the Counter is incremented. The new count value appears in the register during the next S3P1 state after the transition has been detected. Since it takes 12 states (24 oscillator periods) to recognize a negative transition, the maximum count rate is 1/24 of the oscillator frequency. There are no restrictions on the duty cycle of the external input signal, but to ensure that a given level is sampled at least once before it changes, it should be held for at least one full peripheral cycle.

Figure 37. Internal Baud Rate Generator Block Diagram

Synchronous Mode (Mode 0) Mode 0 is a half-duplex, synchronous mode, which is commonly used to expand the I/0 capabilities of a device with shift registers. The transmit data (TXD) pin outputs a set of eight clock pulses while the receive data (RXD) pin transmits or receives a byte of data. The 8-bit data are transmitted and received least-significant bit (LSB) first. Shifts occur at a fixed Baud Rate. Figure 38 shows the serial port block diagram in Mode 0.

Figure 38. Serial I/O Port Block Diagram (Mode 0)

Transmission (Mode 0) To start a transmission mode 0, write to SCON register clearing bits SM0, SM1.

As shown in Figure 39, writing the byte to transmit to SBUF register starts the transmission. Hardware shifts the LSB (D0) onto the RXD pin during the first clock cycle composed of a high level then low level signal on TXD. During the eighth clock cycle the MSB (D7) is on the RXD pin. Then, hardware drives the RXD pin high and asserts TI to indicate the end of the transmission.

Figure 39. Transmission Waveforms (Mode 0)

Reception (Mode 0) To start a reception in mode 0, write to SCON register clearing SM0, SM1 and RI bits and setting the REN bit.

As shown in Figure 40, Clock is pulsed and the LSB (D0) is sampled on the RXD pin. The D0 bit is then shifted into the shift register. After eight sampling, the MSB (D7) is shifted into the shift register, and hardware asserts RI bit to indicate a completed reception. Software can then read the received byte from SBUF register.

Baud Rate Selection (Mode 0) In mode 0, baud rate can be either fixed or variable.

As shown in Figure 41, the selection is done using M0SRC bit in BDRCON register. Figure 42 gives the baud rate calculation formulas for each baud rate source.

a. Fixed Formula

 $Baud_Rate = \frac{2^{SMOD1} \cdot F_{PER}}{6^{(1-SPD)} \cdot 32 \cdot (256 \text{ -BRL})}$ $BRL = 256 \frac{2^{SMOD1} \cdot F_{PER}}{6^{(1-SPD)} \cdot 32 \cdot Baud_Rate}$

b. Variable Formula

Table 67.SCON RegisterSCON (S:98h)Serial Control Registe

7	6	5	4	3	2	1	0			
FE/SM0	SM1	SM2	REN	TB8	RB8	ТІ	RI			
Bit Number	Bit Mnemonic	Description								
_	FE	Framing Error bit To select this functio Set by hardware to in Must be cleared by s	Framing Error bit To select this function, set SMOD0 bit in PCON register. Set by hardware to indicate an invalid stop bit. Must be cleared by software.							
	SM0	Serial Port Mode bi To select this functio Software writes to bi Refer to SM1 bit for	Serial Port Mode bit 0 To select this function, clear SMOD0 bit in PCON register. Software writes to bits SM0 and SM1 to select the Serial Port operating mode. Refer to SM1 bit for the mode selections.							
6	SM1	Serial Port Mode bit 1To select this function, set SMOD0 bit in PCON register.Software writes to bits SM1 and SM0 to select the Serial Port operating mode.SM0SM1ModeDescriptionBaud Rate000Shift Register $F_{OSC}/12$ or variable if SRC bit in BDRCON is set0118-bit UARTVariable1029-bit UART $F_{OSC}/32$ or $F_{OSC}/64$ 1139-bit UARTVariable								
5	SM2	Serial Port Mode bi Software writes to bi recognition features. This allows the Seria addresses.	t 2 t SM2 to enable an I Port to differentiat	d disable the multip te between data and	rocessor communic	cation and automat	tic address ave and broadcast			
4	REN	Receiver Enable bit Clear to disable rece Set to enable recept	t ption in mode 1, 2 ion in all modes.	and 3, and to enabl	e transmission in m	ode 0.				
3	TB8	Transmit bit 8 Modes 0 and 1: Not Modes 2 and 3: Soft	used. ware writes the nin	th data bit to be trar	nsmitted to TB8.					
2	RB8	Receiver bit 8 Mode 0: Not used. Mode 1 (SM2 cleared): Set or cleared by hardware to reflect the stop bit received. Modes 2 and 3 (SM2 set): Set or cleared by hardware to reflect the ninth bit received.								
1	TI	Transmit Interrupt f Set by the transmitte Must be cleared by s	i lag er after the last data software.	a bit is transmitted.						
0	RI	Receive Interrupt fl Set by the receiver a Must be cleared by s	ag fter the stop bit of a coftware.	a frame has been re	eceived.					

