

Welcome to E-XFL.COM

Understanding <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Embedded - DSP (Digital Signal Processors) are specialized microprocessors designed to perform complex mathematical computations on digital signals in real-time. Unlike general-purpose processors, DSPs are optimized for high-speed numeric processing tasks, making them ideal for applications that require efficient and precise manipulation of digital data. These processors are fundamental in converting and processing signals in various forms, including audio, video, and communication signals, ensuring that data is accurately interpreted and utilized in embedded systems.

Applications of <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Details

E·XFI

Product Status	Active
Туре	Blackfin+
Interface	CAN, DSPI, EBI/EMI, I ² C, PPI, QSPI, SD/SDIO, SPI, SPORT, UART/USART, USB OTG
Clock Rate	300MHz
Non-Volatile Memory	ROM (512kB)
On-Chip RAM	512kB
Voltage - I/O	1.8V, 3.3V
Voltage - Core	1.10V
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	184-LFBGA, CSPBGA
Supplier Device Package	184-CSPBGA (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/analog-devices/adbf705wcbcz311

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

output enable and the input enable of a GPIO pin are both active, the data signal before the pad driver is looped back to the receive path for the same GPIO pin.

MEMORY ARCHITECTURE

The processor views memory as a single unified 4G byte address space, using 32-bit addresses. All resources, including internal memory, external memory, and I/O control registers, occupy separate sections of this common address space. The memory portions of this address space are arranged in a hierarchical structure to provide a good cost/performance balance of some very fast, low-latency core-accessible memory as cache or SRAM, and larger, lower-cost and performance interface-accessible memory systems. See Figure 3.

Internal (Core-Accessible) Memory

The L1 memory system is the highest-performance memory available to the Blackfin+ processor core.

The core has its own private L1 memory. The modified Harvard architecture supports two concurrent 32-bit data accesses along with an instruction fetch at full processor speed which provides high-bandwidth processor performance. In the core, a 64K byte block of data memory partners with an 64K byte memory block for instruction storage. Each data block is multibanked for efficient data exchange through DMA and can be configured as SRAM. Alternatively, 16K bytes of each block can be configured in L1 cache mode. The four-way set-associative instruction cache and the 2 two-way set-associative data caches greatly accelerate memory access performance, especially when accessing external memories.

The L1 memory domain also features a 8K byte data SRAM block which is ideal for storing local variables and the software stack. All L1 memory is protected by a multi-parity-bit concept, regardless of whether the memory is operating in SRAM or cache mode.

Outside of the L1 domain, L2 and L3 memories are arranged using a Von Neumann topology. The L2 memory domain is a unified instruction and data memory and can hold any mixture of code and data required by the system design. The L2 memory domain is accessible by the Blackfin+ core through a dedicated 64-bit interface. It operates at SYSCLK frequency.

The processor features up to 1M byte of L2 SRAM, which is ECC-protected and organized in eight banks. Individual banks can be made private to any system master. There is also a 512K byte single-bank ROM in the L2 domain. It contains boot code, security code, and general-purpose ROM space.

OTP Memory

The processor features 4 kB of one-time-programmable (OTP) memory which is memory-map accessible. This memory stores a unique chip identification and is used to support secure-boot and secure operation.

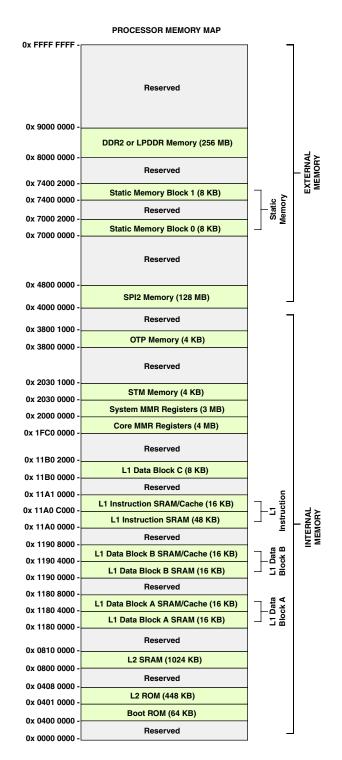


Figure 3. ADSP-BF706/ADSP-BF707 Internal/External Memory Map

Static Memory Controller (SMC)

The SMC can be programmed to control up to two blocks of external memories or memory-mapped devices, with very flexible timing parameters. Each block occupies a 8K byte segment regardless of the size of the device used.

Dynamic Memory Controller (DMC)

The DMC includes a controller that supports JESD79-2E compatible double-data-rate (DDR2) SDRAM and JESD209A lowpower DDR (LPDDR) SDRAM devices. The DMC PHY features on-die termination on all data and data strobe pins that can be used during reads.

I/O Memory Space

The processor does not define a separate I/O space. All resources are mapped through the flat 32-bit address space. Onchip I/O devices have their control registers mapped into memory-mapped registers (MMRs) at addresses in a region of the 4G byte address space. These are separated into two smaller blocks, one which contains the control MMRs for all core functions, and the other which contains the registers needed for setup and control of the on-chip peripherals outside of the core. The MMRs are accessible only in supervisor mode and appear as reserved space to on-chip peripherals.

Booting

The processor has several mechanisms for automatically loading internal and external memory after a reset. The boot mode is defined by the SYS_BMODE input pins dedicated for this purpose. There are two categories of boot modes. In master boot mode, the processor actively loads data from serial memories. In slave boot modes, the processor receives data from external host devices.

