

Welcome to E-XFL.COM

Understanding <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Embedded - DSP (Digital Signal Processors) are specialized microprocessors designed to perform complex mathematical computations on digital signals in real-time. Unlike general-purpose processors, DSPs are optimized for high-speed numeric processing tasks, making them ideal for applications that require efficient and precise manipulation of digital data. These processors are fundamental in converting and processing signals in various forms, including audio, video, and communication signals, ensuring that data is accurately interpreted and utilized in embedded systems.

Applications of <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Details

E·XFI

Product Status	Active
Туре	Blackfin+
Interface	CAN, DSPI, EBI/EMI, I ² C, PPI, QSPI, SD/SDIO, SPI, SPORT, UART/USART, USB OTG
Clock Rate	400MHz
Non-Volatile Memory	ROM (512kB)
On-Chip RAM	1MB
Voltage - I/O	1.8V, 3.3V
Voltage - Core	1.10V
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	184-LFBGA, CSPBGA
Supplier Device Package	184-CSPBGA (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/analog-devices/adbf707wcbcz411

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

output enable and the input enable of a GPIO pin are both active, the data signal before the pad driver is looped back to the receive path for the same GPIO pin.

MEMORY ARCHITECTURE

The processor views memory as a single unified 4G byte address space, using 32-bit addresses. All resources, including internal memory, external memory, and I/O control registers, occupy separate sections of this common address space. The memory portions of this address space are arranged in a hierarchical structure to provide a good cost/performance balance of some very fast, low-latency core-accessible memory as cache or SRAM, and larger, lower-cost and performance interface-accessible memory systems. See Figure 3.

Internal (Core-Accessible) Memory

The L1 memory system is the highest-performance memory available to the Blackfin+ processor core.

The core has its own private L1 memory. The modified Harvard architecture supports two concurrent 32-bit data accesses along with an instruction fetch at full processor speed which provides high-bandwidth processor performance. In the core, a 64K byte block of data memory partners with an 64K byte memory block for instruction storage. Each data block is multibanked for efficient data exchange through DMA and can be configured as SRAM. Alternatively, 16K bytes of each block can be configured in L1 cache mode. The four-way set-associative instruction cache and the 2 two-way set-associative data caches greatly accelerate memory access performance, especially when accessing external memories.

The L1 memory domain also features a 8K byte data SRAM block which is ideal for storing local variables and the software stack. All L1 memory is protected by a multi-parity-bit concept, regardless of whether the memory is operating in SRAM or cache mode.

Outside of the L1 domain, L2 and L3 memories are arranged using a Von Neumann topology. The L2 memory domain is a unified instruction and data memory and can hold any mixture of code and data required by the system design. The L2 memory domain is accessible by the Blackfin+ core through a dedicated 64-bit interface. It operates at SYSCLK frequency.

The processor features up to 1M byte of L2 SRAM, which is ECC-protected and organized in eight banks. Individual banks can be made private to any system master. There is also a 512K byte single-bank ROM in the L2 domain. It contains boot code, security code, and general-purpose ROM space.

OTP Memory

The processor features 4 kB of one-time-programmable (OTP) memory which is memory-map accessible. This memory stores a unique chip identification and is used to support secure-boot and secure operation.

Figure 3. ADSP-BF706/ADSP-BF707 Internal/External Memory Map

level specified by the crystal manufacturer. The user should verify the customized values based on careful investigations on multiple devices over the required temperature range.

NOTE: VALUES MARKED WITH * MUST BE CUSTOMIZED, DEPENDING ON THE CRYSTAL AND LAYOUT. ANALYZE CAREFULLY. FOR FREQUENCIES ABOVE 33 MHz, THE SUGGESTED CAPACITOR VALUE OF 18pF SHOULD BE TREATED AS A MAXIMUM.

Figure 4. External Crystal Connection

A third-overtone crystal can be used for frequencies above 25 MHz. The circuit is then modified to ensure crystal operation only at the third overtone by adding a tuned inductor circuit as shown in Figure 4. A design procedure for third-overtone operation is discussed in detail in application note (EE-168) *Using Third Overtone Crystals with the ADSP-218x DSP* (www.analog.com/ee-168).

The same recommendations may be used for the USB crystal oscillator.

Real-Time Clock

The real-time clock (RTC) provides a robust set of digital watch features, including current time, stopwatch, and alarm. The RTC is clocked by a 32.768 kHz crystal external to the processor. Connect RTC pins RTC_CLKIN and RTC_XTAL with external components as shown in Figure 5.

The RTC peripheral has dedicated power supply pins so that it can remain powered up and clocked even when the rest of the processor is in a low power state. The RTC provides several programmable interrupt options, including interrupt per second, minute, hour, or day clock ticks, interrupt on programmable stopwatch countdown, or interrupt at a programmed alarm time.

The 32.768 kHz input clock frequency is divided down to a 1 Hz signal by a prescaler. The counter function of the timer consists of four counters: a 60-second counter, a 60-minute counter, a 24-hour counter, and a 32,768-day counter. When the alarm interrupt is enabled, the alarm function generates an interrupt when the output of the timer matches the programmed value in the alarm control register. There are two alarms. The first alarm is for a time of day. The second alarm is for a specific day and time of that day.

NOTE: CRYSTAL LOAD CAPACITORS ARE NOT NECESSARY IN MOST CASES.

Figure 5. External Components for RTC

The stopwatch function counts down from a programmed value, with one-second resolution. When the stopwatch interrupt is enabled and the counter underflows, an interrupt is generated.

Clock Generation

The clock generation unit (CGU) generates all on-chip clocks and synchronization signals. Multiplication factors are programmed to define the PLLCLK frequency. Programmable values divide the PLLCLK frequency to generate the core clock (CCLK), the system clocks (SYSCLK, SCLK0, and SCLK1), the LPDDR or DDR2 clock (DCLK), and the output clock (OCLK).

Writing to the CGU control registers does not affect the behavior of the PLL immediately. Registers are first programmed with a new value, and the PLL logic executes the changes so that it transitions smoothly from the current conditions to the new ones.

