

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	8051
Core Size	8-Bit
Speed	7.3728MHz
Connectivity	UART/USART
Peripherals	Brown-out Detect/Reset, LED, POR, WDT
Number of I/O	6
Program Memory Size	1KB (1K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2.4V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	8-SOIC (0.154", 3.90mm Width)
Supplier Device Package	8-SO
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/p89lpc907fd-112

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Symbol	Pin	Туре	Description
P1.0 to P1.5			Port 1: Port 1 is an I/O port with a user-configurable output types. During reset Port 1 latches are configured in the input only mode with the internal pull-up disabled. The operation of the configurable Port 1 pins as inputs and outputs depends upon the port configuration selected. Each of the configurable port pins are programmed independently. Refer to Section 8.11.1 "Port configurations" and Table 13 "DC electrical characteristics" for details. P1.5 is input only.
			All pins have Schmitt triggered inputs.
			Port 1 also provides various special functions as described below:
	5	I/O	P1.0 — Port 1 bit 0.
		0	TxD — Serial port transmitter data.
	4 I/O		P1.2 — Port 1 bit 0.
		I/O	T0 — Timer 0 external clock input, toggle output, PWM output.
	1	I	P1.5 — Port 1 bit 5 (input only).
		I	RST — External Reset input during Power-on or if selected via UCFG1. When functioning as a reset input a LOW on this pin resets the microcontroller, causing I/O ports and peripherals to take on their default states, and the processor begins execution at address 0. Also used during a power-on sequence to force In-System Programming mode.
V _{SS}	2	I	Ground: 0 V reference.
V _{DD}	6	ļ	Power Supply: This is the power supply voltage for normal operation as well as Idle and Power-down modes.

Table 4: P89LPC907 pin description...continued

Table 5: P89LPC908 pin description

Symbol	Pin	Туре	Description
P0.4 to P0.6		I/O	Port 0: Port 0 is an I/O port with a user-configurable output types. During reset Port 0 latches are configured in the input only mode with the internal pull-up disabled. The operation of Port 0 pins as inputs and outputs depends upon the port configuration selected. Each port pin is configured independently. Refer to Section 8.11.1 "Port configurations" and Table 13 "DC electrical characteristics" for details.
			The Keypad Interrupt feature operates with Port 0 pins.
			All pins have Schmitt triggered inputs.
			Port 0 also provides various special functions as described below:
	8	I/O	P0.4 — Port 0 bit 4.
		I	CIN1A — Comparator positive input.
		I	KBI4 — Keyboard input 4.
	7	I/O	P0.5 — Port 0 bit 5.
		I	CMPREF — Comparator reference (negative) input.
		I	KBI5 — Keyboard input 5.
	3	I/O	P0.6 — Port 0 bit 6.
		0	CMP1 — Comparator 1 output.
		I	KBI6 — Keyboard input 6.

Symbol	Pin	Туре	Description
P1.0 to P1.5			Port 1: Port 1 is an I/O port with a user-configurable output types. During reset Port 1 latches are configured in the input only mode with the internal pull-up disabled. The operation of the configurable Port 1 pins as inputs and outputs depends upon the port configuration selected. Each of the configurable port pins are programmed independently. Refer to Section 8.11.1 "Port configurations" and Table 13 "DC electrical characteristics" for details. P1.5 is input only.
			All pins have Schmitt triggered inputs.
			Port 1 also provides various special functions as described below:
	5	I/O	P1.0 — Port 1 bit 0.
		0	TxD — Serial port transmitter data.
	4	I/O	P1.1 — Port 1 bit 1.
		I	RxD — Serial port receiver data.
	1	I	P1.5 — Port 1 bit 5 (input only).
		I	RST — External Reset input during Power-on or if selected via UCFG1. When functioning as a reset input a LOW on this pin resets the microcontroller, causing I/O ports and peripherals to take on their default states, and the processor begins execution at address 0. Also used during a power-on sequence to force In-System Programming mode.
V _{SS}	2	I	Ground: 0 V reference.
V _{DD}	6	Ι	Power Supply: This is the power supply voltage for normal operation as well as Idle and Power-down modes.

Table 5: P89LPC908 pin description...continued

8-bit microcontrollers with two-clock 80C51 core

6. Logic symbols

7. Special function registers

Remark: Special Function Registers (SFRs) accesses are restricted in the following ways:

- User must not attempt to access any SFR locations not defined.
- Accesses to any defined SFR locations must be strictly for the functions for the SFRs.
- SFR bits labeled '-', '0' or '1' can **only** be written and read as follows:
 - '-' Unless otherwise specified, **must** be written with '0', but can return any value when read (even if it was written with '0'). It is a reserved bit and may be used in future derivatives.
 - '0' **must** be written with '0', and will return a '0' when read.
 - '1' **must** be written with '1', and will return a '1' when read.