Reset Value = XXX0 0000b

Hardware Watchdog Timer

The WDT is intended as a recovery method in situations where the CPU may be subjected to software upset. The WDT consists of a 14-bit counter and the Watchdog Timer ReSeT (WDTRST) SFR. The WDT is by default disabled from exiting reset. To enable the WDT, user must write 01EH and 0E1H in sequence to the WDTRST, SFR location 0A6H. When WDT is enabled, it will increment every machine cycle while the oscillator is running and there is no way to disable the WDT except through reset (either hardware reset or WDT overflow reset). When WDT overflows, it will drive an output RESET HIGH pulse at the RST-pin.

Using the WDT

To enable the WDT, user must write 01EH and 0E1H in sequence to the WDTRST, SFR location 0A6H. When WDT is enabled, the user needs to service it by writing to 01EH and 0E1H to WDTRST to avoid WDT overflow. The 14-bit counter overflows when it reaches 16383 (3FFFH) and this will reset the device. When WDT is enabled, it will increment every machine cycle while the oscillator is running. This means the user must reset the WDT at least every 16383 machine cycle. To reset the WDT the user must write 01EH and 0E1H to WDTRST. WDTRST is a write only register. The WDT counter cannot be read or written. When WDT overflows, it will generate an output RESET pulse at the RST-pin. The RESET pulse duration is 96 x T_{CLK PERIPH}, where T_{CLK PERIPH}= 1/F_{CLK PERIPH}. To make the best use of the WDT, it should be serviced in those sections of code that will periodically be executed within the time required to prevent a WDT reset.

To have a more powerful WDT, a 2^7 counter has been added to extend the Time-out capability, ranking from 16 ms to 2s @ F_{OSCA} = 12 MHz. To manage this feature, refer to WDTPRG register description, Table 70. The WDTPRG register should be configured before the WDT activation sequence, and can not be modified until next reset.

 Table 70.
 WDTRST Register

WDTRST - Watchdog Reset Register (0A6h)

7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	-

Reset Value = XXXX XXXXb

Write only, this SFR is used to reset/enable the WDT by writing 01EH then 0E1H in sequence.

Electrical Characteristics

Absolute Maximum Ratings

Ambiant Temperature Under Bias25°C to 85°C
Storage Temperature65°C to + 150°C
Voltage on V_{CC} to $V_{SS}0.5V$ to + 6.0V
Voltage on Any Pin to V_{SS}

Note: Stresses at or above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

DC Parameters

 T_{A} = -40°C to +85°C; V_{SS} = 0 V; v_{cc} = 2.85V to 5.4V; F = 7.36 to 16 MHz

Symbol	Parameter	Min	Тур	Мах	Unit	Test Conditions
V _{IL}	Input Low Voltage	-0.5		0.2 V _{CC} - 0.1	V	
V _{IH}	Input High Voltage except XTAL1, RST	.2 V _{CC} + .9		V _{CC} + 0.5	V	
V _{IH1}	Input Hi <u>gh</u> Voltage, XTAL1, RST	0.7 V _{CC}		V _{CC} + 0.5	V	
V _{OL}	Output Low Voltage, Port 0 and 2			0.45	V	I _{OL =} 1.6 mA
V _{OH}	Output High Voltage, Port 0 and 2	$0.9 \times V_{CC}$			V	I _{OH} = -40 μA
DI _{CC}	Digital Supply Output Current		6	10	mA	C _L = 100 nF
DV_{CC}	Digital Supply Voltage	2.5	2 .9	3.0	V	C _L = 100 nF DIcc=10mA
Icc	Normal Power Down mode		80	100	μA	25°C
lcc	Pulsed Power Down mode		20	30	μA	50°C Vcc=3V
Іссор	Power Supply current	$I_{ccop} = 0.25$ $I_{ccIDLE} = 0.0$	Freq (MH 3 Freq (M	lz) +4 mA Hz) +5 mA		$V_{CC} = 5.4V$ and Bootloader execution
V _{PFDP}	Power-fail high level threshold		2 .55		V	
V _{PFDM}	Power-fail low level threshold		2 .45		V	
t _G	Power Fail glitch time			50	ns	
$t_{\text{rise},} t_{\text{fall}}$	$V_{DD}^{}$ rise and fall time	1 µs		600	sec.	