SYS_CLKIN oscillations start when power is applied to the VDD_EXT pins. The rising edge of SYS_HWRST can be applied after all voltage supplies are within specifications, and SYS_CLKIN oscillations are stable.

Clock Out/External Clock

The SYS_CLKOUT output pin has programmable options to output divided-down versions of the on-chip clocks. By default, the SYS_CLKOUT pin drives a buffered version of the SYS_ CLKIN input. Clock generation faults (for example, PLL unlock) may trigger a reset by hardware. The clocks shown in Table 3 can be output on the SYS_CLKOUT pin.

Target defined:

- Hardware Reset—All functional units are set to their default states without exception. History is lost.
- System Reset—All functional units except the RCU are set to their default states.
- Core-only Reset—Affects the core only. The system software should guarantee that the core, while in reset state, is not accessed by any bus master.

Source defined:

- Hardware Reset—The <u>SYS_HWRST</u> input signal is asserted active (pulled down).
- System Reset—May be triggered by software (writing to the RCU_CTL register) or by another functional unit such as the dynamic power management (DPM) unit (hibernate) or any of the system event controller (SEC), trigger routing unit (TRU), or emulator inputs.
- Core-only Reset—Triggered by software.
- Trigger request (peripheral).

Voltage Regulation

The processor requires an external voltage regulator to power the VDD_INT pins. To reduce standby power consumption, the external voltage regulator can be signaled through SYS_EXTWAKE to remove power from the processor core. This signal is high-true for power-up and may be connected directly to the low-true shut-down input of many common regulators.

While in the hibernate state, all external supply pins (VDD_ EXT, VDD_USB, and VDD_DMC) can still be powered, eliminating the need for external buffers. The external voltage regulator can be activated from this power down state by asserting the SYS_HWRST pin, which then initiates a boot sequence. SYS_EXTWAKE indicates a wake-up to the external voltage regulator.

SYSTEM DEBUG

The processor includes various features that allow for easy system debug. These are described in the following sections.

System Watchpoint Unit

The system watchpoint unit (SWU) is a single module which connects to a single system bus and provides for transaction monitoring. One SWU is attached to the bus going to each system slave. The SWU provides ports for all system bus address channel signals. Each SWU contains four match groups of registers with associated hardware. These four SWU match groups operate independently, but share common event (interrupt, trigger, and others) outputs.

Debug Access Port

The debug access port (DAP) provides IEEE-1149.1 JTAG interface support through its JTAG debug and serial wire debug port (SWJ-DP). SWJ-DP is a combined JTAG-DP and SW-DP that enables either serial wire debug (SWD) or a JTAG emulator to be connected to a target. SWD signals share the same pins as

JTAG. The DAP provides an optional instrumentation trace for both the core and system. It provides a trace stream that conforms to MIPI System Trace Protocol version 2 (STPv2).

DEVELOPMENT TOOLS

Analog Devices supports its processors with a complete line of software and hardware development tools, including integrated development environments (CrossCore[®] Embedded Studio), evaluation products, emulators, and a wide variety of software add-ins.

Integrated Development Environments (IDEs)

CrossCore Embedded Studio is based on the Eclipse[™] framework. Supporting most Analog Devices processor families, it is the IDE of choice for future processors, including multicore devices. CrossCore Embedded Studio seamlessly integrates available software add-ins to support real time operating systems, file systems, TCP/IP stacks, USB stacks, algorithmic software modules, and evaluation hardware board support packages. For more information, visit www.analog.com/cces.

EZ-KIT Lite Evaluation Board

For processor evaluation, Analog Devices provides a wide range of EZ-KIT Lite[®] evaluation boards. Including the processor and key peripherals, the evaluation board also supports on-chip emulation capabilities and other evaluation and development features. Also available are various EZ-Extenders[®], which are daughter cards delivering additional specialized functionality, including audio and video processing. For more information, visit www.analog.com and search on "ezkit" or "ezextender".

EZ-KIT Lite Evaluation Kits

For a cost-effective way to learn more about developing with Analog Devices processors, Analog Devices offer a range of EZ-KIT Lite evaluation kits. Each evaluation kit includes an EZ-KIT Lite evaluation board, directions for downloading an evaluation version of the available IDE, a USB cable, and a power supply. The USB controller on the EZ-KIT Lite board connects to the USB port of the user's PC, enabling the chosen IDE evaluation suite to emulate the on-board processor in-circuit. This permits the customer to download, execute, and debug programs for the EZ-KIT Lite system. It also supports in-circuit programming of the on-board Flash device to store user-specific boot code, enabling standalone operation. With the full version of Cross-Core Embedded Studio installed (sold separately), engineers can develop software for supported EZ-KITs or any custom system utilizing supported Analog Devices processors.

ADSP-BF706 EZ-KIT Mini

The ADSP-BF706 EZ-KIT Mini[™] product (ADZS-BF706-EZMini) contains the ADSP-BF706 processor and is shipped with all of the necessary hardware. Users can start their evaluation immediately. The EZ-KIT Mini product includes the standalone evaluation board and USB cable. The EZ-KIT Mini ships with an on-board debug agent.

The evaluation board is designed to be used in conjunction with the CrossCore Embedded Studio (CCES) development tools to test capabilities of the ADSP-BF706 Blackfin processor.

ADSP-BF70x DETAILED SIGNAL DESCRIPTIONS

Table 6 provides a detailed description of each pin.