Table 7:P89LPC906 Special function registers* indicates SFRs that are bit addressable.

Name	Description	SFR			Bit	functions	and addres	ses			Reset	t value
		addr.	MSB							LSB	Hex	Binary
	Bi	t address	E7	E6	E5	E4	E3	E2	E1	E0		
ACC*	Accumulator	E0H									00	0000000
AUXR1	Auxiliary function register	A2H	CLKLP	-	-	ENT0	SRST	0	-	DPS	00 ^[1]	000000x0
	Bi	t address	F7	F6	F5	F4	F3	F2	F1	F0		
B*	B register	F0H									00	0000000
CMP1	Comparator 1 control regist	er ACH	-	-	CE1	-	CN1	OE1	CO1	CMF1	00 ^[1]	xx000000
DIVM	CPU clock divide-by-M control	95H									00	00000000
DPTR	Data pointer (2 bytes)											
DPH	Data pointer high	83H									00	00000000
DPL	Data pointer low	82H									00	00000000
FMADRH	Program Flash address high	n E7H									00	00000000
FMADRL	Program Flash address low	E6H									00	00000000
FMCON	Program Flash Control (Read)	E4H	BUSY	-	-	-	HVA	HVE	SV	OI	70	01110000
	Program Flash Control (Write)		FMCMD. 7	FMCMD. 6	FMCMD. 5	FMCMD. 4	FMCMD. 3	FMCMD. 2	FMCMD. 1	FMCMD. 0		
FMDATA	Program Flash data	E5H									00	0000000
IEN0*	Interrupt enable 0	A8H	EA	EWDRT	EBO	-	ET1	-	ET0	-	00	0000000
	Bi	t address	EF	EE	ED	EC	EB	EA	E9	E8		
IEN1*	Interrupt enable 1	E8H	-	-	-	-	-	EC	EKBI	-	00 ^[1]	00x00000
	Bi	t address	BF	BE	BD	BC	BB	BA	B 9	B 8		
IP0*	Interrupt priority 0	B8H	-	PWDRT	PBO	-	PT1	-	PT0	-	00 ^[1]	x0000000
IP0H	Interrupt priority 0 high	B7H	-	PWDRT H	PBOH	-	PT1H	-	PT0H	-	00 ^[1]	x0000000
	Bi	t address	FF	FE	FD	FC	FB	FA	F9	F8		
IP1*	Interrupt priority 1	F8H	-	-	-	-	-	PC	PKBI	-	00 ^[1]	00x00000
IP1H	Interrupt priority 1 high	F7H	-	-	-	-	-	PCH	PKBIH	-	00 ^[1]	00x00000
KBCON	Keypad control register	94H	-	-	-	-	-	-	PATN _SEL	KBIF	00 ^[1]	xxxxxx00

8-bit microcontrollers with two-clock 80C51 core

P89LPC906/907/908

9397 750 14 Product data

Table 7: P89LPC906 Special function registers...continued

* indicates SFRs that are bit addressable.

Name	Description	SFR			Bit	functions a	and addres	sses			Reset	value
		addr.	MSB							LSB	Hex	Binary
TH0	Timer 0 high	8CH									00	0000000
TH1	Timer 1 high	8DH									00	0000000
TL0	Timer 0 low	8AH									00	0000000
TL1	Timer 1 low	8BH									00	0000000
TMOD	Timer 0 and 1 mode	89H	-	-	T1M1	T1M0	-	-	T0M1	T0M0	00	0000000
TRIM	Internal oscillator trim register	96H	-	ENCLK	TRIM.5	TRIM.4	TRIM.3	TRIM.2	TRIM.1	TRIM.0	[5] [6]	
WDCON	Watchdog control register	A7H	PRE2	PRE1	PRE0	-	-	WDRUN	WDTOF	WDCLK	[4] [6]	
WDL	Watchdog load	C1H									FF	11111111
WFEED1	Watchdog feed 1	C2H										
WFEED2	Watchdog feed 2	СЗН										

[1] All ports are in input only (high impedance) state after power-up.

[2] BRGR1 and BRGR0 must only be written if BRGEN in BRGCON SFR is '0'. If any are written while BRGEN = 1, the result is unpredictable. Unimplemented bits in SFRs (labeled '-') are X (unknown) at all times. Unless otherwise specified, ones should not be written to these bits since they may be used for other purposes in future derivatives. The reset values shown for these bits are '0's although they are unknown when read.