The boot modes are shown in Table 2. These modes are implemented by the SYS_BMODE bits of the reset configuration register and are sampled during power-on resets and softwareinitiated resets.

Table 2. Boot Modes

SYS_BMODE Setting	Boot Mode
00	No Boot/Idle
01	SPI2 Master
10	SPI2 Slave
11	UART0 Slave

SECURITY FEATURES

The ADSP-BF70x processor supports standards-based hardware-accelerated encryption, decryption, authentication, and true random number generation. The following hardware-accelerated cryptographic ciphers are supported:

- AES in ECB, CBC, ICM, and CTR modes with 128-, 192-, and 256-bit keys
- DES in ECB and CBC mode with 56-bit key
- 3DES in ECB and CBC mode with 3x 56-bit key

The following hardware-accelerated hash functions are supported:

- SHA-1
- SHA-2 with 224-bit and 256-bit digest
- HMAC transforms for SHA-1 and SHA-2

Public key accelerator is available to offload computation-intensive public key cryptography operations.

Both a hardware-based nondeterministic random number generator and pseudo-random number generator are available. The TRNG also provides HW post-processing to meet NIST requirements of FIPS 140-2, while the PRNG is ANSI X9.31 compliant.

Secure boot is also available with 224-bit elliptic curve digital signatures ensuring integrity and authenticity of the boot stream. Optionally, confidentiality is also ensured through AES-128 encryption.

CAUTION

This product includes security features that can be used to protect embedded nonvolatile memory contents and prevent execution of unauthorized code. When security is enabled on this device (either by the ordering party or the subsequent receiving parties), the ability of Analog Devices to conduct failure analysis on returned devices is limited. Contact Analog Devices for details on the failure analysis limitations for this device.

Secure debug is also employed to allow only trusted users to access the system with debug tools.

PROCESSOR SAFETY FEATURES

The ADSP-BF70x processor has been designed for functional safety applications. While the level of safety is mainly dominated by the system concept, the following primitives are provided by the devices to build a robust safety concept.

Multi-Parity-Bit-Protected L1 Memories

In the processor's L1 memory space, whether SRAM or cache, each word is protected by multiple parity bits to detect the single event upsets that occur in all RAMs. This applies both to L1 instruction and data memory spaces.

ECC-Protected L2 Memories

Error correcting codes (ECC) are used to correct single event upsets. The L2 memory is protected with a single error correctdouble error detect (SEC-DED) code. By default ECC is enabled, but it can be disabled on a per-bank basis. Single-bit errors are transparently corrected. Dual-bit errors can issue a

Table 6. ADSP-BF70x Detailed Signal Descriptions (Continued)

Port Name	Direction	Description
SPT_BCLK	I/O	Channel B Clock. Data and Frame Sync are driven/sampled with respect to this clock. This signal can be either internally or externally generated.
SPT_BD0	I/O	Channel B Data 0. Primary bidirectional data I/O. This signal can be configured as an output to transmit serial data, or as an input to receive serial data.
SPT_BD1	I/O	Channel B Data 1. Secondary bidirectional data I/O. This signal can be configured as an output to transmit serial data, or as an input to receive serial data.
SPT_BFS	I/O	Channel B Frame Sync. The frame sync pulse initiates shifting of serial data. This signal is either generated internally or externally.
SPT_BTDV	Output	Channel B Transmit Data Valid. This signal is optional and only active when SPORT is configured in multi-channel transmit mode. It is asserted during enabled slots.
SYS_BMODEn	Input	Boot Mode Control n. Selects the boot mode of the processor.
SYS_CLKIN	Input	Clock/Crystal Input. Connect to an external clock source or crystal.
SYS_CLKOUT	Output	Processor Clock Output. Outputs internal clocks. Clocks may be divided down. See the CGU chapter of the HRM for more details.
SYS_EXTWAKE	Output	External Wake Control. Drives low during hibernate and high all other times. Typically connected to the enable input of the voltage regulator controlling the VDD_INT supply.
SYS_FAULT	I/O	Active-Low Fault Output. Indicates internal faults or senses external faults depending on the operating mode.
SYS_HWRST	Input	Processor Hardware Reset Control. Resets the device when asserted.
SYS_NMI	Input	Non-maskable Interrupt. See the processor hardware and programming references for more details.
SYS_RESOUT	Output	Reset Output. Indicates that the device is in the reset or hibernate state.
SYS_WAKEn	Input	Power Saving Mode Wakeup n. Wake-up source input for deep sleep and/or hibernate mode.
SYS_XTAL	Output	Crystal Output. Drives an external crystal. Must be left unconnected if an external clock is driving CLKIN.
JTG_SWCLK	I/O	Serial Wire Clock. Clocks data into and out of the target during debug.
JTG_SWDIO	I/O	Serial Wire DIO. Sends and receives serial data to and from the target during debug.
JTG_SWO	Output	Serial Wire Out. Provides trace data to the emulator.
JTG_TCK	Input	JTAG Clock. JTAG test access port clock.
JTG_TDI	Input	JTAG Serial Data In. JTAG test access port data input.
JTG_TDO	Output	JTAG Serial Data Out. JTAG test access port data output.
JTG_TMS	Input	JTAG Mode Select. JTAG test access port mode select.
JTG_TRST	Input	JTAG Reset. JTAG test access port reset.
TM_ACIn	Input	Alternate Capture Input n. Provides an additional input for WIDCAP, WATCHDOG, and PININT modes.
TM_ACLKn	Input	Alternate Clock n. Provides an additional time base for use by an individual timer.
TM_CLK	Input	Clock. Provides an additional global time base for use by all the GP timers.
TM_TMRn	I/O	Timer n. The main input/output signal for each timer.
TRACE_CLK	Output	Trace Clock. Clock output.
TRACE_Dnn	Output	Trace Data n. Unidirectional data bus.
TWI_SCL	I/O	Serial Clock. Clock output when master, clock input when slave.
TWI_SDA	I/O	Serial Data. Receives or transmits data.
UART_CTS	Input	Clear to Send. Flow control signal.
UART_RTS	Output	Request to Send. Flow control signal.
UART_RX	Input	Receive. Receive input. Typically connects to a transceiver that meets the electrical requirements of the device being communicated with.
UART_TX	Output	Transmit. Transmit output. Typically connects to a transceiver that meets the electrical requirements of the device being communicated with.
USB_CLKIN	Input	Clock/Crystal Input. This clock input is multiplied by a PLL to form the USB clock. See data sheet specifications for frequency/tolerance information.