Table 72. Core DC Parameters (XTAL, RST, P0, P2, ALE, PSEN, EA)

Symbol	Parameter	Min	Тур	Мах	Unit	Test Conditions
Cl _{cc}	Card Supply Current	60		121 105 102	mA	$V_{CC} = 5.4V$ $V_{CC} = 4V$ $V_{CC} = 2.85V$
CV _{CC}	Card Supply Voltage	4.6		5.4	V	Clcc = 60 mA
CV _{CC}	Ripple on CVcc			200	mV	0 <clcc<60 ma<="" td=""></clcc<60>
CV _{CC}	Spikes on CVcc	4.6		5.4	V	Maxi. charge 20 nA.s Max. duration 400 ns Max. variation Clcc 100 mA (1)
T _{VHLI}	CVcc to 0			750	μs	Clcc = 0 CVcc = 5V to 0.4V (1)

Table 75. Smart Card 5V Interface DC Parameters

Note: 1. Capacitor = 10 μ F, X7R type. Maximum ESR value is 250 mohm, Inductor = 4.7 μ H.

 Table 76.
 Smart Card
 3V Interface
 DC Parameters

Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
CI _{CC}	Card Supply Current	60		110 89 110	mA	$V_{CC} = 5.4V$ $V_{CC} = 4V$ $V_{CC} = 2.85V$
CV_{CC}	Card Supply Voltage	2.76		3.24	V	Clcc = 60 mA
$\rm CV_{\rm CC}$	Ripple on CVcc			200	mV	0 <clcc<60 ma<="" td=""></clcc<60>
CV _{CC}	Spikes on CVcc	2.76		3.24	V	Max. charge 10 ns Max. duration 400 ns Max. variation Clcc 50 mA
T _{VHLI}	CVcc to 0			750	μs	Clcc = 0 CVcc = 5V to 0.4V (1)

Note: 1. Capacitor = 10 μ F, X7R type. Maximum ESR value is 250 mohm, Inductor = 4.7 μ H.

Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
CI _{CC}	Card Supply Current	20		109 100 82	mA	$V_{CC} = 5.4V$ $V_{CC} = 4V$ $V_{CC} = 2.85V$
CV _{CC}	Card Supply Voltage	1.68		1.92	V	Clcc = 20 mA
CV _{CC}	Spikes on CVcc	1.68		1.92	V	
T _{VHLI}	CVcc to 0			750	μs	CIcc = 0 CVcc = 5V to 0.4V (1)

Note: 1. Capacitor = 10 μ F, X7R type. Maximum ESR value is 250 mohm, Inductor = 4.7 μ H.

Symbol	Parameter	Min	Тур	Мах	Unit	Test Conditions
V _{OL}	Output Low Voltage	0(1) 0(1)		0.2 x CV _{CC} 0.4	V	$I_{OL} = 20 \ \mu A$ (1.8,3 V) $I_{OL} = 50 \ \mu A$ (5V)
I _{OL}	Output Low Current			15	mA	
V _{OH}	Output High Voltage	0.7 x CV _{CC} 0.7 x CV _{CC} CV _{CC} - 0.5		CV _{cc} CV _{cc} CV _{cc}	V V V	I _{OH} = 20 μA (1.8V) I _{OH} = 20 μA (3V) I _{OH} = 50 μA (5V)
I _{OH}	Output High Current			15	mA	
t _R t _F	Rise and Fall time			16 22.5 50	ns	$C_{IN} = 30 \text{ pF}(5\text{V})$ $C_{IN} = 30 \text{ pF}(3\text{V})$ $C_{IN} = 30 \text{ pF}(1.8\text{V})$
	Voltage Stability	-0.25 CV _{CC} -0.5		0.4 x CV _{CC} CV _{CC} + 0.25	V	Low level High level

Table 78.	Smart Card (Clock DC	Parameters (Port P1.4)
-----------	--------------	----------	--------------	-----------	---

Note: 1. The voltage on CLK should remain between -0.3V and CV_{CC} + 0.3V during dynamic operation.