[3] The RSTSRC register reflects the cause of the P89LPC906/907/908 reset. Upon a power-up reset, all reset source flags are cleared except POF and BOF; the power-on reset value is xx110000.

[4] After reset, the value is 111001x1, i.e., PRE2-PRE0 are all '1', WDRUN = 1 and WDCLK = 1. WDTOF bit is '1' after Watchdog reset and is '0' after power-on reset. Other resets will not affect WDTOF.

[5] On power-on reset, the TRIM SFR is initialized with a factory preprogrammed value. Other resets will not cause initialization of the TRIM register.

[6] The only reset source that affects these SFRs is power-on reset.

89L

U

C906/907/908

Table 8: **P89LPC907 Special function registers**...continued

9397 750	Table 8: I * indicates S	able 8: P89LPC907 Special function registerscontinued indicates SFRs that are bit addressable.												
14467	Name	Description	SFR			Bit	functions a	nd addres	ses			Reset value		
			addr.	MSB							LSB	Hex	Binary	
	SSTAT	Serial port extended status register	BAH	DBMOD	INTLO	CIDIS	DBISEL					00	00000000	
	SP	Stack pointer	81H									07	00000111	
	TAMOD	Timer 0 auxiliary mode	8FH	-	-	-	-	-	-	-	T0M2	00	xxx0xxx0	
		Bit a	ddress	8F	8E	8D	8 C	8B	8A	89	88			
	TCON*	Timer 0 and 1 control	88H	TF1	TR1	TF0	TR0	-	-	-	-	00	0000000	
	TH0	Timer 0 high	8CH									00	0000000	
	TH1	Timer 1 high	8DH									00	0000000	
	TL0	Timer 0 low	8AH									00	0000000	
	TL1	Timer 1 low	8BH									00	0000000	
	TMOD	Timer 0 and 1 mode	89H	-	-	T1M1	T1M0	-	-	T0M1	T0M0	00	0000000	
	TRIM	Internal oscillator trim register	96H	-	-	TRIM.5	TRIM.4	TRIM.3	TRIM.2	TRIM.1	TRIM.0	[5] [6]		
	WDCON	Watchdog control register	A7H	PRE2	PRE1	PRE0	-	-	WDRUN	WDTOF	WDCLK	[4] [6]		
	WDL	Watchdog load	C1H									FF	11111111	
	WFEED1	Watchdog feed 1	C2H											
	WFEED2	Watchdog feed 2	СЗН											

[1] All ports are in input only (high impedance) state after power-up.

[2] BRGR1 and BRGR0 must only be written if BRGEN in BRGCON SFR is '0'. If any are written while BRGEN = 1, the result is unpredictable. Unimplemented bits in SFRs (labeled '-') are X (unknown) at all times. Unless otherwise specified, ones should not be written to these bits since they may be used for other purposes in future derivatives. The reset values shown for these bits are '0's although they are unknown when read.

The RSTSRC register reflects the cause of the P89LPC906/907/908 reset. Upon a power-up reset, all reset source flags are cleared except POF and BOF; the power-on reset [3] value is xx110000.

After reset, the value is 111001x1, i.e., PRE2-PRE0 are all '1', WDRUN = 1 and WDCLK = 1. WDTOF bit is '1' after Watchdog reset and is '0' after power-on reset. Other resets will [4] not affect WDTOF.

On power-on reset, the TRIM SFR is initialized with a factory preprogrammed value. Other resets will not cause initialization of the TRIM register. [5]

The only reset source that affects these SFRs is power-on reset. [6]

Product data

0

U

89LPC906/907/908

Table 9:P89LPC908 Special function registers...continued* indicates SFRs that are bit addressable.

