

Welcome to E-XFL.COM

Understanding <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Embedded - DSP (Digital Signal Processors) are specialized microprocessors designed to perform complex mathematical computations on digital signals in real-time. Unlike general-purpose processors, DSPs are optimized for high-speed numeric processing tasks, making them ideal for applications that require efficient and precise manipulation of digital data. These processors are fundamental in converting and processing signals in various forms, including audio, video, and communication signals, ensuring that data is accurately interpreted and utilized in embedded systems.

Applications of <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Details

Product Status	Active
Туре	Blackfin+
Interface	CAN, DSPI, EBI/EMI, I ² C, PPI, QSPI, SD/SDIO, SPI, SPORT, UART/USART, USB OTG
Clock Rate	300MHz
Non-Volatile Memory	ROM (512kB)
On-Chip RAM	256kB
Voltage - I/O	1.8V, 3.3V
Voltage - Core	1.10V
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	88-VFQFN Exposed Pad, CSP
Supplier Device Package	88-LFCSP-VQ (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/analog-devices/adbf702wccpz311

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

system event or fault if enabled. ECC protection is fully transparent to the user, even if L2 memory is read or written by 8-bit or 16-bit entities.

CRC-Protected Memories

While parity bit and ECC protection mainly protect against random soft errors in L1 and L2 memory cells, the CRC engines can be used to protect against systematic errors (pointer errors) and static content (instruction code) of L1, L2, and even L3 memories (DDR2, LPDDR). The processor features two CRC engines which are embedded in the memory-to-memory DMA controllers. CRC checksums can be calculated or compared on the fly during memory transfers, or one or multiple memory regions can be continuously scrubbed by a single DMA work unit as per DMA descriptor chain instructions. The CRC engine also protects data loaded during the boot process.

Memory Protection

The Blackfin+ core features a memory protection concept, which grants data and/or instruction accesses to enabled memory regions only. A supervisor mode vs. user mode programming model supports dynamically varying access rights. Increased flexibility in memory page size options supports a simple method of static memory partitioning.

System Protection

The system protection unit (SPU) guards against accidental or unwanted access to the MMR space of a peripheral by providing a write-protection mechanism. The user is able to choose and configure the peripherals that are protected as well as configure which ones of the four system MMR masters (core, memory DMA, the SPI host port, and Coresight debug) the peripherals are guarded against.

The SPU is also part of the security infrastructure. Along with providing write-protection functionality, the SPU is employed to define which resources in the system are secure or non-secure and to block access to secure resources from non-secure masters.

Synonymously, the system memory protection unit (SMPU) provides memory protection against read and/or write transactions to defined regions of memory. There are two SMPU units in the ADSP-BF70x processors. One is for the L2 memory and the other is for the external DDR memory.

The SMPU is also part of the security infrastructure. It allows the user to not only protect against arbitrary read and/or write transactions, but it also allows regions of memory to be defined as secure and prevent non-secure masters from accessing those memory regions.

Watchpoint Protection

The primary purpose of watchpoints and hardware breakpoints is to serve emulator needs. When enabled, they signal an emulator event whenever user-defined system resources are accessed or the core executes from user-defined addresses. Watchpoint events can be configured such that they signal the events to the fault management unit of the SEC.

Watchdog

The on-chip software watchdog timer can supervise the Blackfin+ core.

Bandwidth Monitor

Memory-to-memory DMA channels are equipped with a bandwidth monitor mechanism. They can signal a system event or fault when transactions tend to starve because system buses are fully loaded with higher-priority traffic.

Signal Watchdogs

The eight general-purpose timers feature modes to monitor offchip signals. The watchdog period mode monitors whether external signals toggle with a period within an expected range. The watchdog width mode monitors whether the pulse widths of external signals are within an expected range. Both modes help to detect undesired toggling (or lack thereof) of system-level signals.

Up/Down Count Mismatch Detection

The GP counter can monitor external signal pairs, such as request/grant strobes. If the edge count mismatch exceeds the expected range, the GP counter can flag this to the processor or to the fault management unit of the SEC.

Fault Management

The fault management unit is part of the system event controller (SEC). Any system event, whether a dual-bit uncorrectable ECC error, or any peripheral status interrupt, can be defined as being a fault. Additionally, the system events can be defined as an interrupt to the core. If defined as such, the SEC forwards the event to the fault management unit, which may automatically reset the entire device for reboot, or simply toggle the SYS_FAULT output pin to signal off-chip hardware. Optionally, the fault management unit can delay the action taken through a keyed sequence, to provide a final chance for the Blackfin+ core to resolve the issue and to prevent the fault action from being taken.

ADDITIONAL PROCESSOR PERIPHERALS

The processor contains a rich set of peripherals connected to the core through several high-bandwidth buses, providing flexibility in system configuration as well as excellent overall system performance (see the block diagram on Page 1). The processor contains high-speed serial and parallel ports, an interrupt controller for flexible management of interrupts from the on-chip peripherals or external sources, and power management control functions to tailor the performance and power characteristics of the processor and system to many application scenarios.

The following sections describe additional peripherals that were not previously described.

Timers

The processor includes several timers which are described in the following sections.

Table 3. Clock Dividers

	Divider (if Available on
Clock Source	SYS_CLKOUT)
CCLK (Core Clock)	By 16
SYSCLK (System Clock)	Ву 8
SCLK0 (System Clock, All Peripherals not Covered by SCLK1)	Not available on SYS_CLKOUT
SCLK1 (System Clock for Crypto Engines and MDMA)	Ву 8
DCLK (LPDDR/DDR2 Clock)	Ву 8
OCLK (Output Clock)	Programmable
CLKBUF	None, direct from SYS_CLKIN

Power Management

As shown in Table 4, the processor supports multiple power domains, which maximizes flexibility while maintaining compliance with industry standards and conventions. There are no sequencing requirements for the various power domains, but all domains must be powered according to the appropriate Specifications table for processor operating conditions; even if the feature/peripheral is not used.

Table 4. Power Domains

Power Domain	V _{DD} Range
All Internal Logic	V _{DD_INT}
DDR2/LPDDR	V _{DD_DMC}
USB	$V_{DD_{USB}}$
OTP Memory	V _{DD_OTP}
HADC	V _{DD_HADC}
RTC	V _{DD_RTC}
All Other I/O (Includes SYS, JTAG, and Ports Pins)	V _{DD_EXT}

The dynamic power management feature of the processor allows the processor's core clock frequency (f_{CCLK}) to be dynamically controlled.

The power dissipated by a processor is largely a function of its clock frequency and the square of the operating voltage. For example, reducing the clock frequency by 25% results in a 25% reduction in dynamic power dissipation.

See Table 5 for a summary of the power settings for each mode.

Full-On Operating Mode—Maximum Performance

In the full-on mode, the PLL is enabled and is not bypassed, providing capability for maximum operational frequency. This is the power-up default execution state in which maximum performance can be achieved. The processor core and all enabled peripherals run at full speed.

Deep Sleep Operating Mode—Maximum Dynamic Power Savings

The deep sleep mode maximizes dynamic power savings by disabling the clocks to the processor core and to all synchronous peripherals. Asynchronous peripherals may still be running but cannot access internal resources or external memory.

Table 5. Power Settings

Mode/State	PLL	PLL Bypassed		f _{sysclk} , f _{DCLK} , f _{sclk0} , f _{sclk1}	Core Power
Full On	Enabled	No	Enabled	Enabled	On
Deep Sleep	Disabled	_	Disabled	Disabled	On
Hibernate	Disabled	—	Disabled	Disabled	Off

Hibernate State—Maximum Static Power Savings

The hibernate state maximizes static power savings by disabling the voltage and clocks to the processor core and to all of the peripherals. This setting signals the external voltage regulator supplying the VDD_INT pins to shut off using the SYS_ EXTWAKE signal, which provides the lowest static power dissipation.

Any critical information stored internally (for example, memory contents, register contents, and other information) must be written to a nonvolatile storage device (or self-refreshed DRAM) prior to removing power if the processor state is to be preserved.