Port Name	Direction	Description
USB_DM	I/O	Data –. Bidirectional differential data line.
USB_DP	I/O	Data +. Bidirectional differential data line.
USB_ID	Input	OTG ID. Senses whether the controller is a host or device. This signal is pulled low when an A-type plug is sensed (signifying that the USB controller is the A device), but the input is high when a B-type plug is sensed (signifying that the USB controller is the B device).
USB_VBC	Output	VBUS Control. Controls an external voltage source to supply VBUS when in host mode. May be configured as open-drain. Polarity is configurable as well.
USB_VBUS	I/O	Bus Voltage. Connects to bus voltage in host and device modes.
USB_XTAL	Output	Crystal. Drives an external crystal. Must be left unconnected if an external clock is driving USB_CLKIN.

Table 6. ADSP-BF70x Detailed Signal Descriptions (Continued)

Multiplexed Multiplexed Multiplexed Multiplexed Multiplexed Signal Name **Function 0 Function 1 Function 2** Function 3 Function Input Tap PC_00 UART1_TX SPT0_AD1 PPI0_D15 PC_01 UART1_RX SPT0_BD1 PPI0_D14 SMC0_A09 TM0_ACI4 PC_02 UARTO_RTS CAN0_RX PPI0_D13 SMC0_A10 TM0_ACI5/SYS_ WAKE3 UARTO_CTS PC_03 CAN0_TX PPI0_D12 SMC0_A11 TM0_ACI0 PC_04 SPT0_BCLK SPI0_CLK MSI0_D1 SMC0_A12 TM0_ACLK0 SPT0_AFS TM0_TMR3 MSI0_CMD PC_05 PC_06 SPT0_BD0 SPI0_MISO MSI0_D3 SPI0_MOSI MSI0_D2 PC_07 SPT0_BFS TM0_ACI2 MSI0_D0 PC_08 SPT0_AD0 SPI0_D2 SPI0_D3 MSI0_CLK PC_09 SPT0_ACLK TM0_ACLK2 SPI1_SEL3 PC_10 SPT1_BCLK MSI0_D4 TM0_ACLK1 SPI0_SEL3 PC_11 SPT1_BFS MSI0_D5 PC_12 SPT1_BD0 MSI0_D6 PC_13 SPT1_BD1 MSI0_D7 MSI0_INT PC_14 SPT1_BTDV

Table 10. Signal Multiplexing for Port C

Signal Name	Description	Port	Pin Name
SMC0_D11	SMC0 Data 11	В	PB_11
SMC0_D12	SMC0 Data 12	В	PB_12
SMC0_D13	SMC0 Data 13	В	PB_13
SMC0_D14	SMC0 Data 14	В	PB_14
SMC0_D15	SMC0 Data 15	В	PB_15
SPI0_CLK	SPI0 Clock	В	PB_00
SPI0_CLK	SPI0 Clock	С	PC_04
SPI0_D2	SPI0 Data 2	В	PB_03
SPI0_D2	SPI0 Data 2	С	PC_08
SPI0_D3	SPI0 Data 3	В	PB_07
SPI0_D3	SPI0 Data 3	С	PC_09
SPI0_MISO	SPI0 Master In, Slave Out	В	PB_01
SPI0_MISO	SPI0 Master In, Slave Out	С	PC_06
SPI0_MOSI	SPI0 Master Out, Slave In	В	PB_02
SPI0_MOSI	SPI0 Master Out, Slave In	С	PC_07
SPI0_RDY	SPI0 Ready	А	PA_06
SPI0_SEL1	SPI0 Slave Select Output 1	А	PA_05
SPI0_SEL2	SPI0 Slave Select Output 2	А	PA_06
SPI0_SEL4	SPI0 Slave Select Output 4	В	PB_04
SPI0_SEL5	SPI0 Slave Select Output 5	В	PB_05
SPI0_SEL6	SPI0 Slave Select Output 6	В	PB_06
SPI0_SS	SPI0 Slave Select Input	А	PA_05
SPI1_CLK	SPI1 Clock	А	PA_00
SPI1_MISO	SPI1 Master In, Slave Out	А	PA_01
SPI1_MOSI	SPI1 Master Out, Slave In	А	PA_02
	SPI1 Ready	А	 PA_03
SPI1_SEL1	SPI1 Slave Select Output 1	А	 PA_04
	SPI1 Slave Select Output 2	А	 PA_03
	SPI1 Slave Select Output 3	с	 PC_10
SPI1_SEL4	SPI1 Slave Select Output 4	A	PA_14
SPI1_SS	SPI1 Slave Select Input	A	PA_04
SPI2_CLK	SPI2 Clock	В	PB_10
SPI2_D2	SPI2 Data 2	В	PB_13
SPI2_D3	SPI2 Data 3	В	PB_14
SPI2_MISO	SPI2 Master In, Slave Out	В	PB_11
SPI2_MOSI	SPI2 Master Out, Slave In	В	PB_12
SPI2_RDY	SPI2 Ready	A	PA_04
SPI2_SEL1	SPI2 Slave Select Output 1	В	PB_15
SPI2_SEL2	SPI2 Slave Select Output 1	В	PB_08
SPI2_SEL3	SPI2 Slave Select Output 2 SPI2 Slave Select Output 3	B	PB_09
SPI2_SELS	SPI2 Slave Select Output	B	PB_15
SPT0_ACLK	SPORTO Channel A Clock	A	PA_13
SPT0_ACLK	SPORTO Channel A Clock	C	PC_09
SPT0_ACLK SPT0_AD0	SPORTO Channel A Data 0		PC_09 PA_14
		A	
SPT0_AD0 SPT0_AD0 SPT0_AD1	SPORTO Channel A Data 0 SPORTO Channel A Data 0 SPORTO Channel A Data 1	C C	PC_08 PC_00