14467	Name	Description	SFR			Bit	functions a	nd addres	sses			Reset	value
			addr.	MSB							LSB	Hex	Binary
	IP1H	Interrupt priority 1 high	F7H	-	PSTH	-	-	-	PCH	PKBIH	-	00 ^[1]	00x00000
	KBCON	Keypad control register	94H	-	-	-	-	-	-	PATN _SEL	KBIF	00 ^[1]	xxxxxx00
	KBMASK	Keypad interrupt mask register	86H									00	0000000
	KBPATN	Keypad pattern register	93H									FF	11111111
		Bit a	address	87	86	85	84	83	82	81	80		
	P0*	Port 0	80H	-	CMP1 /KB6	CMPREF /KB5	CIN1A /KB4	-	KB2	-	-	[1]	
		Bit a	address	97	96	95	94	93	92	91	90		
	P1*	Port 1	90H	-	-	RST	-	-	-	RxD	TxD		
	P0M1	Port 0 output mode 1	84H	-	(P0M1.6)	(P0M1.5)	(P0M1.4)	-	(P0M1.2)	-	-	FF	11111111
	P0M2	Port 0 output mode 2	85H	-	(P0M2.6)	(P0M2.5)	(P0M2.4)	-	(P0M2.2)	-	-	00	00000000
	P1M1	Port 1 output mode 1	91H	-	-	(P1M1.5)	-	-	-	(P1M1.1)	(P1M1.0)	FF ^[1]	11111111
	P1M2	Port 1 output mode 2	92H	-	-	(P1M2.5)	-	-	-	(P1M2.1)	(P1M2.0)	00 ^[1]	00000000
	PCON	Power control register	87H	SMOD1	SMOD0	BOPD	BOI	GF1	GF0	PMOD1	PMOD0	00	00000000
	PCONA	Power control register A	B5H	RTCPD		VCPD			-	SPD		00 ^[1]	00000000
		Bit a	address	D7	D6	D5	D4	D3	D2	D1	D0		
	PSW*	Program status word	D0H	CY	AC	F0	RS1	RS0	OV	F1	Р	00	00000000
	PT0AD	Port 0 digital input disable	F6H	-	-	PT0AD.5	PT0AD.4	-	PT0AD.2	-	-	00	xx00000x
_	RSTSRC	Reset source register	DFH	-	-	BOF	POF	R_BK	R_WD	R_SF	R_EX	[3]	
© Koninkliik	RTCCON	Real-time clock control	D1H	RTCF	RTCS1	RTCS0	-	-	-	ERTC	RTCEN	60 ^[1] [6]	011xxx00
e Philip	RTCH	Real-time clock register high	D2H									00 <mark>[6]</mark>	0000000
is Elect	RTCL	Real-time clock register low	D3H									00 <mark>[6]</mark>	0000000
tronics	SADDR	Serial port address register	A9H									00	0000000
N.V. 20	SADEN	Serial port address enable	B9H									00	0000000
004. All	SBUF	Serial port data buffer registe	r 99H									хх	XXXXXXXX
rights		Bit a	address	9F	9E	9D	9C	9B	9A	99	98		
reserv	SCON*	Serial port control	98H	SM0/FE	SM1	SM2	REN	TB8	RB8	TI	RI	00	0000000

ights reserved. 22 of 51

9397 750 14467 Product data

Rev. 05 — 17 December 2004

Table 9: P89LPC908 Special function registers...continued

* indicates SFRs that are bit addressable.

Name	Description	SFR	Bit functions and addresses								Reset	value
		addr.	MSB							LSB	Hex	Binary
SSTAT	Serial port extended status register	BAH	DBMOD	INTLO	CIDIS	DBISEL	FE	BR	OE	STINT	00	00000000
SP	Stack pointer	81H									07	00000111
	Bit a	ddress	8F	8E	8D	8C	8B	8A	89	88		
TCON*	Timer 0 and 1 control	88H	TF1	TR1	TF0	TR0	-	-	-	-	00	0000000
TH0	Timer 0 high	8CH									00	0000000
TH1	Timer 1 high	8DH									00	0000000
TL0	Timer 0 low	8AH									00	0000000
TL1	Timer 1 low	8BH									00	0000000
TMOD	Timer 0 and 1 mode	89H	-	-	T1M1	T1M0	-	-	T0M1	T0M0	00	0000000
TRIM	Internal oscillator trim register	96H	-	-	TRIM.5	TRIM.4	TRIM.3	TRIM.2	TRIM.1	TRIM.0	[5] [6]	
WDCON	Watchdog control register	A7H	PRE2	PRE1	PRE0	-	-	WDRUN	WDTOF	WDCLK	[4] [6]	
WDL	Watchdog load	C1H									FF	11111111
WFEED1	Watchdog feed 1	C2H										
WFEED2	Watchdog feed 2	СЗН										

[1] All ports are in input only (high impedance) state after power-up.

[2] BRGR1 and BRGR0 must only be written if BRGEN in BRGCON SFR is '0'. If any are written while BRGEN = 1, the result is unpredictable. Unimplemented bits in SFRs (labeled '-') are X (unknown) at all times. Unless otherwise specified, ones should not be written to these bits since they may be used for other purposes in future derivatives. The reset values shown for these bits are '0's although they are unknown when read.

[3] The RSTSRC register reflects the cause of the P89LPC906/907/908 reset. Upon a power-up reset, all reset source flags are cleared except POF and BOF; the power-on reset value is xx110000.

[4] After reset, the value is 111001x1, i.e., PRE2-PRE0 are all '1', WDRUN = 1 and WDCLK = 1. WDTOF bit is '1' after Watchdog reset and is '0' after power-on reset. Other resets will not affect WDTOF.