Because the V_{DD_EXT} pins can still be supplied in this mode, all of the external pins three-state, unless otherwise specified. This allows other devices that may be connected to the processor to still have power applied without drawing unwanted current.

Reset Control Unit

Reset is the initial state of the whole processor or the core and is the result of a hardware- or software-triggered event. In this state, all control registers are set to their default values and functional units are idle. Exiting a full system reset starts with the core being ready to boot.

The reset control unit (RCU) controls how all the functional units enter and exit reset. Differences in functional requirements and clocking constraints define how reset signals are generated. Programs must guarantee that none of the reset functions puts the system into an undefined state or causes resources to stall. This is particularly important when the core is reset (programs must ensure that there is no pending system activity involving the core when it is being reset).

From a system perspective, reset is defined by both the reset target and the reset source described as follows in the following list.

Target defined:

- Hardware Reset—All functional units are set to their default states without exception. History is lost.
- System Reset—All functional units except the RCU are set to their default states.
- Core-only Reset—Affects the core only. The system software should guarantee that the core, while in reset state, is not accessed by any bus master.

Source defined:

- Hardware Reset—The <u>SYS_HWRST</u> input signal is asserted active (pulled down).
- System Reset—May be triggered by software (writing to the RCU_CTL register) or by another functional unit such as the dynamic power management (DPM) unit (hibernate) or any of the system event controller (SEC), trigger routing unit (TRU), or emulator inputs.
- Core-only Reset—Triggered by software.
- Trigger request (peripheral).

Voltage Regulation

The processor requires an external voltage regulator to power the VDD_INT pins. To reduce standby power consumption, the external voltage regulator can be signaled through SYS_EXTWAKE to remove power from the processor core. This signal is high-true for power-up and may be connected directly to the low-true shut-down input of many common regulators.

While in the hibernate state, all external supply pins (VDD_ EXT, VDD_USB, and VDD_DMC) can still be powered, eliminating the need for external buffers. The external voltage regulator can be activated from this power down state by asserting the SYS_HWRST pin, which then initiates a boot sequence. SYS_EXTWAKE indicates a wake-up to the external voltage regulator.

SYSTEM DEBUG

The processor includes various features that allow for easy system debug. These are described in the following sections.

System Watchpoint Unit

The system watchpoint unit (SWU) is a single module which connects to a single system bus and provides for transaction monitoring. One SWU is attached to the bus going to each system slave. The SWU provides ports for all system bus address channel signals. Each SWU contains four match groups of registers with associated hardware. These four SWU match groups operate independently, but share common event (interrupt, trigger, and others) outputs.

Debug Access Port

The debug access port (DAP) provides IEEE-1149.1 JTAG interface support through its JTAG debug and serial wire debug port (SWJ-DP). SWJ-DP is a combined JTAG-DP and SW-DP that enables either serial wire debug (SWD) or a JTAG emulator to be connected to a target. SWD signals share the same pins as

JTAG. The DAP provides an optional instrumentation trace for both the core and system. It provides a trace stream that conforms to MIPI System Trace Protocol version 2 (STPv2).

DEVELOPMENT TOOLS

Analog Devices supports its processors with a complete line of software and hardware development tools, including integrated development environments (CrossCore[®] Embedded Studio), evaluation products, emulators, and a wide variety of software add-ins.

Integrated Development Environments (IDEs)

CrossCore Embedded Studio is based on the Eclipse[™] framework. Supporting most Analog Devices processor families, it is the IDE of choice for future processors, including multicore devices. CrossCore Embedded Studio seamlessly integrates available software add-ins to support real time operating systems, file systems, TCP/IP stacks, USB stacks, algorithmic software modules, and evaluation hardware board support packages. For more information, visit www.analog.com/cces.

EZ-KIT Lite Evaluation Board

For processor evaluation, Analog Devices provides a wide range of EZ-KIT Lite[®] evaluation boards. Including the processor and key peripherals, the evaluation board also supports on-chip emulation capabilities and other evaluation and development features. Also available are various EZ-Extenders[®], which are daughter cards delivering additional specialized functionality, including audio and video processing. For more information, visit www.analog.com and search on "ezkit" or "ezextender".

EZ-KIT Lite Evaluation Kits

For a cost-effective way to learn more about developing with Analog Devices processors, Analog Devices offer a range of EZ-KIT Lite evaluation kits. Each evaluation kit includes an EZ-KIT Lite evaluation board, directions for downloading an evaluation version of the available IDE, a USB cable, and a power supply. The USB controller on the EZ-KIT Lite board connects to the USB port of the user's PC, enabling the chosen IDE evaluation suite to emulate the on-board processor in-circuit. This permits the customer to download, execute, and debug programs for the EZ-KIT Lite system. It also supports in-circuit programming of the on-board Flash device to store user-specific boot code, enabling standalone operation. With the full version of Cross-Core Embedded Studio installed (sold separately), engineers can develop software for supported EZ-KITs or any custom system utilizing supported Analog Devices processors.

ADSP-BF706 EZ-KIT Mini

The ADSP-BF706 EZ-KIT Mini[™] product (ADZS-BF706-EZMini) contains the ADSP-BF706 processor and is shipped with all of the necessary hardware. Users can start their evaluation immediately. The EZ-KIT Mini product includes the standalone evaluation board and USB cable. The EZ-KIT Mini ships with an on-board debug agent.

The evaluation board is designed to be used in conjunction with the CrossCore Embedded Studio (CCES) development tools to test capabilities of the ADSP-BF706 Blackfin processor.

Blackfin Low Power Imaging Platform (BLIP)

The Blackfin low power imaging platform (BLIP) integrates the ADSP-BF707 Blackfin processor and Analog Devices software code libraries. The code libraries are optimized to detect the presence and behavior of humans or vehicles in indoor and outdoor environments. The BLIP hardware platform is delivered preloaded with the occupancy software module.

Software Add-Ins for CrossCore Embedded Studio

Analog Devices offers software add-ins which seamlessly integrate with CrossCore Embedded Studio to extend its capabilities and reduce development time. Add-ins include board support packages for evaluation hardware, various middleware packages, and algorithmic modules. Documentation, help, configuration dialogs, and coding examples present in these add-ins are viewable through the CrossCore Embedded Studio IDE once the add-in is installed.

Board Support Packages for Evaluation Hardware

Software support for the EZ-KIT Lite evaluation boards and EZ-Extender daughter cards is provided by software add-ins called board support packages (BSPs). The BSPs contain the required drivers, pertinent release notes, and select example code for the given evaluation hardware. A download link for a specific BSP is located on the web page for the associated EZ-KIT or EZ-Extender product. The link is found in the *Product Download* area of the product web page.

Middleware Packages

Analog Devices separately offers middleware add-ins such as real time operating systems, file systems, USB stacks, and TCP/IP stacks. For more information, see the following web pages:

- www.analog.com/ucos3
- www.analog.com/ucfs
- www.analog.com/ucusbd
- www.analog.com/lwip

Algorithmic Modules

To speed development, Analog Devices offers add-ins that perform popular audio and video processing algorithms. These are available for use with CrossCore Embedded Studio. For more information, visit www.analog.com and search on "Blackfin software modules" or "SHARC software modules".

Designing an Emulator-Compatible DSP Board (Target)

For embedded system test and debug, Analog Devices provides a family of emulators. On each DAP-enabled processor, Analog Devices supplies an IEEE 1149.1 JTAG test access port (TAP), serial wire debug port (SWJ-DP), and trace capabilities. In-circuit emulation is facilitated by use of the JTAG or SWD interface. The emulator accesses the processor's internal features through the processor's TAP, allowing the developer to load code, set breakpoints, and view variables, memory, and registers. The emulators require the target board to include a header(s) that supports connection of the processor's DAP to the emulator for trace and debug.

Analog Devices emulators actively drive JTG_TRST high. Third-party emulators may expect a pull-up on JTG_TRST and therefore will not drive JTG_TRST high. When using this type of third-party emulator JTG_TRST must still be driven low during power-up reset, but should subsequently be driven high externally before any emulation or boundary-scan operations. See Power-Up Reset Timing on Page 61 for more information on POR specifications.