Table 6. ADSP-BF70x Detailed Signal Descriptions

Port Name	Direction	Description
CAN_RX	Input	Receive. Typically an external CAN transceiver's RX output.
CAN_TX	Output	Transmit. Typically an external CAN transceiver's TX input.
CNT_DG	Input	Count Down and Gate. Depending on the mode of operation this input acts either as a count down signal or a gate signal Count Down. This input causes the CB counter to decrement Gate. Stops the
		GP counter from incrementing or decrementing.
CNT_UD	Input	Count Up and Direction. Depending on the mode of operation this input acts either as a count up signal or a direction signal Count Up - This input causes the GP counter to increment Direction - Selects whether the GP counter is incrementing or decrementing.
CNT_ZM	Input	Count Zero Marker. Input that connects to the zero marker output of a rotary device or detects the pressing of a pushbutton.
DMC_Ann	Output	Address n. Address bus.
DMC_BAn	Output	Bank Address Input n. Defines which internal bank an ACTIVATE, READ, WRITE, or PRECHARGE command is being applied to on the dynamic memory. Also defines which mode registers (MR, EMR, EMR2, and/or EMR3) are loaded during the LOAD MODE REGISTER command.
DMC_CAS	Output	Column Address Strobe. Defines the operation for external dynamic memory to perform in conjunction with other DMC command signals. Connect to the CAS input of dynamic memory.
DMC_CK	Output	Clock. Outputs DCLK to external dynamic memory.
DMC_CK	Output	Clock (Complement). Complement of DMC_CK.
DMC_CKE	Output	Clock enable. Active high clock enables. Connects to the dynamic memory's CKE input.
DMC_CSn	Output	Chip Select n. Commands are recognized by the memory only when this signal is asserted.
DMC_DQnn	I/O	Data n. Bidirectional Data bus.
DMC_LDM	Output	Data Mask for Lower Byte. Mask for DMC_DQ07:DMC_DQ00 write data when driven high. Sampled on both edges of the data strobe by the dynamic memory.
DMC_LDQS	I/O	Data Strobe for Lower Byte. DMC_DQ07:DMC_DQ00 data strobe. Output with Write Data. Input with Read Data. May be single-ended or differential depending on register settings.
DMC_LDQS	I/O	Data Strobe for Lower Byte (complement). Complement of LDQS. Not used in single-ended mode.
DMC_ODT	Output	On-die termination. Enables dynamic memory termination resistances when driven high (assuming the memory is properly configured). ODT is enabled/disabled regardless of read or write commands.
DMC_RAS	Output	Row Address Strobe. Defines the operation for external dynamic memory to perform in conjunction with other DMC command signals. Connect to the RAS input of dynamic memory.
DMC_UDM	Output	Data Mask for Upper Byte. Mask for DMC_DQ15:DMC_DQ08 write data when driven high. Sampled on both edges of the data strobe by the dynamic memory.
DMC_UDQS	I/O	Data Strobe for Upper Byte. DMC_DQ15:DMC_DQ08 data strobe. Output with Write Data. Input with Read Data. May be single-ended or differential depending on register settings.
DMC_UDQS	I/O	Data Strobe for Upper Byte (complement). Complement of UDQSb. Not used in single-ended mode.
DMC_VREF	Input	Voltage Reference. Connect to half of the VDD_DMC voltage.
DMC_WE	Output	Write Enable. Defines the operation for external dynamic memory to perform in conjunction with other DMC command signals. Connect to the WE input of dynamic memory.
PPI_CLK	I/O	Clock. Input in external clock mode, output in internal clock mode.
PPI_Dnn	I/O	Data n. Bidirectional data bus.
PPI_FS1	I/O	Frame Sync 1 (HSYNC). Behavior depends on EPPI mode. See the EPPI HRM chapter for more details.
PPI_FS2	I/O	Frame Sync 2 (VSYNC). Behavior depends on EPPI mode. See the EPPI HRM chapter for more details.
PPI_FS3	I/O	Frame Sync 3 (FIELD). Behavior depends on EPPI mode. See the EPPI HRM chapter for more details.
HADC_VINn	Input	Analog Input at channel n. Analog voltage inputs for digital conversion.

184-BALL CSP_BGA SIGNAL DESCRIPTIONS

The processor's pin definitions are shown in Table 7. The columns in this table provide the following information:

- Signal Name: The Signal Name column in the table includes the signal name for every pin and (where applicable) the GPIO multiplexed pin function for every pin.
- Description: The Description column in the table provides a verbose (descriptive) name for the signal.

Table 7. ADSP-BF70x 184-Ball CSP_BGA Signal Descriptions

- General-Purpose Port: The Port column in the table shows whether or not the signal is multiplexed with other signals on a general-purpose I/O port pin.
- Pin Name: The Pin Name column in the table identifies the name of the package pin (at power on reset) on which the signal is located (if a single function pin) or is multiplexed (if a general-purpose I/O pin).

Signal Name	Description	Port	Pin Name
CAN0_RX	CAN0 Receive	С	PC_02
CAN0_TX	CAN0 Transmit	С	PC_03
CAN1_RX	CAN1 Receive	A	PA_12
CAN1_TX	CAN1 Transmit	A	PA_13
CNT0_DG	CNT0 Count Down and Gate	A	PA_07
CNT0_UD	CNT0 Count Up and Direction	A	PA_15
CNT0_ZM	CNT0 Count Zero Marker	A	PA_13
DMC0_A00	DMC0 Address 0	Not Muxed	DMC0_A00
DMC0_A01	DMC0 Address 1	Not Muxed	DMC0_A01
DMC0_A02	DMC0 Address 2	Not Muxed	DMC0_A02
DMC0_A03	DMC0 Address 3	Not Muxed	DMC0_A03
DMC0_A04	DMC0 Address 4	Not Muxed	DMC0_A04
DMC0_A05	DMC0 Address 5	Not Muxed	DMC0_A05
DMC0_A06	DMC0 Address 6	Not Muxed	DMC0_A06
DMC0_A07	DMC0 Address 7	Not Muxed	DMC0_A07
DMC0_A08	DMC0 Address 8	Not Muxed	DMC0_A08
DMC0_A09	DMC0 Address 9	Not Muxed	DMC0_A09
DMC0_A10	DMC0 Address 10	Not Muxed	DMC0_A10
DMC0_A11	DMC0 Address 11	Not Muxed	DMC0_A11
DMC0_A12	DMC0 Address 12	Not Muxed	DMC0_A12
DMC0_A13	DMC0 Address 13	Not Muxed	DMC0_A13
DMC0_BA0	DMC0 Bank Address Input 0	Not Muxed	DMC0_BA0
DMC0_BA1	DMC0 Bank Address Input 1	Not Muxed	DMC0_BA1
DMC0_BA2	DMC0 Bank Address Input 2	Not Muxed	DMC0_BA2
DMC0_CAS	DMC0 Column Address Strobe	Not Muxed	DMC0_CAS
DMC0_CK	DMC0 Clock	Not Muxed	DMC0_CK
DMC0_CKE	DMC0 Clock enable	Not Muxed	DMC0_CKE
DMC0_CK	DMC0 Clock (complement)	Not Muxed	DMC0_CK
DMC0_CS0	DMC0 Chip Select 0	Not Muxed	DMC0_CS0
DMC0_DQ00	DMC0 Data 0	Not Muxed	DMC0_DQ00
DMC0_DQ01	DMC0 Data 1	Not Muxed	DMC0_DQ01
DMC0_DQ02	DMC0 Data 2	Not Muxed	DMC0_DQ02
DMC0_DQ03	DMC0 Data 3	Not Muxed	DMC0_DQ03
DMC0_DQ04	DMC0 Data 4	Not Muxed	DMC0_DQ04
DMC0_DQ05	DMC0 Data 5	Not Muxed	DMC0_DQ05
DMC0_DQ06	DMC0 Data 6	Not Muxed	DMC0_DQ06