[5] On power-on reset, the TRIM SFR is initialized with a factory preprogrammed value. Other resets will not cause initialization of the TRIM register.

[6] The only reset source that affects these SFRs is power-on reset.

0

8-bit microcontrollers with two-clock 80C51 core

8.6 CPU CLock (CCLK) wake-up delay

The P89LPC906/907/908 has an internal wake-up timer that delays the clock until it stabilizes depending to the clock source used. If the clock source is any of the three crystal selections (P89LPC906) the delay is 992 OSCCLK cycles plus 60 to 100 μ s.

8.7 CPU CLOCK (CCLK) modification: DIVM register

The OSCCLK frequency can be divided down up to 510 times by configuring a dividing register, DIVM, to generate CCLK. This feature makes it possible to temporarily run the CPU at a lower rate, reducing power consumption. By dividing the clock, the CPU can retain the ability to respond to events that would not exit Idle mode by executing its normal program at a lower rate. This can also allow bypassing the oscillator start-up time in cases where Power-down mode would otherwise be used. The value of DIVM may be changed by the program at any time without interrupting code execution.

8.8 Low power select

The P89LPC906 is designed to run at 18 MHz (CCLK) maximum. However, if CCLK is 8 MHz or slower, the CLKLP SFR bit (AUXR1.7) can be set to '1' to lower the power consumption further. On any reset, CLKLP is '0' allowing highest performance access. This bit can then be set in software if CCLK is running at 8 MHz or slower.

8.9 Memory organization

The various P89LPC906/907/908 memory spaces are as follows:

• DATA

128 bytes of internal data memory space (00h:7Fh) accessed via direct or indirect addressing, using instructions other than MOVX and MOVC. All or part of the Stack may be in this area.

SFR

Special Function Registers. Selected CPU registers and peripheral control and status registers, accessible only via direct addressing.

• CODE

64 kB of Code memory space, accessed as part of program execution and via the MOVC instruction. The P89LPC906/907/908 has 1 kB of on-chip Code memory.

8.9.1 Data RAM arrangement

The 128 bytes of on-chip RAM is organized as follows:

Table 10:	On-chip	o data	memory	/ usages
-----------	----------------	--------	--------	----------

Туре	Data RAM	Size (Bytes)
DATA	Memory that can be addressed directly and indirectly	128

8.10 Interrupts

The P89LPC906/907/908 uses a four priority level interrupt structure. This allows great flexibility in controlling the handling of the many interrupt sources.

8-bit microcontrollers with two-clock 80C51 core

8.11.2 Quasi-bidirectional output configuration

Quasi-bidirectional output type can be used as both an input and output without the need to reconfigure the port. This is possible because when the port outputs a logic HIGH, it is weakly driven, allowing an external device to pull the pin LOW. When the pin is driven LOW, it is driven strongly and able to sink a fairly large current. These features are somewhat similar to an open-drain output except that there are three pull-up transistors in the quasi-bidirectional output that serve different purposes.

The P89LPC906/907/908 are 3 V devices, however, the pins are 5 V-tolerant (except for XTAL1 and XTAL2). In quasi-bidirectional mode, if a user applies 5 V on the pin, there will be a current flowing from the pin to V_{DD} , causing extra power consumption. Therefore, applying 5 V in quasi-bidirectional mode is discouraged.

A quasi-bidirectional port pin has a Schmitt-triggered input that also has a glitch suppression circuit.

8.11.3 Open-drain output configuration

The open-drain output configuration turns off all pull-ups and only drives the pull-down transistor of the port driver when the port latch contains a logic '0'. To be used as a logic output, a port configured in this manner must have an external pull-up, typically a resistor tied to V_{DD} .

An open-drain port pin has a Schmitt-triggered input that also has a glitch suppression circuit.

8.11.4 Input-only configuration

The input-only port configuration has no output drivers. It is a Schmitt-triggered input that also has a glitch suppression circuit.

8.11.5 Push-pull output configuration

The push-pull output configuration has the same pull-down structure as both the open-drain and the quasi-bidirectional output modes, but provides a continuous strong pull-up when the port latch contains a logic '1'. The push-pull mode may be used when more source current is needed from a port output. A push-pull port pin has a Schmitt-triggered input that also has a glitch suppression circuit.

8.11.6 Port 0 analog functions

The P89LPC906/907/908 incorporates an Analog Comparator. In order to give the best analog function performance and to minimize power consumption, pins that are being used for analog functions must have the digital outputs and digital inputs disabled.

Digital outputs are disabled by putting the port output into the Input-Only (high impedance) mode as described in Section 8.11.4 "Input-only configuration".