For more details on target board design issues including mechanical layout, single processor connections, signal buffering, signal termination, and emulator pod logic, contact the factory for more information.

ADDITIONAL INFORMATION

The following publications that describe the ADSP-BF70x processors can be accessed electronically on our website:

- ADSP-BF70x Blackfin+ Processor Hardware Reference
- ADSP-BF70x Blackfin+ Processor Programming Reference
- ADSP-BF70x Blackfin+ Processor Anomaly List

RELATED SIGNAL CHAINS

A signal chain is a series of signal-conditioning electronic components that receive input (data acquired from sampling either real-time phenomena or from stored data) in tandem, with the output of one portion of the chain supplying input to the next. Signal chains are often used in signal processing applications to gather and process data or to apply system controls based on analysis of real-time phenomena.

Analog Devices eases signal processing system development by providing signal processing components that are designed to work together well. A tool for viewing relationships between specific applications and related components is available on the www.analog.com website.

The application signal chains page in the Circuits from the Lab[®] site (http://www.analog.com/circuits) provides:

- Graphical circuit block diagram presentation of signal chains for a variety of circuit types and applications
- Drill down links for components in each chain to selection guides and application information
- Reference designs applying best practice design techniques

Table 6. ADSP-BF70x Detailed Signal Descriptions (Continued)

Port Name	Direction	Description				
SPT_BCLK	I/O	Channel B Clock. Data and Frame Sync are driven/sampled with respect to this clock. This signal can be either internally or externally generated.				
SPT_BD0	I/O	Channel B Data 0. Primary bidirectional data I/O. This signal can be configured as an output to transmit serial data, or as an input to receive serial data.				
SPT_BD1	I/O	Channel B Data 1. Secondary bidirectional data I/O. This signal can be configured as an output to transmit serial data, or as an input to receive serial data.				
SPT_BFS	I/O	Channel B Frame Sync. The frame sync pulse initiates shifting of serial data. This signal is either generated internally or externally.				
SPT_BTDV	Output	Channel B Transmit Data Valid. This signal is optional and only active when SPORT is configured in multi-channel transmit mode. It is asserted during enabled slots.				
SYS_BMODEn	Input	Boot Mode Control n. Selects the boot mode of the processor.				
SYS_CLKIN	Input	Clock/Crystal Input. Connect to an external clock source or crystal.				
SYS_CLKOUT	Output	Processor Clock Output. Outputs internal clocks. Clocks may be divided down. See the CGU chapter of the HRM for more details.				
SYS_EXTWAKE	Output	External Wake Control. Drives low during hibernate and high all other times. Typically connected to the enable input of the voltage regulator controlling the VDD_INT supply.				
SYS_FAULT	I/O	Active-Low Fault Output. Indicates internal faults or senses external faults depending on the operating mode.				
SYS_HWRST	Input	Processor Hardware Reset Control. Resets the device when asserted.				
SYS_NMI	Input	Non-maskable Interrupt. See the processor hardware and programming references for more details.				
SYS_RESOUT	Output	Reset Output. Indicates that the device is in the reset or hibernate state.				
SYS_WAKEn	Input	Power Saving Mode Wakeup n. Wake-up source input for deep sleep and/or hibernate mode.				
SYS_XTAL	Output	Crystal Output. Drives an external crystal. Must be left unconnected if an external clock is driving CLKIN.				
JTG_SWCLK	I/O	Serial Wire Clock. Clocks data into and out of the target during debug.				
JTG_SWDIO	I/O	Serial Wire DIO. Sends and receives serial data to and from the target during debug.				
JTG_SWO	Output	Serial Wire Out. Provides trace data to the emulator.				
JTG_TCK	Input	JTAG Clock. JTAG test access port clock.				
JTG_TDI	Input	JTAG Serial Data In. JTAG test access port data input.				
JTG_TDO	Output	JTAG Serial Data Out. JTAG test access port data output.				
JTG_TMS	Input	JTAG Mode Select. JTAG test access port mode select.				
JTG_TRST	Input	JTAG Reset. JTAG test access port reset.				
TM_ACIn	Input	Alternate Capture Input n. Provides an additional input for WIDCAP, WATCHDOG, and PININT modes.				
TM_ACLKn	Input	Alternate Clock n. Provides an additional time base for use by an individual timer.				
TM_CLK	Input	Clock. Provides an additional global time base for use by all the GP timers.				
TM_TMRn	I/O	Timer n. The main input/output signal for each timer.				
TRACE_CLK	Output	Trace Clock. Clock output.				
TRACE_Dnn	Output	Trace Data n. Unidirectional data bus.				
TWI_SCL	I/O	Serial Clock. Clock output when master, clock input when slave.				
TWI_SDA	I/O	Serial Data. Receives or transmits data.				
UART_CTS	Input	Clear to Send. Flow control signal.				
UART_RTS	Output	Request to Send. Flow control signal.				
UART_RX	Input	Receive. Receive input. Typically connects to a transceiver that meets the electrical requirements of the device being communicated with.				
UART_TX	Output	Transmit. Transmit output. Typically connects to a transceiver that meets the electrical requirements of the device being communicated with.				
USB_CLKIN	Input	Clock/Crystal Input. This clock input is multiplied by a PLL to form the USB clock. See data sheet specifications for frequency/tolerance information.				

Table 7. ADSP-BF70x 184-Ball CSP_BGA Signal Descriptions (Continued)

Signal Name	Description	Port	Pin Name
MSIO_INT	MSI0 eSDIO Interrupt Input	C	PC_14
PA_00-PA_15	Position 00 through Position 15	A	PA_00-PA_15
PB_00-PB_15	Position 00 through Position 15	В	PB_00-PB_15
PC_00-PC_14	Position 00 through Position 14	с	PC_00-PC_14
PPI0_CLK	EPPI0 Clock	А	PA_14
PPI0_D00	EPPIO Data 0	В	PB_07
PPI0_D01	EPPIO Data 1	В	PB_06
PPI0_D02	EPPIO Data 2	В	PB_05
PPI0_D03	EPPIO Data 3	В	PB_04
PPI0_D04	EPPIO Data 4	В	PB_03
PPI0_D05	EPPIO Data 5	В	PB_02
PPI0_D06	EPPIO Data 6	В	PB_01
PPI0_D07	EPPIO Data 7	В	PB_00
PPI0_D08	EPPIO Data 8	А	PA_11
 PPI0_D09	EPPI0 Data 9	A	 PA_10
PPI0_D10	EPPIO Data 10	А	PA_09
PPI0_D11	EPPIO Data 11	А	PA_08
PPI0_D12	EPPIO Data 12	с	PC_03
PPI0_D13	EPPIO Data 13	с	PC_02
PPI0_D14	EPPIO Data 14	С	PC_01
PPI0_D15	EPPIO Data 15	с	PC_00
PPI0_D16	EPPIO Data 16	В	PB_08
PPI0_D17	EPPIO Data 17	В	PB_09
PPI0_FS1	EPPI0 Frame Sync 1 (HSYNC)	A	PA_12
PPI0_FS2	EPPI0 Frame Sync 2 (VSYNC)	А	PA_13
PPI0_FS3	EPPI0 Frame Sync 3 (FIELD)	А	PA_15
RTC0_CLKIN	RTC0 Crystal input/external oscillator connection	Not Muxed	RTC0_CLKIN
RTC0_XTAL	RTC0 Crystal output	Not Muxed	RTC0_XTAL
SMC0_A01	SMC0 Address 1	А	PA_08
5MC0_A02	SMC0 Address 2	А	PA_09
	SMC0 Address 3	А	 PA_10
	SMC0 Address 4	A	 PA_11
SMC0_A05	SMC0 Address 5	A	PA_07
	SMC0 Address 6	А	 PA_06
	SMC0 Address 7	А	 PA_05
	SMC0 Address 8	А	 PA_04
SMC0_A09	SMC0 Address 9	С	PC_01
5MC0_A10	SMC0 Address 10	C	PC_02
5MC0_A11	SMC0 Address 11	C	PC_03
5MC0_A12	SMC0 Address 12	C	PC_04
SMC0_ABE0	SMC0 Byte Enable 0	A	PA_00
SMC0_ABE1	SMC0 Byte Enable 1	A	PA_01
SMC0_AMS0	SMC0 Memory Select 0	A	PA_15
SMC0_AMS1	SMC0 Memory Select 1	A	PA_02
SMC0_AOE	SMC0 Output Enable	A	PA_12
SMC0_ARDY	SMC0 Asynchronous Ready	A	PA_03