Signal Name	Description	Port	Pin Name
SMC0_ARE	SMC0 Read Enable	A	PA_13
SMC0_AWE	SMC0 Write Enable	A	PA_14
SMC0_D00	SMC0 Data 0	В	PB_07
SMC0_D01	SMC0 Data 1	В	PB_06
SMC0_D02	SMC0 Data 2	В	PB_05
SMC0_D03	SMC0 Data 3	В	PB_04
SMC0_D04	SMC0 Data 4	В	PB_03
SMC0_D05	SMC0 Data 5	В	PB_02
SMC0_D06	SMC0 Data 6	В	PB_01
SMC0_D07	SMC0 Data 7	В	PB_00
SMC0_D08	SMC0 Data 8	В	PB_08
SMC0_D09	SMC0 Data 9	В	PB_09
SMC0_D10	SMC0 Data 10	В	PB_10
SMC0_D11	SMC0 Data 11	В	PB_11
SMC0_D12	SMC0 Data 12	В	PB_12
SMC0_D13	SMC0 Data 13	В	PB_13
SMC0_D14	SMC0 Data 14	В	PB_14
SMC0_D15	SMC0 Data 15	В	PB_15
SPI0_CLK	SPI0 Clock	В	PB_00
SPI0_CLK	SPI0 Clock	С	PC_04
SPI0_D2	SPI0 Data 2	В	PB_03
SPI0_D2	SPI0 Data 2	С	PC_08
SPI0_D3	SPI0 Data 3	В	PB_07
SPI0_D3	SPI0 Data 3	С	PC_09
SPI0_MISO	SPI0 Master In, Slave Out	В	PB_01
SPI0_MISO	SPI0 Master In, Slave Out	С	PC_06
SPI0_MOSI	SPI0 Master Out, Slave In	В	PB_02
SPI0_MOSI	SPI0 Master Out, Slave In	С	PC_07
SPI0_RDY	SPI0 Ready	A	PA_06
SPI0_SEL1	SPI0 Slave Select Output 1	A	PA_05
SPI0_SEL2	SPI0 Slave Select Output 2	A	PA_06
SPI0_SEL3	SPI0 Slave Select Output 3	С	PC_11
SPI0_SEL4	SPI0 Slave Select Output 4	В	PB_04
SPI0_SEL5	SPI0 Slave Select Output 5	В	PB_05
SPI0_SEL6	SPI0 Slave Select Output 6	В	PB_06
SPIO_SS	SPI0 Slave Select Input	A	PA_05
SPI1_CLK	SPI1 Clock	A	PA_00
SPI1_MISO	SPI1 Master In, Slave Out	A	PA_01
SPI1_MOSI	SPI1 Master Out, Slave In	A	PA_02
SPI1_RDY	SPI1 Ready	A	PA_03
SPI1_SEL1	SPI1 Slave Select Output 1	A	PA_04
SPI1_SEL2	SPI1 Slave Select Output 2	A	PA_03
SPI1_SEL3	SPI1 Slave Select Output 3	С	PC_10
SPI1_SEL4	SPI1 Slave Select Output 4	А	PA_14
SPI1_SS	SPI1 Slave Select Input	А	PA_04
SPI2_CLK	SPI2 Clock	В	PB_10

Table 7. ADSP-BF70x 184-Ball CSP_BGA Signal Descriptions (Continued)

Table 7. ADSP-BF70x 184-Ball CSP_BGA Signal Descriptions (Continued)

Circual Nama	Description	Davt	Din Nome
		Port	Pin Name
SPI2_D2	SPI2 Data 2	В	PB_13
SPI2_D3	SPI2 Data 3	В	PB_14
SPI2_MISO	SPI2 Master In, Slave Out	В	PB_11
SPI2_MOSI	SPI2 Master Out, Slave In	В	PB_12
SPI2_RDY	SPI2 Ready	A	PA_04
SPI2_SEL1	SPI2 Slave Select Output 1	В	PB_15
SPI2_SEL2	SPI2 Slave Select Output 2	В	PB_08
SPI2_SEL3	SPI2 Slave Select Output 3	В	PB_09
SPI2_SS	SPI2 Slave Select Input	В	PB_15
SPT0_ACLK	SPORT0 Channel A Clock	A	PA_13
SPT0_ACLK	SPORT0 Channel A Clock	С	PC_09
SPT0_AD0	SPORT0 Channel A Data 0	A	PA_14
SPT0_AD0	SPORT0 Channel A Data 0	с	PC_08
SPT0_AD1	SPORT0 Channel A Data 1	с	PC_00
SPT0_AFS	SPORT0 Channel A Frame Sync	A	PA_12
SPT0_AFS	SPORTO Channel A Frame Sync	с	PC_05
SPT0_ATDV	SPORTO Channel A Transmit Data Valid	A	PA_15
SPT0_BCLK	SPORT0 Channel B Clock	В	PB_04
SPT0 BCLK	SPORT0 Channel B Clock	с	PC 04
SPT0 BD0	SPORTO Channel B Data 0	В	PB 05
SPT0 BD0	SPORTO Channel B Data 0	с	PC 06
SPT0 BD1	SPORTO Channel B Data 1	В	PB 07
SPT0 BD1	SPORT0 Channel B Data 1	с	PC 01
SPTO BFS	SPORTO Channel B Frame Sync	В	PB 06
SPTO BFS	SPORTO Channel B Frame Sync	c	PC 07
SPT0_BTDV	SPORTO Channel B Transmit Data Valid	A	PA 15
SPT1_ACLK	SPORT1 Channel A Clock	А	PA 08
SPT1_AD0	SPORT1 Channel A Data 0	A	PA 10
SPT1_AD1	SPORT1 Channel A Data 1	A	PA 11
SPT1_AFS	SPORT1 Channel A Frame Sync	A	PA 09
SPT1_ATDV	SPORT1 Channel A Transmit Data Valid	A	PA 07
SPT1 BCLK	SPORT1 Channel B Clock	B	PB 00
SPT1 BCLK	SPORT1 Channel B Clock	C	PC 10
SPT1 BD0	SPORT1 Channel B Data 0	B	PR 02
SPT1_BD0	SPORT1 Channel B Data 0	C	PC 12
SPT1_BD1	SPORT1 Channel B Data 1	B	PR 03
SPT1 BD1	SPORT1 Channel B Data 1	C	PC 13
SPT1_BES	SPORT1 Channel B Frame Sync	B	PR 01
SDT1 BEC	SPOPT1 Channel B Frame Sync	C	PC 11
	SPOPT1 Channel B Transmit Data Valid	^	
	SPOPT1 Channel B Transmit Data Valid	C C	PC 1/
	Post Mode Control 0	C Not Muxod	
	Poot Mode Control 1	Not Muxed	
		Not Muxed	
	Clock/Crystal input	Not Muxed	
STS_CLKOUT	Processor Clock Output	Not Muxed	STS_CLKUUI
STS_EXTWAKE	External wake Control	NOT MUXED	SYS_EXIWAKE