Digital inputs on Port 0 may be disabled through the use of the PT0AD register. On any reset, the PT0AD bits default to '0's to enable digital functions.

8.13.1 Idle mode

Idle mode leaves peripherals running in order to allow them to activate the processor when an interrupt is generated. Any enabled interrupt source or reset may terminate Idle mode.

8.13.2 Power-down mode

The Power-down mode stops the oscillator in order to minimize power consumption. The P89LPC906/907/908 exits Power-down mode via any reset, or certain interrupts. In Power-down mode, the power supply voltage may be reduced to the RAM keep-alive voltage V_{RAM} . This retains the RAM contents at the point where Power-down mode was entered. SFR contents are not guaranteed after V_{DD} has been lowered to V_{RAM} , therefore it is highly recommended to wake up the processor via reset in this case. V_{DD} must be raised to within the operating range before the Power-down mode is exited.

Some chip functions continue to operate and draw power during Power-down mode, increasing the total power used during Power-down. These include: Brownout detect, Watchdog Timer, Comparator (**Note**: Comparator can be powered-down separately), and Real-Time Clock (RTC)/System Timer. The internal RC oscillator is disabled unless both the RC oscillator has been selected as the system clock **and** the RTC is enabled.

8.13.3 Total Power-down mode

This is the same as Power-down mode except that the brownout detection circuitry and the voltage comparators are also disabled to conserve additional power. The internal RC oscillator is disabled unless both the RC oscillator has been selected as the system clock **and** the RTC is enabled. If the internal RC oscillator is used to clock the RTC during Power-down, there will be high power consumption. Please use an external low frequency clock to achieve low power with the Real-Time Clock running during Power-down.

8.14 Reset

The P1.5/RST pin can function as either an active-LOW reset input or as a digital input, P1.5. The RPE (Reset Pin Enable) bit in UCFG1, when set to '1', enables the external reset input function on P1.5. When cleared, P1.5 may be used as an input pin.

Remark: During a power-up sequence, the RPE selection is overridden and this pin will always function as a reset input. **An external circuit connected to this pin should not hold this pin LOW during a power-on sequence as this will keep the device in reset.** After power-up this input will function either as an external reset input or as a digital input as defined by the RPE bit. Only a power-up reset will temporarily override the selection defined by RPE bit. Other sources of reset will not override the RPE bit.

Remark: During a power cycle, V_{DD} must fall below V_{POR} (see Table 13 "DC electrical characteristics") before power is reapplied, in order to ensure a power-on reset.

8.15.6 Timer overflow toggle output (P89LPC907)

Timers 0 and 1 can be configured to automatically toggle a port output whenever a timer overflow occurs. The same device pins that are used for the T0 and T1 count inputs are also used for the timer toggle outputs. The port outputs will be a logic 1 prior to the first timer overflow when this mode is turned on.

8.16 Real-Time clock/system timer

The P89LPC906/907/908 has a simple Real-Time clock that allows a user to continue running an accurate timer while the rest of the device is powered-down. The Real-Time clock can be a wake-up or an interrupt source. The Real-Time clock is a 23-bit down counter comprised of a 7-bit prescaler and a 16-bit loadable down counter. When it reaches all '0's, the counter will be reloaded again and the RTCF flag will be set. The clock source for this counter can be either the CPU clock (CCLK) or the XTAL oscillator, provided that the XTAL oscillator is not being used as the CPU clock. If the XTAL oscillator is used as the CPU clock, then the RTC will use CCLK as its clock source. Only power-on reset will reset the Real-Time clock and its associated SFRs to the default state.

8.17 UART (P89LPC908)

The P89LPC907 and P89LPC908 devices have an enhanced UART that is compatible with the conventional 80C51 UART except that Timer 2 overflow cannot be used as a baud rate source. The P89LPC907 does not have an RxD pin and thus receiver functions described in this section do not apply to the P89LPC907. Both devices include an independent Baud Rate Generator. The baud rate can be selected from the OSCCLK (divided by a constant), Timer 1 overflow, or the independent Baud Rate Generator. In addition to the baud rate generation, enhancements over the standard 80C51 UART include Framing Error detection, automatic address recognition, selectable double buffering and several interrupt options. The UART can be operated in 4 modes: shift register, 8-bit UART, 9-bit UART, and CCLK/32 or CCLK/16.

8.17.1 Mode 0

Serial data enters and exits through RxD. TxD outputs the shift clock. 8 bits are transmitted or received, LSB first. The baud rate is fixed at $\frac{1}{16}$ of the CPU clock frequency.