Table 11. ADSP-BF70x 12 mm × 12 mm 88-Lead LFCSP (QFN) Signal Descriptions (Continued)

Table 15. ADSP-BF70x Designer Quick Reference (Continued)

Signal Name	Туре	Driver Type	lnt Term	Reset Term	Reset Drive	Hiber Term	Hiber Drive	Power Domain	Description and Notes
PC_05	I/O	A	none	none	none	none	none	VDD_EXT	Desc: SPT0 Channel A Frame Sync TM0 Timer 3 MSI0 Command Notes: An external pull-up may be required for MSI modes, see the MSI chapter in the hardware reference for details.
PC_06	I/O	A	none	none	none	none	none	VDD_EXT	Desc: SPT0 Channel B Data 0 SPl0 Master In, Slave Out MSI0 Data 3 Notes: An external pull-up may be required for MSI modes, see the MSI chapter in the hardware reference for details.
PC_07	I/O	A	none	none	none	none	none	VDD_EXT	Desc: SPT0 Channel B Frame Sync SPI0 Master Out, Slave In MSI0 Data 2 TM0 Alternate Capture Input 2 Notes: An external pull-up may be required for MSI modes, see the MSI chapter in the hardware reference for details.
PC_08	I/O	A	none	none	none	none	none	VDD_EXT	Desc: SPT0 Channel A Data 0 SPI0 Data 2 MSI0 Data 0 Notes: An external pull-up may be required for MSI modes, see the MSI chapter in the hardware reference for details.
PC_09	I/O	A	none	none	none	none	none	VDD_EXT	Desc: SPT0 Channel A Clock SPI0 Data 3 MSI0 Clock TM0 Alternate Clock 2 Notes: No notes.
PC_10	I/O	A	none	none	none	none	none	VDD_EXT	Desc: SPT1 Channel B Clock MSI0 Data 4 SPI1 Slave Select Output 3 TM0 Alternate Clock 1 Notes: An external pull-up may be required for MSI modes, see the MSI chapter in the hardware reference for details. SPI slave select outputs require a pull-up when used.
PC_11	I/O	A	none	none	none	none	none	VDD_EXT	Desc: SPT1 Channel B Frame Sync MSI0 Data 5 SPI0 Slave Select Output 3 Notes: An external pull-up may be required for MSI modes, see the MSI chapter in the hardware reference for details. SPI slave select outputs require a pull-up when used.
PC_12	Ι/Ο	A	none	none	none	none	none	VDD_EXT	Desc: SPT1 Channel B Data 0 MSI0 Data 6 Notes: An external pull-up may be required for MSI modes, see the MSI chapter in the hardware reference for details.

Signal Name	Туре	Driver Type	lnt Term	Reset Term	Reset Drive	Hiber Term	Hiber Drive	Power Domain	Description and Notes
VDD_OTP	S	na	none	none	none	none	none	na	Desc: VDD for OTP
									Notes: Must be powered.
VDD_RTC	s	na	none	none	none	none	none	na	Desc: VDD for RTC
									Notes: If RTC is not used, connect to ground.
VDD_USB	s	na	none	none	none	none	none	na	Desc: VDD for USB
									Notes: If USB is not used, connect to
									VDD_EXT.