Signal Name	Description	Port	Pin Name
PPI0_D08	EPPIO Data 8	A	PA_11
PPI0_D09	EPPI0 Data 9	A	PA_10
PPI0_D10	EPPI0 Data 10	A	PA_09
PPI0_D11	EPPI0 Data 11	A	PA_08
PPI0_D12	EPPI0 Data 12	с	PC_03
PI0_D13	EPPIO Data 13	с	PC_02
PPI0_D14	EPPIO Data 14	с	PC_01
PI0_D15	EPPIO Data 15	с	PC_00
PI0_D16	EPPIO Data 16	В	PB_08
PI0_D17	EPPIO Data 17	В	PB_09
PIO_FS1	EPPI0 Frame Sync 1 (HSYNC)	А	PA_12
PI0_FS2	EPPI0 Frame Sync 2 (VSYNC)	А	PA_13
PI0_FS3	EPPI0 Frame Sync 3 (FIELD)	А	PA_15
TC0_CLKIN	RTC0 Crystal input/external oscillator connection	Not Muxed	 RTC0_CLKIN
RTC0_XTAL	RTC0 Crystal output	Not Muxed	RTC0_XTAL
MC0_A01	SMC0 Address 1	A	PA_08
MC0_A02	SMC0 Address 2	А	PA_09
MC0_A03	SMC0 Address 3	А	PA_10
MC0_A04	SMC0 Address 4	A	PA_11
MC0_A05	SMC0 Address 5	A	PA_07
MC0_A06	SMC0 Address 6	A	PA_06
MC0_A07	SMC0 Address 7	A	PA_05
MC0_A08	SMC0 Address 8	A	PA_04
MC0_A09	SMC0 Address 9	C	PC_01
MC0_A10	SMC0 Address 10	C	PC_02
MC0_A11	SMC0 Address 11	C	PC_03
 MC0_A12	SMC0 Address 12	С	_ PC_04
MC0_ABE0	SMC0 Byte Enable 0	A	PA_00
MC0_ABE1	SMC0 Byte Enable 1	A	PA_01
MC0_AMS0	SMC0 Memory Select 0	A	PA_15
MC0_AMS1	SMC0 Memory Select 1	A	PA_02
MC0_AOE	SMC0 Output Enable	A	PA_12
MC0_ARDY	SMC0 Asynchronous Ready	A	PA_03
MC0_ARE	SMC0 Read Enable	A	PA_13
MC0_AWE	SMC0 Write Enable	A	PA_14
MC0_D00	SMC0 Data 0	В	PB_07
MC0_D01	SMC0 Data 1	B	PB_06
MC0_D02	SMC0 Data 2	B	PB_05
MC0_D03	SMC0 Data 3	B	PB_04
MC0_D03 MC0_D04	SMC0 Data 4	B	PB_03
MC0_D04	SMC0 Data 5	B	PB_02
MC0_D05	SMC0 Data 5	B	PB_01
SMC0_D00	SMC0 Data 0	B	PB_00
MC0_D07	SMC0 Data 7	B	PB_08
MC0_D08	SMC0 Data 9	B	PB_09
5MC0_D09	SMC0 Data 9	B	PB_10

Signal Name	Description	Port	Pin Name
SMC0_D11	SMC0 Data 11	В	PB_11
SMC0_D12	SMC0 Data 12	В	PB_12
SMC0_D13	SMC0 Data 13	В	PB_13
SMC0_D14	SMC0 Data 14	В	PB_14
SMC0_D15	SMC0 Data 15	В	PB_15
SPI0_CLK	SPI0 Clock	В	PB_00
SPI0_CLK	SPI0 Clock	С	PC_04
SPI0_D2	SPI0 Data 2	В	PB_03
SPI0_D2	SPI0 Data 2	С	PC_08
SPI0_D3	SPI0 Data 3	В	PB_07
SPI0_D3	SPI0 Data 3	С	PC_09
SPI0_MISO	SPI0 Master In, Slave Out	В	PB_01
SPI0_MISO	SPI0 Master In, Slave Out	С	PC_06
SPI0_MOSI	SPI0 Master Out, Slave In	В	PB_02
SPI0_MOSI	SPI0 Master Out, Slave In	С	PC_07
SPI0_RDY	SPI0 Ready	А	PA_06
SPI0_SEL1	SPI0 Slave Select Output 1	А	PA_05
SPI0_SEL2	SPI0 Slave Select Output 2	А	PA_06
SPI0_SEL4	SPI0 Slave Select Output 4	В	PB_04
SPI0_SEL5	SPI0 Slave Select Output 5	В	PB_05
SPI0_SEL6	SPI0 Slave Select Output 6	В	PB_06
SPI0_SS	SPI0 Slave Select Input	А	PA_05
SPI1_CLK	SPI1 Clock	А	PA_00
SPI1_MISO	SPI1 Master In, Slave Out	А	PA_01
SPI1_MOSI	SPI1 Master Out, Slave In	А	PA_02
	SPI1 Ready	А	 PA_03
SPI1_SEL1	SPI1 Slave Select Output 1	А	 PA_04
	SPI1 Slave Select Output 2	А	 PA_03
	SPI1 Slave Select Output 3	с	 PC_10
SPI1_SEL4	SPI1 Slave Select Output 4	A	PA_14
SPI1_SS	SPI1 Slave Select Input	A	PA_04
SPI2_CLK	SPI2 Clock	В	PB_10
SPI2_D2	SPI2 Data 2	В	PB_13
SPI2_D3	SPI2 Data 3	В	PB_14
SPI2_MISO	SPI2 Master In, Slave Out	В	PB_11
SPI2_MOSI	SPI2 Master Out, Slave In	В	PB_12
SPI2_RDY	SPI2 Ready	A	PA_04
SPI2_SEL1	SPI2 Slave Select Output 1	В	PB_15
SPI2_SEL2	SPI2 Slave Select Output 1	В	PB_08
SPI2_SEL3	SPI2 Slave Select Output 2 SPI2 Slave Select Output 3	B	PB_09
SPI2_SELS	SPI2 Slave Select Output	B	PB_15
SPT0_ACLK	SPORTO Channel A Clock	A	PA_13
SPT0_ACLK	SPORTO Channel A Clock	C	PC_09
SPT0_ACLK SPT0_AD0	SPORTO Channel A Data 0		PC_09 PA_14
		A	
SPT0_AD0 SPT0_AD0 SPT0_AD1	SPORTO Channel A Data 0 SPORTO Channel A Data 0 SPORTO Channel A Data 1	C C	PC_08 PC_00

Table 11. ADSP-BF70x 12 mm × 12 mm 88-Lead LFCSP (QFN) Signal Descriptions (Continued)