ADSP-BF70x DESIGNER QUICK REFERENCE

Table 15 provides a quick reference summary of pin related information for circuit board design. The columns in this table provide the following information:

- Signal Name: The Signal Name column in the table includes the signal name for every pin and (where applicable) the GPIO multiplexed pin function for every pin.
- Pin Type: The Type column in the table identifies the I/O type or supply type of the pin. The abbreviations used in this column are na (none), I/O (input/output), a (analog), s (supply), and g (ground).
- Driver Type: The Driver Type column in the table identifies the driver type used by the pin. The driver types are defined in the output drive currents section of this data sheet.
- Internal Termination: The Int Term column in the table specifies the termination present when the processor is not in the reset or hibernate state. The abbreviations used in this column are wk (weak keeper, weakly retains previous value driven on the pin), pu (pull-up), or pd (pull-down).
- Reset Termination: The Reset Term column in the table specifies the termination present when the processor is in the reset state. The abbreviations used in this column are wk (weak keeper, weakly retains previous value driven on the pin), pu (pull-up), or pd (pull-down).
- Reset Drive: The Reset Drive column in the table specifies the active drive on the signal when the processor is in the reset state.
- Hibernate Termination: The Hiber Term column in the table specifies the termination present when the processor is in the hibernate state. The abbreviations used in this column are wk (weak keeper, weakly retains previous value driven on the pin), pu (pull-up), or pd (pull-down).
- Hibernate Drive: The Hiber Drive column in the table specifies the active drive on the signal when the processor is in the hibernate state.

- Power Domain: The Power Domain column in the table specifies the power supply domain in which the signal resides.
- Description and Notes: The Description and Notes column in the table identifies any special requirements or characteristics for the signal. If no special requirements are listed the signal may be left unconnected if it is not used. Also, for multiplexed general-purpose I/O pins, this column identifies the functions available on the pin.

If an external pull-up or pull-down resistor is required for any signal, 100 $k\Omega$ is the maximum value that can be used unless otherwise noted.

Note that for Port A, Port B, and Port C (PA_00 to PC_14), when <u>SYS_HWRST</u> is low, these pads are three-state. After <u>SYS_HWRST</u> is released, but before code execution begins, these pins are internally pulled up. Subsequently, the state depends on the input enable and output enable which are controlled by software.

Software control of internal pull-ups works according to the following settings in the PADS_PCFG0 register. When PADS_PCFG0 = 0: For PA_15:PA_00, PB_15:PB_00, and PC_14:PC_00, the internal pull-up is enabled when both the input enable and output enable of a particular pin are deasserted. When PADS_PCFG0 = 1: For PA_15:PA_00, PB_15:PB_00, and PC_14:PC_00, the internal pull-up is enabled as long as the output enable of a particular pin is deasserted.

There are some exceptions to this scheme:

- Internal pull-ups are always disabled if MSI mode is selected for that signal.
- The following signals enabled the internal pull-down when the output enable is de-asserted: <u>SMC0_AMS[1:0]</u>, <u>SMC0_ARE</u>, <u>SMC0_AWE</u>, <u>SMC0_AOE</u>, <u>SMC0_ARDY</u>, <u>SPI0_SEL[6:1]</u>, <u>SPI1_SEL[4:1]</u>, and <u>SPI2_SEL[3:1]</u>.

		Driver	Int	Reset	Reset	Hiber	Hiber	Power	Description
Signal Name	Туре	Туре	Term	Term	Drive	Term	Drive	Domain	and Notes
DMC0_A00	I/O	В	none	none	none	none	none	VDD_DMC	Desc: DMC0 Address 0
									Notes: No notes.
DMC0_A01	I/O	В	none	none	none	none	none	VDD_DMC	Desc: DMC0 Address 1
									Notes: No notes.
DMC0_A02	I/O	В	none	none	none	none	none	VDD_DMC	Desc: DMC0 Address 2
									Notes: No notes.
DMC0_A03	I/O	В	none	none	none	none	none	VDD_DMC	Desc: DMC0 Address 3
									Notes: No notes.
DMC0_A04	I/O	В	none	none	none	none	none	VDD_DMC	Desc: DMC0 Address 4
									Notes: No notes.
DMC0_A05	I/O	В	none	none	none	none	none	VDD_DMC	Desc: DMC0 Address 5
									Notes: No notes.