Table 15. ADSP-BF70x Designer Quick Reference (Continued)

Parameter		Test Conditions/Comments	Min	Тур	Мах	Uni
I _{OZH_TWI} ¹⁴	Three-State Leakage Current	$V_{DD_EXT} = 3.47 \text{ V}, V_{DD_DMC} = 1.9 \text{ V}, V_{DD_USB} = 3.47 \text{ V}, V_{IN} = 5.5 \text{ V}$			10	μΑ
ADSP-BF701/	703/705/707 Input Capacitance					
C _{IN} (GPIO) ¹⁵	Input Capacitance	$T_{AMBIENT} = 25^{\circ}C$		5.2	6.0	pF
C _{IN_TWI} ¹⁴	Input Capacitance	$T_{AMBIENT} = 25^{\circ}C$		6.9	7.4	pF
C _{IN_DDR} ¹⁶	Input Capacitance	$T_{AMBIENT} = 25^{\circ}C$		6.1	6.9	pF
ADSP-BF700/	702/704/706 Input Capacitance	1				
C _{IN} (GPIO) ¹⁵	Input Capacitance	$T_{AMBIENT} = 25^{\circ}C$		5.0	5.3	pF
C _{IN_TWI} ¹⁴	Input Capacitance	$T_{AMBIENT} = 25^{\circ}C$		6.8	7.4	pF
I _{DD_DEEPSLEEP} ^{17, 1}	⁸ V _{DD_INT} Current in Deep Sleep Mode	Clocks disabled T ₁ = 25°C		1.4		mA
I _{DD_IDLE} ¹⁸	V _{DD_INT} Current in Idle	$f_{PLLCLK} = 300 \text{ MHz}$ $f_{CCLK} = 100 \text{ MHz}$ $ASF = 0.05 \text{ (idle)}$ $f_{SYSCLK} = f_{SCLK0} = 25 \text{ MHz}$ $USBCLK = DCLK = OUTCLK =$ $SCLK1 = DISABLED$ $Peripherals disabled$ $T_1 = 25^{\circ}C$		13		mA
I _{DD_TYP} ¹⁸	V _{DD_INT} Current	$f_{PLLCLK} = 800 \text{ MHz}$ $f_{CCLK} = 400 \text{ MHz}$ $ASF = 1.0 \text{ (full-on typical)}$ $f_{SYSCLK} = f_{SCLK0} = 25 \text{ MHz}$ $USBCLK = DCLK = OUTCLK =$ $SCLK1 = DISABLED$ $Peripherals disabled$		90		mA
I _{DD_TYP} ¹⁸	V _{DD_INT} Current	$T_{J} = 25^{\circ}C$ $f_{PLLCLK} = 300 \text{ MHz}$ $f_{CCLK} = 300 \text{ MHz}$ $ASF = 1.0 \text{ (full-on typical)}$ $f_{SYSCLK} = f_{SCLK0} = 25 \text{ MHz}$ $USBCLK = DCLK = OUTCLK =$ $SCLK1 = DISABLED$ $Peripherals disabled$ $T_{J} = 25^{\circ}C$		66		mA
I _{DD_TYP} ¹⁸	V _{DD_INT} Current	$f_{PLLCLK} = 400 \text{ MHz}$ $f_{CCLK} = 200 \text{ MHz}$ $ASF = 1.0 \text{ (full-on typical)}$ $f_{SYSCLK} = f_{SCLK0} = 25 \text{ MHz}$ $USBCLK = DCLK = OUTCLK =$ $SCLK1 = DISABLED$ $Peripherals disabled$ $T_J = 25^{\circ}C$		49		mA
I _{DD_TYP} ¹⁸	V _{DD_INT} Current	$f_{PLLCLK} = 300 \text{ MHz}$ $f_{CCLK} = 100 \text{ MHz}$ $ASF = 1.0 \text{ (full-on typical)}$ $f_{SYSCLK} = f_{SCLK0} = 25 \text{ MHz}$ $USBCLK = DCLK = OUTCLK =$ $SCLK1 = DISABLED$ $Peripherals disabled$ $T_J = 25^{\circ}C$		30		mA

Power-Up Reset Timing

A power-up reset is required to place the processor in a known state after power-up. A power-up reset is initiated by asserting SYS_HWRST and JTG_TRST. During power-up reset, all pins are high impedance except for those noted in the ADSP-BF70x Designer Quick Reference on Page 38.

Both JTG_TRST and SYS_HWRST need to be asserted upon power-up, but only SYS_HWRST needs to be released for the device to boot properly. JTG_TRST may be asserted indefinitely for normal operation. JTG_TRST only needs to be released when using an emulator to connect to the DAP for debug or boundary scan. There is an internal pull-down on JTG_TRST to ensure internal emulation logic will always be properly initialized during power-up reset.

Table 30 and Figure 9 show the relationship between power supply startup and processor reset timing, related to the clock generation unit (CGU) and reset control unit (RCU). In Figure 9, $V_{DD_{_SUPPLIES}}$ are $V_{DD_{_INT}}$, $V_{DD_{_EXT}}$, $V_{DD_{_DMC}}$, $V_{DD_{_USB}}$, $V_{DD_{_CTC}}$, $V_{DD_{_OTP}}$, and $V_{DD_{_HADC}}$.

There is no power supply sequencing requirement for the ADSP-BF70x processor. However, if saving power during power-on is important, bringing up $V_{DD_{INT}}$ last is recommended. This avoids a small current drain in the $V_{DD_{INT}}$ domain during the transition period of I/O voltages from 0 V to within the voltage specification.