Signal Name	Туре	Driver Type	Int Term	Reset Term	Reset Drive	Hiber Term	Hiber Drive	Power Domain	Description and Notes
PA_12	1/0	A	none	none	none	none	none	VDD_EXT	Desc: PPI0 Frame Sync 1 (HSYNC) CAN1 Receive SPORT0 Channel A Frame Sync SMC0 Output Enable SYS Power Saving Mode Wakeup 4 TM0 Alternate Capture Input 6 Notes: If hibernate mode is used one of the following must be true during hibernate. Either this pin must be actively driven by another IC, or it must have a pull-up or pull-down.
PA_13	I/O	A	none	none	none	none	none	VDD_EXT	Desc: PPI0 Frame Sync 2 (VSYNC) CAN1 Transmit SPORT0 Channel A Clock SMC0 Read Enable CNT0 Count Zero Marker Notes: No notes.
PA_14	I/O	A	none	none	none	none	none	VDD_EXT	Desc: PPI0 Clock SPI1 Slave Select Output 4 SPORT0 Channel A Data 0 SMC0 Write Enable TM0 Alternate Clock 5 Notes: SPI slave select outputs require a pull-up when used.
PA_15	I/O	A	none	none	none	none	none	VDD_EXT	Desc: PPI0 Frame Sync 3 (FIELD) SPT0 Channel A Transmit Data Valid SPT0 Channel B Transmit Data Valid SMC0 Memory Select 0 CNT0 Count Up and Direction Notes: May require a pull-up if used as an SMC memory select. Check the data sheet requirements of the IC it connects to.
PB_00	I/O	A	none	none	none	none	none	VDD_EXT	Desc: PPI0 Data 7 SPT1 Channel B Clock SPI0 Clock SMC0 Data 7 TM0 Alternate Clock 3 Notes: SPI clock requires a pull-down when controlling most SPI flash devices.
PB_01	I/O	A	none	none	none	none	none	VDD_EXT	Desc: PPI0 Data 6 SPT1 Channel B Frame Sync SPI0 Master In, Slave Out SMC0 Data 6 TM0 Alternate Capture Input 1 Notes: Pull-up required for SPI_MISO if SPI master boot is used.
PB_02	I/O	A	none	none	none	none	none	VDD_EXT	Desc: PPI0 Data 5 SPT1 Channel B Data 0 SPI0 Master Out, Slave In SMC0 Data 5 Notes: No notes.
PB_03	I/O	A	none	none	none	none	none	VDD_EXT	Desc: PPI0 Data 4 SPT1 Channel B Data 1 SPI0 Data 2 SMC0 Data 4 Notes: No notes.

Table 15. ADSP-BF70x Designer Quick Reference (Continued)

TWI_DT Setting	V _{DD_EXT} Nominal	V _{BUSTWI} Min	V _{BUSTWI} Nominal	V _{BUSTWI} Max	Unit
TWI000 ¹	3.30	3.13	3.30	3.47	V
TWI001	1.80	1.70	1.80	1.90	V
TWI011	1.80	3.13	3.30	3.47	V
TWI100	3.30	4.75	5.00	5.25	V

Table 16.	TWI	_VSEL	Selections and	V _{DD}	EXT/VBUSTWI
-----------	-----	-------	----------------	-----------------	-------------

¹Designs must comply with the V_{DD_EXT} and V_{BUSTWI} voltages specified for the default TWI_DT setting for correct JTAG boundary scan operation during reset.

Clock Related Operating Conditions

Table 17 and Table 18 describe the core clock, system clock, and peripheral clock timing requirements. The data presented in the tables applies to all speed grades (found in the Ordering Guide) except where expressly noted. Figure 6 provides a graphical representation of the various clocks and their available divider values.

Table 17. Core and System Clock Operating Conditions

Param	eter	Ratio Restriction	PLLCLK Restriction	Min	Max	Unit
\mathbf{f}_{CCLK}	Core Clock Frequency	$f_{CCLK} \ge f_{SYSCLK}$	PLLCLK = 800		400	MHz
\mathbf{f}_{CCLK}	Core Clock Frequency	$f_{CCLK} \geq f_{SYSCLK}$	$600 \le PLLCLK < 800$		390	MHz
\mathbf{f}_{CCLK}	Core Clock Frequency	$f_{CCLK} \geq f_{SYSCLK}$	$380 \le PLLCLK < 600$		380	MHz
\mathbf{f}_{CCLK}	Core Clock Frequency	$f_{CCLK} \geq f_{SYSCLK}$	230.2 ≤ PLLCLK < 380		PLLCLK	MHz
f _{SYSCLK}	SYSCLK Frequency ¹		PLLCLK = 800	60	200	MHz
f _{SYSCLK}	SYSCLK Frequency ¹		$600 \le PLLCLK < 800$	60	195	MHz
f _{SYSCLK}	SYSCLK Frequency ¹		380 ≤ PLLCLK < 600	60	190	MHz
f _{SYSCLK}	SYSCLK Frequency ¹		230.2 ≤ PLLCLK < 380	60	PLLCLK ÷ 2	MHz
f _{SCLK0}	SCLK0 Frequency ¹	$f_{\text{SYSCLK}} \geq f_{\text{SCLK0}}$		30	100	MHz
f _{SCLK1}	SCLK1 Frequency	$f_{\text{SYSCLK}} \geq f_{\text{SCLK1}}$			200	MHz
\mathbf{f}_{DCLK}	DDR2 Clock Frequency	$f_{\text{SYSCLK}} \geq f_{\text{DCLK}}$		125	200	MHz
\mathbf{f}_{DCLK}	LPDDR Clock Frequency	$f_{\text{SYSCLK}} \geq f_{\text{DCLK}}$		10	200	MHz

¹ The minimum frequency for SYSCLK and SCLK0 applies only when the USB is used.