8.17.2 Mode 1

10 bits are transmitted (through TxD) or received (through RxD): a start bit (logical '0'), 8 data bits (LSB first), and a stop bit (logical '1'). When data is received, the stop bit is stored in RB8 in Special Function Register SCON. The baud rate is variable and is determined by the Timer 1 overflow rate or the Baud Rate Generator (described in Section 8.17.5 "Baud rate generator and selection").

8.17.3 Mode 2

11 bits are transmitted (through TxD) or received (through RxD): start bit (logical '0'), 8 data bits (LSB first), a programmable 9th data bit, and a stop bit (logical '1'). When data is transmitted, the 9th data bit (TB8 in SCON) can be assigned the value of '0' or '1'. Or, for example, the parity bit (P, in the PSW) could be moved into TB8. When

8-bit microcontrollers with two-clock 80C51 core

8.21 Comparator and power reduction modes

The comparator may remain enabled when Power-down or Idle mode is activated, but the comparator is disabled automatically in Total Power-down mode.

If the comparator interrupt is enabled (except in Total Power-down mode), a change of the comparator output state will generate an interrupt and wake up the processor.

If the comparator output to a pin is enabled, the pin should be configured in the push-pull mode in order to obtain fast switching times while in Power-down mode. The reason is that with the oscillator stopped, the temporary strong pull-up that normally occurs during switching on a quasi-bidirectional port pin does not take place.

The comparator consumes power in Power-down and Idle modes, as well as in the normal operating mode. This fact should be taken into account when system power consumption is an issue. To minimize power consumption, the user can disable the comparator via PCONA.5 or put the device in Total Power-down mode.

8.22 Keypad interrupt (KBI)

The Keypad Interrupt function is intended primarily to allow a single interrupt to be generated when Port 0 is equal to or not equal to a certain pattern. This function can be used for bus address recognition or keypad recognition. The user can configure the port via SFRs for different tasks.

The Keypad Interrupt Mask Register (KBMASK) is used to define which input pins connected to Port 0 can trigger the interrupt. The Keypad Pattern Register (KBPATN) is used to define a pattern that is compared to the value of Port 0. The Keypad Interrupt Flag (KBIF) in the Keypad Interrupt Control Register (KBCON) is set when the condition is matched while the Keypad Interrupt function is active. An interrupt will be generated if enabled. The PATN_SEL bit in the Keypad Interrupt Control Register (KBCON) is used to define equal or not-equal for the comparison.

In order to use the Keypad Interrupt as an original KBI function like in 87LPC76x series, the user needs to set KBPATN = 0FFH and PATN_SEL = 1 (not equal), then any key connected to Port 0 which is enabled by the KBMASK register will cause the hardware to set KBIF and generate an interrupt if it has been enabled. The interrupt

10. Static characteristics

Table 13: DC electrical characteristics

 V_{DD} = 2.4 V to 3.6 V unless otherwise specified.

 $T_{amb} = -40 \circ C$ to +85 $\circ C$ for industrial, unless otherwise specified.

Symbol	Parameter	Conditions		Min	Typ ^[1]	Max	Unit
I _{DD(oper)}	power supply current,	3.6 V; 12 MHz	[2]	-	11	18	mA
	operating (P89LPC906)	3.6 V; 18 MHz	[2]	-	14	23	mA
I _{DD(idle)}	power supply current, Idle	3.6 V; 12 MHz	[2]	-	1	4	mA
	mode (P89LPC906)	3.6 V; 18 MHz	[2]	-	1.5	5.6	mA
I _{DD(oper)}	power supply current, operating (P89LPC907, P89LPC908)	3.6 V; 7.373 MHz	[3]	-	4	8	mA
I _{DD(idle)}	power supply current, Idle mode (P89LPC907, P89LPC908)	3.6 V; 7.373 MHz	[3]	-	1	3	mA
I _{DD(PD)}	Power supply current, Power-down mode, voltage comparators powered-down	3.6 V	[2][3]	-	-	70	μΑ
I _{DD(TPD)}	Power supply current, Total Power-down mode	3.6 V	[2][3]	-	1	5	μΑ
$(dV_{DD}/dt)_r$	V _{DD} rise rate			-	-	2	mV/μs
$(dV_{DD}/dt)_{f}$	V _{DD} fall rate			-	-	50	mV/μs
V _{POR}	Power-on reset detect voltage			-	-	0.2	V
V _{RAM}	RAM keep-alive voltage			1.5	-	-	V
$V_{\text{th(HL)}}$	negative-going threshold voltage (Schmitt input)			0.22V _{DD}	$0.4V_{DD}$	-	V
V _{th(LH)}	positive-going threshold voltage (Schmitt input)			-	0.6V _{DD}	$0.7V_{DD}$	V
V _{hys}	hysteresis voltage			-	$0.2V_{DD}$	-	V
V _{OL}	LOW-level output voltage; all	I _{OL} = 20 mA		-	0.6	1.0	V
	ports, all modes except Hi-Z	I _{OL} = 10 mA		-	0.3	0.5	V
		I _{OL} = 3.2 mA		-	0.2	0.3	V
V _{OH}	HIGH-level output voltage, all ports	I _{OH} = −8 mA; push-pull mode		V _{DD} – 0.1	-	-	V
		I _{OH} = -3.2 mA; push-pull mode		$V_{DD}-0.7$	$V_{DD}-0.4$	-	V
		$I_{OH} = -20 \ \mu A;$ quasi-bidirectional mode		V _{DD} - 0.3	$V_{DD} - 0.2$	-	V
C _{ig}	input/output pin capacitance		[4]	-	-	15	pF
I _{IL}	logical 0 input current, all ports	V _{IN} = 0.4 V	[5]	-	-	-80	μΑ
I _{LI}	input leakage current, all ports	$V_{IN} = V_{IL} \text{ or } V_{IH}$	[6]	-	-	±10	μA
I _{TL}	logical 1-to-0 transition current, all ports	$V_{IN} = 2.0 V at$ $V_{DD} = 3.6 V$	[7][8]	-30	-	-450	μΑ
R _{RST}	internal reset pull-up resistor			10	-	30	kΩ