Table 15. ADSP-BF70x Designer Quick Reference

		Driver	Int	Reset	Reset	Hiber	Hiber	Power	Description
Signal Name	Туре	Туре	Term	Term	Drive	Term	Drive	Domain	and Notes
DMC0_DQ08	I/O	В	none	none	none	none	none	VDD_DMC	Desc: DMC0 Data 8
									Notes: No notes.
DMC0_DQ09	I/O	В	none	none	none	none	none	VDD_DMC	Desc: DMC0 Data 9
									Notes: No notes.
DMC0_DQ10	I/O	В	none	none	none	none	none	VDD_DMC	Desc: DMC0 Data 10
									Notes: No notes.
DMC0_DQ11	I/O	В	none	none	none	none	none	VDD_DMC	Desc: DMC0 Data 11
									Notes: No notes.
DMC0_DQ12	I/O	В	none	none	none	none	none	VDD_DMC	Desc: DMC0 Data 12
									Notes: No notes.
DMC0_DQ13	I/O	В	none	none	none	none	none	VDD_DMC	Desc: DMC0 Data 13
									Notes: No notes.
DMC0_DQ14	I/O	В	none	none	none	none	none	VDD_DMC	Desc: DMC0 Data 14
									Notes: No notes.
DMC0_DQ15	I/O	В	none	none	none	none	none	VDD_DMC	Desc: DMC0 Data 15
									Notes: No notes.
DMC0_LDM	I/O	В	none	none	none	none	none	VDD_DMC	Desc: DMC0 Data Mask for Lower Byte
									Notes: No notes.
DMC0_LDQS	I/O	С	none	none	none	none	none	VDD_DMC	Desc: DMC0 Data Strobe for Lower Byte
									Notes: For LPDDR, a pull-down is
									required.
DMC0_LDQS	I/O	С	none	none	none	none	none	VDD_DMC	Desc: DMC0 Data Strobe for Lower Byte
									(complement)
									to DMC0_VREE_For LPDDR_leave
									unconnected.
DMC0 ODT	1/0	в	none	none	none	none	none		Desc: DMC0 On-die termination
Diffeo_0D1	,, 0		none	none	none	none	none	VDD_DIAC	Notes: For LPDDR, leave unconnected.
DMC0 RAS	1/0	в	none	none	none	none	none		Desc: DMC0 Bow Address Strobe
211100_1010	., 0		none	none	none	none	none	100_0mc	Notes: No notes.
DMC0 UDM	1/0	В	none	none	none	none	none		Desc: DMC0 Data Mask for Upper Byte
billeo_obili	., 0		none	none	none	none	none	100_0mc	Notes: No notes.
DMC0 UDOS	1/0	с	none	none	none	none	none	VDD DMC	Desc: DMC0 Data Strobe for Upper Byte
	., -	-							Notes: For LPDDR, a pull-down is
									required.
DMC0_UDQS	I/O	С	none	none	none	none	none	VDD_DMC	Desc: DMC0 Data Strobe for Upper Byte
									(complement)
									Notes: For single ended DDR2, connect
									to DMC0_VREF. For LPDDR, leave
									unconnected.
DMC0_VREF	а	na	none	none	none	none	none	VDD_DMC	Desc: DMC0 Voltage Reference
									Notes: For LPDDR, leave unconnected.
									If the DMC is not used, connect to
	1/0	R	nono	nono	nono	nona	nono		Dosc: DMC0 Write Enable
	1/0		none	none	none	none	none		Notes: No notes
GND	a	na	none	none	none	none	none	na	Desc: Ground
	А		none	none	none	none	none		Notes: No notes
	1	1	1	1	1	1	1	1	

Table 15. ADSP-BF70x Designer Quick Reference (Continued)

Hiber Driver Int Reset Reset Hiber Power Description Term Term Drive Term Drive Domain Type Signal Name Type and Notes PA_02 I/O A VDD_EXT Desc: SPI1 Master Out, Slave In | TRACE0 none none none none none Trace Data 5 | SMC0 Memory Select 1 Notes: May require a pull-up if used as an SMC memory select. Check the data sheet requirements of the IC it connects to. PA 03 I/O А none none none none none VDD_EXT Desc: SPI1 Slave Select Output 2 | SPI1 Ready | SMC0 Asynchronous Ready Notes: May require a pull-up or pulldown if used as an SMC asynchronous ready. Check the data sheet requirements of the IC it connects to and the programmed polarity. I/O VDD_EXT Desc: SPI1 Slave Select Output 1 | TM0 PA_04 А none none none none none Timer 7 | SPI2 Ready | SMC0 Address 8 | SPI1 Slave Select Input Notes: SPI slave select outputs require a pull-up when used. I/O Desc: TM0 Timer 0 | SPI0 Slave Select PA_05 А none none none none none VDD_EXT Output 1 | SMC0 Address 7 | SPI0 Slave Select Input Notes: SPI slave select outputs require a pull-up when used. I/O А VDD_EXT Desc: TM0 Timer 1 | SPI0 Slave Select PA_06 none none none none none Output 2 | SPI0 Ready | SMC0 Address 6 Notes: SPI slave select outputs require a pull-up when used. PA_07 I/O А VDD EXT Desc: TM0 Timer 2 | SPT1 Channel B none none none none none Transmit Data Valid | SPT1 Channel A Transmit Data Valid | SMC0 Address 5 | **CNT0** Count Down and Gate Notes: No notes. Desc: PPI0 Data 11 | MSI0 Card Detect | I/O А VDD_EXT PA_08 none none none none none SPT1 Channel A Clock | SMC0 Address 1 Notes: An external pull-up may be required for MSI modes, see the MSI chapter in the hardware reference for details. I/O А VDD EXT Desc: PPI0 Data 10 | TM0 Timer 4 | SPT1 PA_09 none none none none none Channel A Frame Sync | SMC0 Address 2 Notes: No notes. I/O Desc: PPI0 Data 9 | TM0 Timer 5 | SPT1 А VDD_EXT PA_10 none none none none none Channel A Data 0 | SMC0 Address 3 Notes: No notes. I/O А VDD_EXT Desc: PPI0 Data 8 | TM0 Timer 6 | SPT1 PA_11 none none none none none Channel A Data 1 | SMC0 Address 4 Notes: No notes.