ELECTRICAL CHARACTERISTICS

Parameter		Test Conditions/Comments	Min	Тур	Max	Unit
V _{OH} ¹	High Level Output Voltage	$V_{DD_{EXT}} = 1.7 \text{ V}, I_{OH} = -1.0 \text{ mA}$	$0.8 \times V_{DD_{EXT}}$			V
V _{OH} ¹	High Level Output Voltage	$V_{DD EXT} = 3.13 \text{ V}, I_{OH} = -2.0 \text{ mA}$	$0.9 \times V_{DD EXT}$			V
V _{OH_DDR2} ²	High Level Output Voltage, DDR2,	$V_{DD_{DMC}} = 1.70 \text{ V}, I_{OH} = -7.1 \text{ mA}$	V _{DD_DMC} - 0.320			V
	Programmed Impedance = 34 Ω					
V _{OH_DDR2} ²	High Level Output Voltage, DDR2,	$V_{DD_DMC} = 1.70$ V, $I_{OH} = -5.8$ mA	V _{DD_DMC} - 0.320			V
	Programmed Impedance = 40 Ω					
V _{OH_DDR2} ²	High Level Output Voltage, DDR2,	$V_{DD_DMC} = 1.70 \text{ V}, I_{OH} = -4.1 \text{ mA}$	$V_{DD_DMC} - 0.320$			V
	Programmed Impedance = 50Ω					
V _{OH_DDR2} ²	High Level Output Voltage, DDR2,	$V_{DD_{DMC}} = 1.70 \text{ V}, I_{OH} = -3.4 \text{ mA}$	$V_{DD_DMC} - 0.320$			V
<u> </u>	Programmed Impedance = 60Ω	4 70 1 4 70 4				
V _{OH_LPDDR} ²	High Level Output Voltage, LPDDR	$V_{DD_DMC} = 1.70 \text{ V}, I_{OH} = -2.0 \text{ mA}$	V _{DD_DMC} - 0.320			V
V _{OL} ³	Low Level Output Voltage	$V_{DD_{EXT}} = 1.7 \text{ V}, I_{OL} = 1.0 \text{ mA}$			0.400	V
V _{OL} ³	Low Level Output Voltage	$V_{DD_EXT} = 3.13 \text{ V}, I_{OL} = 2.0 \text{ mA}$			0.400	V
V _{OL_DDR2} ²	Low Level Output Voltage, DDR2,	$V_{DD_DMC} = 1.70 \text{ V}, I_{OL} = 7.1 \text{ mA}$			0.320	V
	Programmed Impedance = 34Ω					
V _{OL_DDR2} ²	Low Level Output Voltage, DDR2,	$V_{DD_{DMC}} = 1.70 \text{ V}, I_{OL} = 5.8 \text{ mA}$			0.320	V
2	Programmed Impedance = 40Ω				0.220	
V _{OL_DDR2} ²	Low Level Output Voltage, DDR2,	$V_{DD_DMC} = 1.70 \text{ V}, I_{OL} = 4.1 \text{ mA}$			0.320	V
<u> </u>	Programmed Impedance = 50Ω Low Level Output Voltage, DDR2,	$1 - 170 \times 1 - 24 m$			0 2 2 0	v
V _{OL_DDR2} ²	Programmed Impedance = 60Ω	$V_{DD_DMC} = 1.70 \text{ V}, I_{OL} = 3.4 \text{ mA}$			0.320	v
V _{OL_LPDDR} ²	Low Level Output Voltage, LPDDR	$V_{DD DMC} = 1.70 \text{ V}, I_{OL} = 2.0 \text{ mA}$			0.320	V
VOL_LPDDR	High Level Input Current	$V_{DD_{DMC}} = 1.70$ V, $N_{OL} = 2.0$ M/A			10	μA
ΙΗ	High Level Input Current	$V_{DD_{EXT}} = 3.47 \text{ V}, V_{DD_{DMC}} = 1.9 \text{ V},$ $V_{DD_{USB}} = 3.47 \text{ V}, V_{IN} = 3.47 \text{ V}$			10	μΑ
I _{IH_DMC0_VREF} 5	High Level Input Current	$V_{DD EXT} = 3.47 \text{ V}, V_{DD DMC} = 1.9 \text{ V},$			1	μA
"IH_DMC0_VREF	ngh Level input current	$V_{DD_{USB}} = 3.47 \text{ V}, V_{DD_{DM}} = 3.47 \text{ V}$			•	μ
I _{IH_PD} ⁶	High Level Input Current with Pull-	$V_{DD EXT} = 3.47 \text{ V}, V_{DD DMC} = 1.9 \text{ V},$			100	μA
	down Resistor	$V_{DD_{USB}} = 3.47 \text{ V}, V_{IN} = 3.47 \text{ V}$				L' -
R _{PD} ⁶	Internal Pull-down Resistance	$V_{DD EXT} = 3.47 \text{ V}, V_{DD DMC} = 1.9 \text{ V},$	57		130	kΩ
		$V_{DD_{USB}} = 3.47 \text{ V}, V_{IN} = 3.47 \text{ V}$				
I _{IL} ⁷	Low Level Input Current	$V_{DD_{EXT}} = 3.47 \text{ V}, V_{DD_{DMC}} = 1.9 \text{ V},$			10	μΑ
		$V_{DD_{-}USB} = 3.47 \text{ V}, V_{IN} = 0 \text{ V}$				
IIL_DMC0_VREF	Low Level Input Current	$V_{DD_{EXT}} = 3.47 \text{ V}, V_{DD_{DMC}} = 1.9 \text{ V},$			1	μΑ
		$V_{DD_USB} = 3.47 \text{ V}, V_{IN} = 0 \text{ V}$				
I _{IL_PU} ⁸	Low Level Input Current with Pull-up				100	μΑ
	Resistor	$V_{DD_{USB}} = 3.47 \text{ V}, V_{IN} = 0 \text{ V}$				
R _{PU} ⁸	Internal Pull-up Resistance	$V_{DD_{EXT}} = 3.47 \text{ V}, V_{DD_{DMC}} = 1.9 \text{ V},$	53		129	kΩ
0		$V_{DD_{USB}} = 3.47 \text{ V}, V_{IN} = 0 \text{ V}$				
I _{IH_USB0} 9	High Level Input Current	$V_{DD_{EXT}} = 3.47 \text{ V}, V_{DD_{DMC}} = 1.9 \text{ V},$			10	μΑ
. 9		$V_{DD_{USB}} = 3.47 \text{ V}, V_{IN} = 3.47 \text{ V}$				
I _{IL_USB0} 9	Low Level Input Current	$V_{DD_{EXT}} = 3.47 \text{ V}, V_{DD_{DMC}} = 1.9 \text{ V},$			10	μA
I _{OZH} ¹⁰	Three State Leakage Current	$V_{DD_{USB}} = 3.47 \text{ V}, V_{IN} = 0 \text{ V}$			10	
OZH	Three-State Leakage Current	$V_{DD_EXT} = 3.47 \text{ V}, V_{DD_DMC} = 1.9 \text{ V},$ $V_{DD \ USB} = 3.47 \text{ V}, V_{IN} = 3.47 \text{ V}$			10	μA
I _{OZH} ¹¹	Three-State Leakage Current	$V_{DD_{USB}} = 3.47 \text{ V}, V_{IN} = 3.47 \text{ V}$ $V_{DD_{EXT}} = 3.47 \text{ V}, V_{DD_{DMC}} = 1.9 \text{ V},$			10	μA
' OZH	mee-state Leakage Cullent	$V_{DD_{EXT}} = 3.47 \text{ V}, V_{DD_{DMC}} = 1.9 \text{ V},$ $V_{DD_{USB}} = 3.47 \text{ V}, V_{IN} = 1.9 \text{ V}$			10	μΑ
I _{OZL} ¹²	Three-State Leakage Current	$V_{DD_{OSB}} = 3.47 \text{ V}, V_{IN} = 1.9 \text{ V}$ $V_{DD_{EXT}} = 3.47 \text{ V}, V_{DD_{DMC}} = 1.9 \text{ V},$			10	μA
•UZL	mee state Leakage current	$V_{DD_{LSB}} = 3.47 \text{ V}, V_{DD_{DMC}} = 1.9 \text{ V},$ $V_{DD_{USB}} = 3.47 \text{ V}, V_{IN} = 0 \text{ V}$			10	μΛ
I _{OZH_PD} ¹³	Three-State Leakage Current	$V_{DD EXT} = 3.47 \text{ V}, V_{DD DMC} = 1.9 \text{ V},$			100	μA
·02H_PD	ee state Leakage Carrent	$V_{DD_{USB}} = 3.47 \text{ V}, V_{DD_{DMC}} = 1.5 \text{ V},$ $V_{DD_{USB}} = 3.47 \text{ V}, V_{IN} = 3.47 \text{ V}$				Pr. 1

	Voltage (V _{DD_INT})												
(°C) رT	1.045	1.050	1.060	1.070	1.080	1.090	1.100	1.110	1.120	1.130	1.140	1.150	1.155
-40	0.6	0.6	0.7	0.7	0.7	0.8	0.8	0.8	0.9	0.9	0.9	1.0	1.0
-20	1.1	1.1	1.2	1.2	1.2	1.3	1.4	1.4	1.5	1.5	1.6	1.7	1.7
0	2.0	2.0	2.1	2.2	2.3	2.4	2.5	2.5	2.6	2.7	2.8	3.0	3.0
25	4.3	4.3	4.5	4.7	4.8	5.0	5.2	5.3	5.5	5.7	5.9	6.1	6.2
40	6.7	6.8	7.0	7.3	7.5	7.8	8.0	8.3	8.6	8.8	9.1	9.4	9.6
55	10.3	10.5	10.8	11.2	11.5	11.9	12.3	12.6	13.0	13.4	13.9	14.3	14.5
70	15.7	15.9	16.4	16.8	17.4	17.9	18.4	18.9	19.5	20.1	20.7	21.3	21.6
85	23.3	23.6	24.3	25.0	25.7	26.4	27.2	27.9	28.7	29.5	30.4	31.2	31.7
100	34.2	34.6	35.5	36.5	37.5	38.5	39.5	40.6	41.7	42.8	43.9	45.1	45.7
105	38.7	39.2	40.2	41.3	42.4	43.5	44.6	45.8	47.0	48.2	49.5	50.8	51.5
115	48.9	49.5	50.7	52.0	53.4	54.7	56.0	57.5	59.0	60.5	62.0	63.6	64.4
125	61.5	62.1	63.6	65.1	66.7	68.3	69.9	71.7	73.4	75.2	77.0	79.0	79.9

Table 21. Static Current—I_{DD_DEEPSLEEP} (mA)

Table 22. Activity Scaling Factors (ASF)

I _{DDINT} Power Vector	ASF
I _{DD-IDLE1}	0.05
I _{DD-IDLE2}	0.05
I _{DD-NOP1}	0.56
I _{DD-NOP2}	0.59
I _{DD-APP3}	0.78
I _{DD-APP1}	0.79
I _{DD-APP2}	0.83
I _{DD-TYP1}	1.00
I _{DD-TYP3}	1.01
I _{DD-TYP2}	1.03
I _{DD-HIGH1}	1.39
I _{DD-HIGH3}	1.39
I _{DD-HIGH2}	1.54

Table 23.	CCLK Dynamic	Current per core	(mA, with ASF = 1)
-----------	---------------------	------------------	--------------------