Table 30. Power-Up Reset Timing

Paramete	r	Min	Max	Unit
Timing Red	quirement			
t _{rst_in_pwr}	$\label{eq:starsest} \overrightarrow{SYS_HWRST} and \end{system} \overrightarrow{JTG_TRST} Deasserted \ After \ V_{DD_INT}, \ V_{DD_DMC}, \ V_{DD_USB}, \\ V_{DD_RTC}, \ V_{DD_OTP}, \ V_{DD_HADC}, \ and \ SYS_CLKIN \ are \ Stable \ and \ Within \ Specification \ Note: \ System \ Syst$	$11 \times t_{CKIN}$		ns
t _{VDDEXT_RST}	SYS_HWRST Deasserted After V _{DD_EXT} is Stable and Within Specifications (No External Pull-Down on JTG_TRST)	10		μs
t _{vddext_rst}	\overline{SYS}_{HWRST} Deasserted After V_{DD_EXT} is Stable and Within Specifications (10k External Pull-Down on \overline{JTG}_{TRST})	1		μs

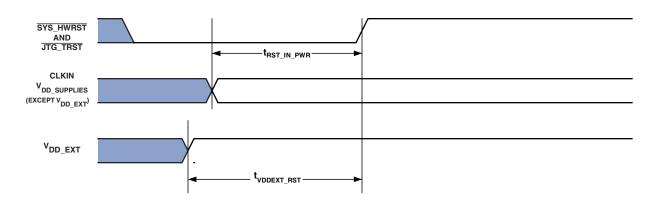


Figure 9. Power-Up Reset Timing

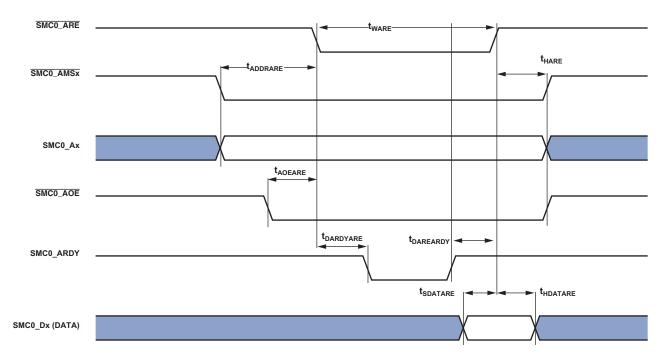


Figure 10. Asynchronous Read

Asynchronous Flash Read

Table 33 and Figure 12 show asynchronous flash memory read timing, related to the static memory controller (SMC).

Table 33. Asynchronous Flash Read

		V _{DD_E}) 1.8 V/3.3 V M		
Parameter		Min	Max	Unit
Switching C	haracteristics			
t _{amsadv}	SMC0_Ax (Address)/SMC0_AMSx Assertion Before SMC0_NORDV Low ¹	PREST × t _{SCLK0} – 2		ns
t _{wadv}	SMC0_NORDV Active Low Width ²	$RST \times t_{SCLK0} - 2$		ns
DADVARE	SMC0_ARE Low Delay From SMC0_NORDV High ³	$PREAT \times t_{SCLK0} - 2$		ns
t _{HARE}	Output ⁴ Hold After SMC0_ARE High ⁵	$RHT \times t_{SCLK0} - 2$		ns
t _{ware} 6	SMC0_ARE Active Low Width ⁷	$RAT \times t_{SCLK0} - 2$		ns

¹ PREST value set using the SMC_BxETIM.PREST bits.

² RST value set using the SMC_BxTIM.RST bits.

³ PREAT value set using the SMC_BxETIM.PREAT bits.

⁴Output signals are SMC0_Ax, <u>SMC0_AMS</u>, <u>SMC0_AOE</u>.

⁵ RHT value set using the SMC_BxTIM.RHT bits.

⁶SMC0_BxCTL.ARDYEN bit = 0.

 $^7\,\rm RAT$ value set using the SMC_BxTIM.RAT bits.

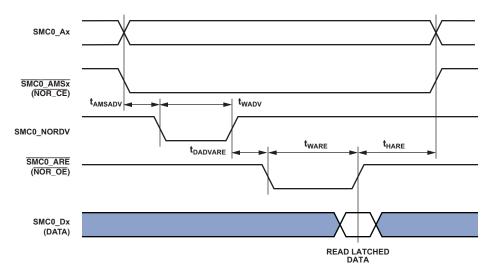


Figure 12. Asynchronous Flash Read

Asynchronous Write

Table 35 and Figure 14 show asynchronous memory write timing, related to the static memory controller (SMC).

Table 35. Asynchronous Memory Write (BxMODE = b#00)

		V _{DD} 1.8V N	_ _{EXT} ominal	V _{DD} 3.3 V No		
Parameter	r	Min	Max	Min	Max	Unit
Timing Req	uirement					
t _{DARDYAWE} 1	SMC0_ARDY Valid After SMC0_AWE Low ²		(WAT – 2.5) × t _{SCLK0} – 17.5		(WAT – 2.5) × t _{SCLK0} – 17.5	ns
Switching (Characteristics					
t _{endat}	DATA Enable After SMC0_AMSx Assertion	-3		-2		ns
t _{DDAT}	DATA Disable After <u>SMC0_AMSx</u> Deassertion		4.5		4	ns
t _{AMSAWE}	SMC0_Ax/SMC0_AMSx Assertion Before SMC0_AWE Low ³	$(PREST + WST + PREAT) \times t_{SCLK0} - 2$		$(PREST + WST + PREAT) \times t_{SCLK0} - 4$		ns
t _{HAWE}	Output ⁴ Hold After <mark>SMC0_AWE</mark> High⁵	$WHT \times t_{SCLK0}$		$WHT \times t_{SCLK0}$		ns
t _{WAWE} ⁶	SMC0_AWE Active Low Width ⁶	WAT \times t _{SCLK0} – 2		WAT \times t _{SCLK0} – 2		ns
t _{DAWEARDY} 1	SMC0_AWE High Delay After SMC0_ARDY Assertion		$3.5 \times t_{SCLK0} + 17.5$		$3.5 \times t_{SCLK0} + 17.5$	ns

¹SMC_BxCTL.ARDYEN bit = 1.