Table 15. ADSP-BF70x Designer Quick Reference (Continued)

ELECTRICAL CHARACTERISTICS

Parameter		Test Conditions/Comments	Min	Тур	Max	Unit
V _{OH} ¹	High Level Output Voltage	$V_{DD_{EXT}} = 1.7 \text{ V}, I_{OH} = -1.0 \text{ mA}$	$0.8 \times V_{DD_EXT}$			V
V _{OH} ¹	High Level Output Voltage	$V_{DD_{EXT}} = 3.13 \text{ V}, I_{OH} = -2.0 \text{ mA}$	$0.9 \times V_{DD_EXT}$			V
V _{OH_DDR2} ²	High Level Output Voltage, DDR2,	$V_{DD_DMC} = 1.70 \text{ V}, I_{OH} = -7.1 \text{ mA}$	V _{DD_DMC} - 0.320			V
	Programmed Impedance = 34Ω					
V _{OH_DDR2} ²	High Level Output Voltage, DDR2,	$V_{DD_DMC} = 1.70 \text{ V}, I_{OH} = -5.8 \text{ mA}$	$V_{DD_DMC} - 0.320$			V
2	Programmed Impedance = 40Ω					
V _{OH_DDR2} ²	High Level Output Voltage, DDR2, Programmed Impedance = 50 Ω	$V_{DD_{DMC}} = 1.70 \text{ V}, I_{OH} = -4.1 \text{ mA}$	V _{DD_DMC} – 0.320			V
V _{OH_DDR2} ²	High Level Output Voltage, DDR2, Programmed Impedance = 60 Ω	$V_{DD_DMC} = 1.70 \text{ V}, I_{OH} = -3.4 \text{ mA}$	V _{DD_DMC} - 0.320			V
VOH LPDDR ²	High Level Output Voltage, LPDDR	$V_{DD,DMC} = 1.70 \text{ V}, I_{OH} = -2.0 \text{ mA}$	V _{DD DMC} - 0.320			V
V_{01}^{3}	Low Level Output Voltage	$V_{DD, EXT} = 1.7 \text{ V}, I_{OL} = 1.0 \text{ mA}$	00_0		0.400	V
$\frac{0}{V_{0}}^{3}$	Low Level Output Voltage	$V_{DD, EXT} = 3.13 V_{, I_{OI}} = 2.0 \text{ mA}$			0.400	V
	Low Level Output Voltage, DDR2,	$V_{DD,DMC} = 1.70 \text{ V}, I_{OL} = 7.1 \text{ mA}$			0.320	V
	Programmed Impedance = 34Ω					
V _{OL DDR2} ²	Low Level Output Voltage, DDR2,	$V_{DD DMC} = 1.70 \text{ V}, I_{OL} = 5.8 \text{ mA}$			0.320	V
	Programmed Impedance = 40Ω					
V _{OL_DDR2} ²	Low Level Output Voltage, DDR2,	$V_{DD_DMC} = 1.70 \text{ V}, I_{OL} = 4.1 \text{ mA}$			0.320	V
	Programmed Impedance = 50 Ω					
$V_{OL_DDR2}^2$	Low Level Output Voltage, DDR2,	$V_{DD_DMC} = 1.70 \text{ V}, I_{OL} = 3.4 \text{ mA}$			0.320	V
	Programmed Impedance = 60Ω					
V _{OL_LPDDR} ²	Low Level Output Voltage, LPDDR	$V_{DD_DMC} = 1.70 \text{ V}, I_{OL} = 2.0 \text{ mA}$			0.320	V
I _{IH} ⁴	High Level Input Current	$V_{DD_EXT} = 3.47 \text{ V}, V_{DD_DMC} = 1.9 \text{ V},$ $V_{DD\ USB} = 3.47 \text{ V}, V_{IN} = 3.47 \text{ V}$			10	μΑ
I _{IH_DMC0_VREF} 5	High Level Input Current	$V_{DD_EXT} = 3.47 \text{ V}, V_{DD_DMC} = 1.9 \text{ V},$ $V_{DD_USB} = 3.47 \text{ V}, V_{IN} = 3.47 \text{ V}$			1	μA
I _{IH_PD} ⁶	High Level Input Current with Pull- down Resistor	$V_{DD_{EXT}} = 3.47 \text{ V}, V_{DD_{DMC}} = 1.9 \text{ V},$ $V_{DD_{USD}} = 3.47 \text{ V}, V_{DL} = 3.47 \text{ V}$			100	μΑ
R _{pp} ⁶	Internal Pull-down Resistance	$V_{DD_{-}0SB} = 3.47 \text{ V}$ V_{DD_{-}DMC} = 1.9 \text{ V}	57		130	kO
··PD		$V_{DD \ IISB} = 3.47 \text{ V}, V_{IN} = 3.47 \text{ V}$	57		150	141
I _{IL} ⁷	Low Level Input Current	$V_{DD_{EXT}} = 3.47 \text{ V}, V_{DD_{DMC}} = 1.9 \text{ V},$ $V_{DD_{VD}} = 3.47 \text{ V}, V_{DD_{DMC}} = 0 \text{ V}$			10	μΑ
I _{IL_DMC0_VREF} 5	Low Level Input Current	$V_{DD_{EXT}} = 3.47 \text{ V}, V_{DD_{DMC}} = 1.9 \text{ V},$			1	μA
		$V_{\text{DD}_\text{USB}} = 3.47 \text{ V}, V_{\text{IN}} = 0 \text{ V}$				
I _{IL_PU} ⁸	Low Level Input Current with Pull-up Resistor	$V_{DD_EXT} = 3.47 \text{ V}, V_{DD_DMC} = 1.9 \text{ V},$ $V_{DD_USB} = 3.47 \text{ V}, V_{IN} = 0 \text{ V}$			100	μΑ
R _{PU} ⁸	Internal Pull-up Resistance	$V_{DD_EXT} = 3.47 \text{ V}, V_{DD_DMC} = 1.9 \text{ V},$ $V_{DD_USB} = 3.47 \text{ V}, V_{IN} = 0 \text{ V}$	53		129	kΩ
I _{IH_USB0} 9	High Level Input Current	$V_{DD_{EXT}} = 3.47 \text{ V}, V_{DD_{DMC}} = 1.9 \text{ V},$ $V_{DD_{USP}} = 3.47 \text{ V}, V_{IN} = 3.47 \text{ V}$			10	μΑ
I _{IL_USB0} 9	Low Level Input Current	$V_{DD_{EXT}} = 3.47 \text{ V}, V_{DD_{DMC}} = 1.9 \text{ V},$			10	μΑ
10	Three State Leakage Current	$v_{DD_{USB}} = 3.47 v, v_{IN} = 0 v$			10	
IOZH	milee-state Leakage Current	$V_{DD_{EXT}} = 3.47 \text{ V}, V_{DD_{DMC}} = 1.9 \text{ V},$ $V_{DD_{USB}} = 3.47 \text{ V}, V_{IN} = 3.47 \text{ V}$			10	μΑ
I _{OZH} ¹¹	Three-State Leakage Current				10	μΑ
I _{OZL} ¹²	Three-State Leakage Current	$V_{DD_EXT} = 3.47 \text{ V}, V_{DD_DMC} = 1.9 \text{ V},$ $V_{DD_USB} = 3.47 \text{ V}, V_{IN} = 0 \text{ V}$			10	μΑ
I _{OZH_PD} ¹³	Three-State Leakage Current				100	μΑ