						١	/oltage (V	/ _{DD_INT})					
f _{CCLK} (MHz)	1.045	1.050	1.060	1.070	1.080	1.090	1.100	1.110	1.120	1.130	1.140	1.150	1.155
400	66.7	67.2	67.9	68.7	69.4	70.2	71.1	71.8	72.6	73.4	74.2	74.9	75.4
350	58.6	59.0	59.6	60.3	61.0	61.7	62.4	63.0	63.7	64.4	65.1	65.8	66.1
300	50.2	50.5	51.1	51.7	52.3	52.9	53.5	54.1	54.7	55.3	55.9	56.4	56.8
250	42.1	42.3	42.8	43.3	43.8	44.3	44.7	45.3	45.8	46.3	46.8	47.4	47.6
200	33.7	33.9	34.3	34.7	35.1	35.5	35.9	36.3	36.7	37.1	37.5	37.9	38.0
150	25.4	25.5	25.8	26.1	26.4	26.7	27.0	27.3	27.6	27.9	28.2	28.5	28.8
100	17.0	17.1	17.3	17.5	17.7	17.9	18.1	18.3	18.5	18.6	18.8	19.0	19.1

PACKAGE INFORMATION

The information presented in Figure 7 and Table 27 provides details about package branding. For a complete listing of product availability, see the Ordering Guide.

Figure 7. Product Information on Package¹

¹Exact brand may differ, depending on package type.

Table 27. Package Brand Information

Brand Key	Field Description
ADSP-BF70x	Product model
t	Temperature range
рр	Package type
Z	RoHS compliant designation
ссс	See Ordering Guide
VVVVVXX	Assembly lot code
n.n	Silicon revision
ууww	Date code

ABSOLUTE MAXIMUM RATINGS

Stresses at or above those listed in Table 28 may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

Table 28. Absolute Maximum Ratings

Parameter	Rating
Internal Supply Voltage (V _{DD_INT})	–0.33 V to +1.20 V
External (I/O) Supply Voltage (V _{DD_EXT})	–0.33 V to +3.60 V
DDR2 Controller Supply Voltage	–0.33 V to +1.90 V
(V _{DD_DMC})	
USB PHY Supply Voltage (V _{DD_USB})	–0.33 V to +3.60 V
Real-Time Clock Supply Voltage	–0.33 V to +3.60 V
(V _{DD_RTC})	
Housekeeping ADC Supply Voltage	–0.33 V to +3.60 V
(V _{DD_HADC})	
One-Time Programmable Memory	–0.33 V to +3.60 V
Supply Voltage (V _{DD_OTP})	
HADC Reference Voltage (V _{HADC_REF})	–0.33 V to +3.60 V

Table 28. Absolute Maximum Ratings (Continued)

Parameter	Rating
DDR2 Reference Voltage (V _{DDR_REF})	–0.33 V to +1.90 V
Input Voltage ^{1, 2}	–0.33 V to +3.60 V
TWI Input Voltage ^{2, 3}	–0.33 V to +5.50 V
USB0_Dx Input Voltage ⁴	–0.33 V to +5.25 V
USB0_VBUS Input Voltage ⁵	–0.33 V to +6 V
DDR2 Input Voltage⁵	–0.33 V to +1.90 V
Output Voltage Swing	-0.33 V to V _{DD_EXT} + 0.5 V
I _{OH} /I _{OL} Current per Signal ¹	4 mA (max)
Storage Temperature Range	–65°C to +150°C
Junction Temperature While Biased	+125°C

¹ Applies to 100% transient duty cycle.

 2 Applies only when V_{DD_EXT} is within specifications. When V_{DD_EXT} is outside specifications, the range is $V_{DD_EXT}\pm0.2$ V.

³ Applies to balls TWI_SCL and TWI_SDA.

⁴ If the USB is not used, connect USB0_Dx and USB0_VBUS according to Table 15 on Page 38.

 5 Applies only when V_{DD_DMC} is within specifications. When V_{DD_DMC} is outside specifications, the range is $V_{DD_DMC}\pm0.2$ V.

ESD SENSITIVITY

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

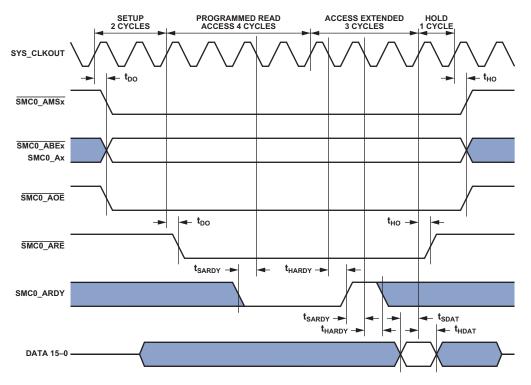
SMC Read Cycle Timing With Reference to SYS_CLKOUT

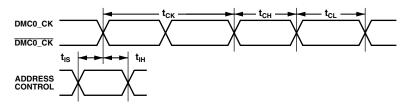
The following SMC specifications with respect to SYS_CLKOUT are given to accommodate the connection of the SMC to programmable logic devices. These specifications assume that SYS_CLKOUT is outputting a buffered version of SCLK0 by setting CGU_CLKOUTSEL.CLKOUTSEL = 0x3. However, SCLK0 must not run faster than the maximum f_{OCLK} specification. For this example, RST = 0x2, RAT = 0x4, and RHT = 0x1.

Table 32. SMC Read Cycle Timing With Reference to SYS_CLKOUT (BxMODE = b#00)

		1.	V _{DD_EXT} BV Nominal	3.	V _{DD_EXT} 3V Nominal	
Paramet	er	Min	Max	Min	Max	Unit
Timing Re	equirements					
t _{SDAT}	SMC0_Dx Setup Before SYS_CLKOUT	5.3		4.3		ns
t _{HDAT}	SMC0_Dx Hold After SYS_CLKOUT	1.5		1.5		ns
t _{SARDY}	SMC0_ARDY Setup Before SYS_CLKOUT	16.6		14.4		ns
t _{HARDY}	SMC0_ARDY Hold After SYS_CLKOUT	0.7		0.7		ns
Switching	g Characteristics					
t _{DO}	Output Delay After SYS_CLKOUT ¹		7		7	ns
t _{HO}	Output Hold After SYS_CLKOUT ¹	-2.5		-2.5		ns

¹Output signals are SMC0_Ax, <u>SMC0_AMSx</u>, <u>SMC0_AOE</u>, and <u>SMC0_ABEx</u>.




Figure 11. Asynchronous Memory Read Cycle Timing

DDR2 SDRAM Clock and Control Cycle Timing

Table 39 and Figure 17 show DDR2 SDRAM clock and control cycle timing, related to the dynamic memory controller (DMC).

Table 39. DDR2 SDRAM Read Cycle Timing, V_{DD_DMC} Nominal 1.8 V

			200 MHz	
Paramete	r	Min	Мах	Unit
Switching	Characteristics			
t _{CK}	Clock Cycle Time (CL = 2 Not Supported)	5		ns
t _{CH}	High Clock Pulse Width	0.45	0.55	t _{CK}
t _{CL}	Low Clock Pulse Width	0.45	0.55	t _{CK}
t _{IS}	Control/Address Setup Relative to DMC0_CK Rise	350		ps
t _{IH}	Control/Address Hold Relative to DMC0_CK Rise	475		ps

NOTE: CONTROL = DMC0_CS0, DMC0_CKE, DMC0_RAS, DMC0_CAS, AND DMC0_WE. ADDRESS = DMC0_A00-13, AND DMC0_BA0-2.

Figure 17. DDR2 SDRAM Clock and Control Cycle Timing

Mobile DDR SDRAM Read Cycle Timing

Table 43 and Figure 21 show mobile DDR SDRAM read cycle timing, related to the dynamic memory controller (DMC).