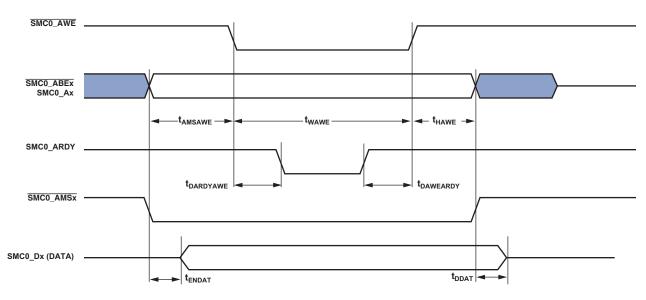
 $^2\,\rm WAT$ value set using the SMC_BxTIM.WAT bits.

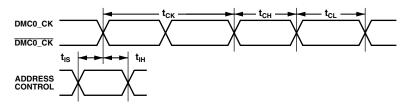
³ PREST, WST, PREAT values set using the SMC_BxETIM.PREST bits, SMC_BxTIM.WST bits, SMC_BxETIM.PREAT bits, and the SMC_BxTIM.RAT bits.

⁴ Output signals are DATA, SMC0_Ax, <u>SMC0_AMSx</u>, <u>SMC0_ABEx</u>.

⁵ WHT value set using the SMC_BxTIM.WHT bits.

⁶SMC_BxCTL.ARDYEN bit = 0.




Figure 14. Asynchronous Write

DDR2 SDRAM Clock and Control Cycle Timing

Table 39 and Figure 17 show DDR2 SDRAM clock and control cycle timing, related to the dynamic memory controller (DMC).

Table 39. DDR2 SDRAM Read Cycle Timing, V_{DD_DMC} Nominal 1.8 V

			200 MHz	
Parameter		Min	Мах	Unit
Switching	Characteristics			
t _{CK}	Clock Cycle Time (CL = 2 Not Supported)	5		ns
t _{CH}	High Clock Pulse Width	0.45	0.55	t _{CK}
t _{CL}	Low Clock Pulse Width	0.45	0.55	t _{CK}
t _{IS}	Control/Address Setup Relative to DMC0_CK Rise	350		ps
t _{IH}	Control/Address Hold Relative to DMC0_CK Rise	475		ps

NOTE: CONTROL = DMC0_CS0, DMC0_CKE, DMC0_RAS, DMC0_CAS, AND DMC0_WE. ADDRESS = DMC0_A00-13, AND DMC0_BA0-2.

Figure 17. DDR2 SDRAM Clock and Control Cycle Timing

DDR2 SDRAM Write Cycle Timing

Table 41 and Figure 19 show DDR2 SDRAM write cycle timing, related to the dynamic memory controller (DMC).

Table 41. DDR2 SDRAM Write Cycle Timing, V_{DD_DMC} Nominal 1.8 V

		200 MHz ¹		
Parameter		Min	Max	Unit
Switching Chara	cteristics			
t _{DQSS} ²	DMC0_DQS Latching Rising Transitions to Associated Clock Edges	-0.25	+0.25	t _{CK}
t _{DS}	Last Data Valid to DMC0_DQS Delay	0.15		ns
t _{DH}	DMC0_DQS to First Data Invalid Delay	0.275		ns
t _{DSS}	DMC0_DQS Falling Edge to Clock Setup Time	0.2		t _{CK}
t _{DSH}	DMC0_DQS Falling Edge Hold Time From DMC0_CK	0.2		t _{CK}
t _{DQSH}	DMC0_DQS Output High Pulse Width	0.35		t _{CK}
t _{DQSL}	DMC0_DQS Output Low Pulse Width	0.35		t _{CK}
t _{WPRE}	Write Preamble	0.35		t _{CK}
t _{WPST}	Write Postamble	0.4		t _{CK}
t _{IPW}	Address and Control Output Pulse Width	0.6		t _{CK}
t _{DIPW}	DMC0_DQ and DMC0_DM Output Pulse Width	0.35		t _{CK}

¹To ensure proper operation of the DDR2, all the DDR2 guidelines have to be strictly followed.

² Write command to first DMC0_DQS delay = WL \times t_{CK} + t_{DQSS}.