Table 15: AC characteristics (P89LPC906)

V_{DD} = 3.0 V to 3.6 V, unless otherwise specified.

 $T_{amb} = -40 \circ C$ to +85 $\circ C$ for industrial, unless otherwise specified.^[1]

Symbol	Parameter	Conditions		Variable	clock	f _{osc} = 18 MHz		Unit
				Min	Max	Min	Max	
f _{RCOSC}	internal RC oscillator frequency (nominal f = 7.3728 MHz) trimmed to \pm 1 % at T _{amb} = 25 °C			7.189	7.557	7.189	7.557	MHz
f _{WDOSC}	internal Watchdog oscillator frequency (nominal f = 400 kHz)			320	520	320	520	kHz
Crystal osc	illator							
f _{osc}	oscillator frequency		[2]	0	12	-	-	MHz
t _{CLCL}	clock cycle	see Figure 19		83	-	-	-	ns
f _{CLKP}	CLKLP active frequency			0	8	-	-	MHz
Glitch filter								
	glitch rejection, P1.5/RST pin			-	50	-	50	ns
	signal acceptance, P1.5/RST pin			125	-	125	-	ns
	glitch rejection, any pin except P1.5/RST			-	15	-	15	ns
	signal acceptance, any pin except P1.5/RST			50	-	50	-	ns
External clo	ock							
t _{CHCX}	HIGH time	see Figure 19		22	$t_{\text{CLCL}} - t_{\text{CLCX}}$	22	-	ns
t _{CLCX}	LOW time	see Figure 19		22	$t_{CLCL} - t_{CHCX}$	22	-	ns
t _{CLCH}	rise time	see Figure 19		-	5	-	5	ns
t _{CHCL}	fall time	see Figure 19		-	5	-	5	ns

[1] Parameters are valid over operating temperature range unless otherwise specified. Parts are tested to 2 MHz, but are guaranteed to operate down to 0 Hz.

[2] When using an oscillator frequency above 12 MHz, the reset input function of P1.5 must be enabled. An external circuit is required to hold the device in reset at power-up until V_{DD} has reached its specified level. When system power is removed V_{DD} will fall below the minimum specified operating voltage. When using an oscillator frequency above 12 MHz, in some applications, an external brownout detect circuit may be required to hold the device in reset when V_{DD} falls below the minimum specified operating voltage.

9397 750 14467 Product data

8-bit microcontrollers with two-clock 80C51 core

13. Package outline

Fig 20. SOT96-1 (SO8).

8-bit microcontrollers with two-clock 80C51 core

15. Data sheet status

Level	Data sheet status ^[1]	Product status ^{[2][3]}	Definition
I	Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
II	Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
	Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN).

[1] Please consult the most recently issued data sheet before initiating or completing a design.

[2] The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.

[3] For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.

16. Definitions

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

17. Disclaimers

Life support — These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes in the products - including circuits, standard cells, and/or software - described or contained herein in order to improve design and/or performance. When the product is in full production (status 'Production'), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no licence or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Contact information

For additional information, please visit http://www.semiconductors.philips.com. For sales office addresses, send e-mail to: sales.addresses@www.semiconductors.philips.com.

9397 750 14467

Fax: +31 40 27 24825

© Koninklijke Philips Electronics N.V. 2004. All rights reserved.