Table 43. Mobile DDR SDRAM Read Cycle Timing, V_{DD_DMC} Nominal 1.8 V

			200 MHz	
Parameter		Min	Max	Unit
Timing Require	ements			
t _{QH}	DMC0_DQ, DMC0_DQS Output Hold Time From DMC0_DQS	1.5		ns
t _{DQSQ}	DMC0_DQS-DMC0_DQ Skew for DMC0_DQS and Associated DMC0_DQ Signals		0.7	ns
t _{RPRE}	Read Preamble	0.9	1.1	t _{CK}
t _{RPST}	Read Postamble	0.4	0.6	t _{CK}

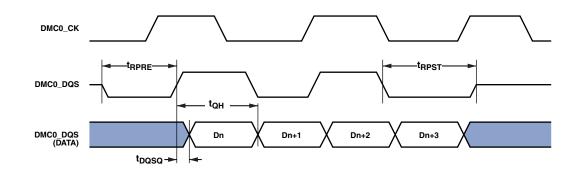


Figure 21. Mobile DDR SDRAM Controller Input AC Timing

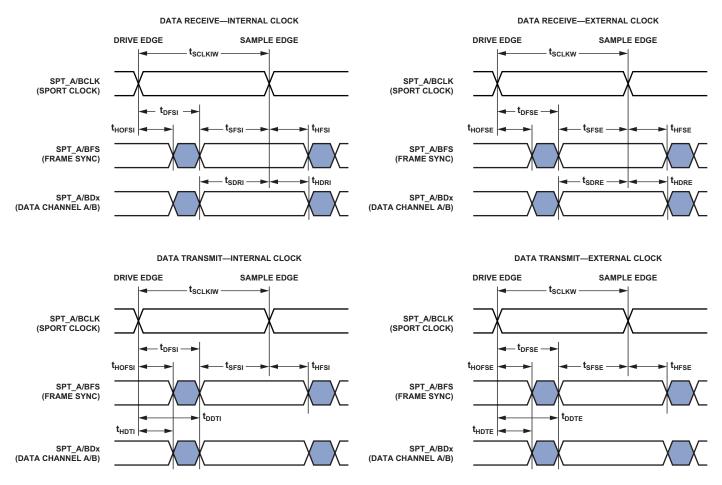


Figure 27. Serial Ports

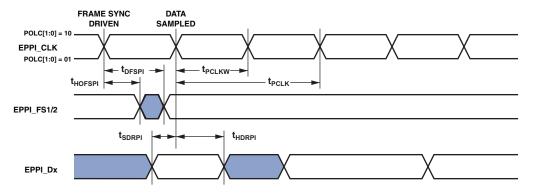
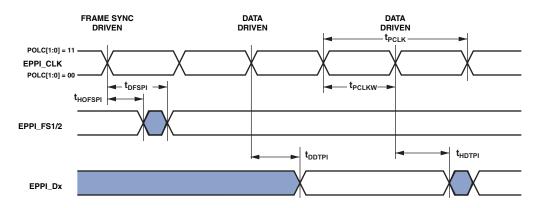



Figure 40. PPI Internal Clock GP Receive Mode with Internal Frame Sync Timing

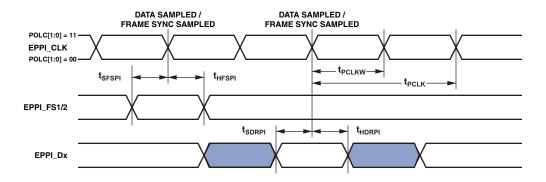


Figure 42. PPI Internal Clock GP Receive Mode with External Frame Sync Timing

Mobile Storage Interface (MSI) Controller Timing

Table 64 and Figure 49 show I/O timing, related to the mobile storage interface (MSI).

The MSI timing depends on the period of the input clock that has been routed to the MSI peripheral ($t_{MSICLKIN}$) by setting the MSI0_UHS_EXT register. See Table 63 for this information.

Table 63. t_{MSICLKIN} Settings

EXT_CLK_MUX_CTRL[31:30]	t _{MSICLKIN}
00	$t_{SCLK0} \times 2$
01	t _{SCLK0}
10	t _{SCLK1} × 3

$$t_{MSICLKIN} = \frac{1}{f_{MSICLKIN}}$$

 $(f_{MSICLKPROG})$ frequency in MHz is set by the following equation where DIV0 is a field in the MSI_CLKDIV register that can be set from 0 to 255. When DIV0 is set between 1 and 255, the following equation is used to determine $f_{MSICLKPROG}$:

$$f_{MSICLKPROG} = \frac{f_{MSICLKIN}}{DIV0 \times 2}$$

When DIV0 = 0,

$$f_{MSICLKPROG} = f_{MSICLKIN}$$

Also note the following:

$$t_{MSICLKPROG} = \frac{1}{f_{MSICLKPROG}}$$

Table 64. MSI Controller Timing

			^{DD_EXT} Nominal		d_ext Nominal	
Param	eter	Min	Max	Min	Max	Unit
Timing	Requirements					
t _{ISU}	Input Setup Time	5.5		4.7		ns
t _{IH}	Input Hold Time	2		0.5		ns
Switch	ing Characteristics					
t _{MSICLK}	Clock Period Data Transfer Mode ¹	t _{MSICLKPROG} – 1.5		t _{MSICLKPROG} – 1.5		ns
t _{WL}	Clock Low Time	7		7		ns
\mathbf{t}_{WH}	Clock High Time	7		7		ns
t _{TLH}	Clock Rise Time		3		3	ns
\mathbf{t}_{THL}	Clock Fall Time		3		3	ns
t _{ODLY}	Output Delay Time During Data Transfer Mode		$(0.5 \times t_{MSICLKIN}) + 3.2$		$(0.5 \times t_{MSICLKIN}) + 3$	ns
t _{OH}	Output Hold Time	$(0.5 imes t_{MSICLKIN}) - 4$		$(0.5 imes t_{MSICLKIN}) - 3$		ns

¹See Table 18 on Page 52 in Clock Related Operating Conditions for details on the minimum period that may be programmed for t_{MSICLKPROG}.

ENVIRONMENTAL CONDITIONS

To determine the junction temperature on the application printed circuit board, use the following equation:

$$T_J = T_{CASE} + (\Psi_{JT} \times P_D)$$

where:

 T_I = Junction temperature (°C).

 T_{CASE} = Case temperature (°C) measured by customer at top center of package.

 Ψ_{IT} = From Table 65 and Table 66.

 P_D = Power dissipation (see Total Internal Power Dissipation on Page 56 for the method to calculate P_D).

Values of θ_{JA} are provided for package comparison and printed circuit board design considerations. θ_{JA} can be used for a first order approximation of T_J by the equation:

$$T_J = T_A + (\theta_{JA} \times P_D)$$

where:

 T_A = Ambient temperature (°C).

Values of θ_{JC} are provided for package comparison and printed circuit board design considerations when an external heat sink is required.

In Table 65 and Table 66, airflow measurements comply with JEDEC standards JESD51-2 and JESD51-6. The junction-to-case measurement complies with MIL-STD-883 (Method 1012.1). All measurements use a 2S2P JEDEC test board.

Table 65. Thermal Characteristics for CSP_BGA

Parameter	Condition	Typical	Unit
θ_{JA}	0 linear m/s air flow	28.7	°C/W
θ_{JMA}	1 linear m/s air flow	26.2	°C/W
θ_{JMA}	2 linear m/s air flow	25.2	°C/W
θ_{JC}		10.1	°C/W
Ψ_{JT}	0 linear m/s air flow	0.24	°C/W
Ψ_{JT}	1 linear m/s air flow	0.40	°C/W
$\Psi_{ m JT}$	2 linear m/s air flow	0.51	°C/W

Table 66. Thermal Characteristics for LFCSP (Q	OFN)	or LFCSP (Characteristics f	Thermal	Table 66.
--	------	------------	-------------------	---------	-----------

Parameter	Condition	Typical	Unit
θ_{JA}	0 linear m/s air flow	22.9	°C/W
θ_{JMA}	1 linear m/s air flow	17.9	°C/W
θ_{JMA}	2 linear m/s air flow	16.4	°C/W
θ_{JC}		2.26	°C/W
Ψ_{JT}	0 linear m/s air flow	0.14	°C/W
Ψ_{JT}	1 linear m/s air flow	0.27	°C/W
Ψ_{JT}	2 linear m/s air flow	0.30	°C/W