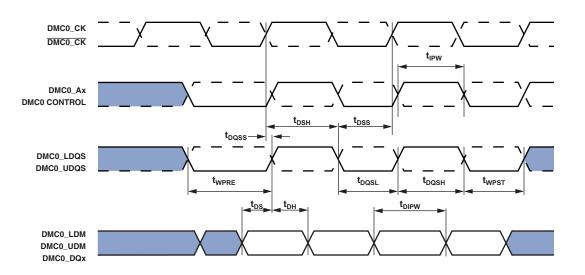


Figure 19. DDR2 SDRAM Controller Output AC Timing

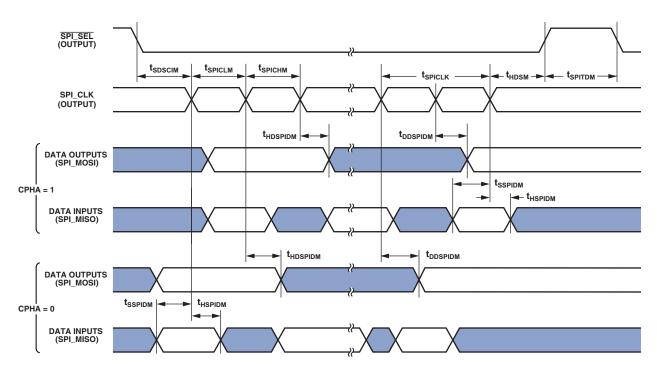


Figure 31. Serial Peripheral Interface (SPI) Port—Master Timing

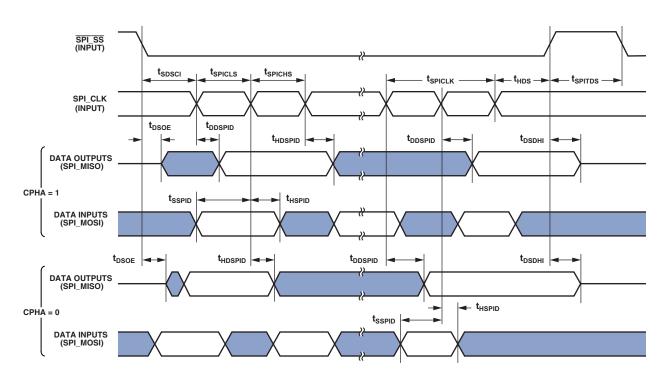


Figure 32. Serial Peripheral Interface (SPI) Port—Slave Timing

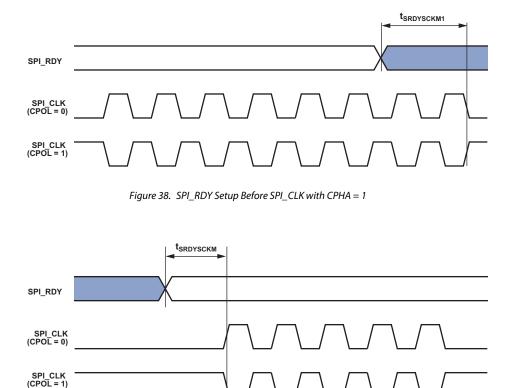


Figure 39. SPI_CLK Switching Diagram after SPI_RDY Assertion, CPHA = x

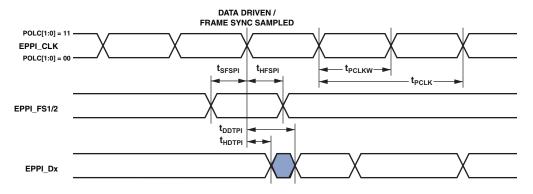


Figure 43. PPI Internal Clock GP Transmit Mode with External Frame Sync Timing

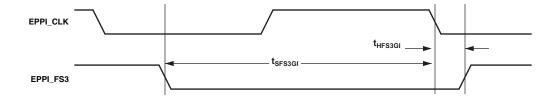


Figure 44. Clock Gating Mode with Internal Clock and External Frame Sync Timing

Table 61. Enhanced Parallel Peripheral Interface—External Clock

		V _{DD_EXT} 1.8V Nominal		V _{DD_EXT} 3.3 V Nominal		
Parameter		Min	Max	Min	Max	Unit
Timing	Requirements					
t _{PCLKW}	EPPI_CLK Width ¹	$(0.5 \times t_{PCLKEXT}) - 1$		$(0.5 \times t_{PCLKEXT}) - 1$		ns
t _{PCLK}	EPPI_CLK Period ¹	t _{PCLKEXT} – 1		t _{PCLKEXT} – 1		ns
t _{SFSPE}	External FS Setup Before EPPI_CLK	1.5		1		ns
t _{HFSPE}	External FS Hold After EPPI_CLK	3.3		3		ns
t _{sdrpe}	Receive Data Setup Before EPPI_CLK	1		1		ns
t _{HDRPE}	Receive Data Hold After EPPI_CLK	3		3		ns
Switchi	ng Characteristics					
t _{DFSPE}	Internal FS Delay After EPPI_CLK		17.5		14.5	ns
t _{HOFSPE}	Internal FS Hold After EPPI_CLK	2.5		2.5		ns
t _{DDTPE}	Transmit Data Delay After EPPI_CLK		17.5		14.5	ns
t _{HDTPE}	Transmit Data Hold After EPPI_CLK	2.5		2.5		ns

¹This specification indicates the minimum instantaneous width or period that can be tolerated due to duty cycle variation or jitter on the external EPPI_CLK. For the external EPPI_CLK ideal maximum frequency, see the f_{PCLKEXT} specification in Table 18 on Page 52 in Clock Related Operating Conditions.

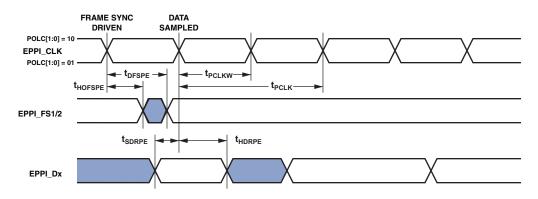


Figure 45. PPI External Clock GP Receive Mode with Internal Frame Sync Timing

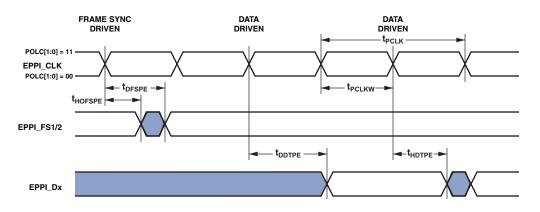


Figure 46. PPI External Clock GP Transmit Mode with Internal Frame Sync Timing