Table 79.	Alternate Card	Clock DC	parameters (Port P3.6): 5V tolerant
	/ atomato oura		paramotoro	1 0111 0.0	j. ov tolorant

Symbol	Parameter	Min	Тур	Мах	Unit	Test Conditions
V _{OL}	Output Low Voltage	0 (1) 0(1)		0.2 x DV _{CC} 0.5	V	I _{OL} = 20 μA I _{OL} = -200 μA
V _{OH}	Output High Voltage	0.7 x DV _{CC}		DV _{CC} (1)	V	I _{OH} = 20 μA
t _R t _F	Rise and Fall times			18	ns	C _{IN} = 30 pF

Note: 1. The voltage on CLK should remain between -0.3V and V_{CC} + 0.3V during dynamic operation.

Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
V _{OL}	Output Low Voltage	0(1) 0(1)		0.12 x CV _{CC} 0.4	V	I _{OL} = 20 μA I _{OL} = 50 μA
I _{OL}	Output Low Current			15	mA	
V _{OH}	Output High Voltage	CV _{CC} - 0.5 0.8 x CV _{CC}		CV _{CC} CV _{CC} (1)	V	I _{OH} = 50 μA I _{OH} = 20 μA
I _{он}	Output High Current			15	mA	
t _R t _F	Rise and Fall delays			0.8	μs	C _{IN} = 30 pF
	Voltage stability	-0.25 CV _{CC} -0.5		0.4 x CV _{CC} CV _{CC} + 0.25		Low level High level

Table 82. Smart Card RST, CC4, CC8, DC Parameters (Port P1.5, P1.3, P1.1)

Note: 1. The voltage on RST should remain between -0.3V and CV_{cc} + 0.3V during dynamic operation.

Table 83. Alternate Card RST DC Parameters (Port P3.7) : 5V tolerant

Symbol	Parameter	Min	Тур	Мах	Unit	Test Conditions
V _{OL}	Output Low Voltage	0 (1)		$0.2 \times \text{DV}_{\text{CC}}$	V	I _{OL} = 200 μA
V _{OH}	Output High Voltage	0.8 x DV _{CC} 0.8 x DV _{CC}		DV _{CC} (1) DV _{CC}	V	I _{OH} = 20 μA (1.8V) I _{OH} = 200 μA (3V)
t _R t _F	Rise and Fall delays			400	μs	C _{IN} = 30 pF

Note: 1. The voltage on RST should remain between -0.3V and DV_{cc} + 0.3V during dynamic operation.

Table 84. Card Presence DC Parameters (P1.2)

Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
I _{OL1}	CPRES weak pull- up output current	3	10	25	μA	P1.2 = 1, short to V _{SS} (internal pull-up enabled)

Typical Application

- Notes: 1. C4 and C5 must be placed near IC and have low ESR (<250m Ω)
 - 2. Straight and short connections avoid any loop between:
 - CVSS and V_{SS}
 - CV_{CC} and C4, C5
 - 3. V_{CC} connection of the master card must be placed as follows:

- 4. Current is limited to 10 mA.
- 5. CCLK should be routed far from CRST, CIO, CC4, CC8 and armored by ground plane.

Package Drawings

SSOP24

	М	М	I NCH		
A	1.73	1.99	. 068	. 078	
A1	0.05	0.21	. 002	. 008	
b	0.25	0.38	. 010	. 015	
С	0.09	0.20	. 004	. 008	
D	8.07	8.33	. 318	. 328	
E	5. 20	5.38	. 205	. 21 2	
e	0.65	BSC	. 0256	BSC	
н	7.65	7.90	. 301	. 311	
L	0.63	0.95	. 025	. 037	
N		24		24	
۵	0°	8*	0 *	8°	