Asynchronous Page Mode Read

Table 34 and Figure 13 show asynchronous memory page mode read timing, related to the static memory controller (SMC).

Table 34. Asynchronous Page Mode Read

		V _{DD_EXT} 1.8 V /3.3 V Nominal		
Paramete	r	Min	Max	Unit
Switching (Characteristics			
t _{AV}	SMC0_Ax (Address) Valid for First Address Min Width ¹	$(PREST + RST + PREAT + RAT) \times t_{SCLK0} - 2$		ns
t _{AV1}	SMC0_Ax (Address) Valid for Subsequent SMC0_Ax (Address) Min Width	$PGWS \times t_{SCLK0} - 2$		ns
t _{WADV}	SMC0_NORDV Active Low Width ²	$RST \times t_{SCLK0} - 2$		ns
t _{HARE}	Output ³ Hold After SMC0_ARE High ⁴	$RHT \times t_{SCLK0} - 2$		ns
t _{WARE} 5	SMC0_ARE Active Low Width ⁶	$(RAT + (Nw - 1) \times PGWS) \times t_{SCLK0} - 2$		ns

¹PREST, RST, PREAT and RAT values set using the SMC_BXETIM.PREST bits, SMC_BXTIM.RST bits, SMC_BXETIM.PREAT bits, and the SMC_BXTIM.RAT bits.

² RST value set using the SMC_BxTIM.RST bits.

³Output signals are SMC0_Ax, <u>SMC0_AMSx</u>, <u>SMC0_AOE</u>.

⁴ RHT value set using the SMC_BxTIM.RHT bits.

⁵ SMC_BxCTL.ARDYEN bit = 0.

 $^6\,\rm RAT$ value set using the SMC_BxTIM.RAT bits.

Figure 13. Asynchronous Page Mode Read

DDR2 SDRAM Clock and Control Cycle Timing

Table 39 and Figure 17 show DDR2 SDRAM clock and control cycle timing, related to the dynamic memory controller (DMC).

Table 39. DDR2 SDRAM Read Cycle Timing, V_{DD_DMC} Nominal 1.8 V

			200 MHz	
Parameter		Min	Max	Unit
Switching Ch	aracteristics			
t _{CK}	Clock Cycle Time (CL = 2 Not Supported)	5		ns
t _{CH}	High Clock Pulse Width	0.45	0.55	t _{CK}
t _{CL}	Low Clock Pulse Width	0.45	0.55	t _{CK}
t _{IS}	Control/Address Setup Relative to DMC0_CK Rise	350		ps
t _{IH}	Control/Address Hold Relative to DMC0_CK Rise	475		ps

NOTE: CONTROL = DMC0_CS0, DMC0_CKE, DMC0_RAS, DMC0_CAS, AND DMC0_WE. ADDRESS = DMC0_A00-13, AND DMC0_BA0-2.

Figure 17. DDR2 SDRAM Clock and Control Cycle Timing

Mobile DDR SDRAM Clock and Control Cycle Timing

Table 42 and Figure 20 show mobile DDR SDRAM clock and control cycle timing, related to the dynamic memory controller (DMC).

Table 42. Mobile DDR SDRAM Clock and Control Cycle Timing, V_{DD_DMC} Nominal 1.8 V

			200 MHz	
Paramete	r	Min	Мах	Unit
Switching (Characteristics			
t _{CK}	Clock Cycle Time (CL = 2 Not Supported)	5		ns
t _{CH}	Minimum Clock Pulse Width	0.45	0.55	t _{CK}
t _{CL}	Maximum Clock Pulse Width	0.45	0.55	t _{CK}
t _{IS}	Control/Address Setup Relative to DMC0_CK Rise	1.5		ns
t _{IH}	Control/Address Hold Relative to DMC0_CK Rise	1.5		ns

NOTE: CONTROL = DMC0_CS0, DMC0_CKE, DMC0_RAS, DMC0_CAS, AND DMC0_WE. ADDRESS = DMC0_A00-13, AND DMC0_BA0-2.

Figure 20. Mobile DDR SDRAM Clock and Control Cycle Timing

Up/Down Counter/Rotary Encoder Timing

Table 47 and Figure 25 describe timing, related to the general-purpose counter (CNT).

Table 47. Up/Down Counter/Rotary Encoder Timing

		V _D 1.8V N	d_ext Iominal	V _{DD_EXT} 3.3 V Nominal		
Parameter		Min	Max	Min	Max	Unit
Timing Requiremen	nt					
t _{WCOUNT}	Up/Down Counter/Rotary Encoder Input Pulse Width	$2 \times t_{SCLK0}$		$2 \times t_{SCLK0}$		ns

Figure 25. Up/Down Counter/Rotary Encoder Timing

Debug Interface (JTAG Emulation Port) Timing

Table 48 and Figure 26 provide I/O timing, related to the debug interface (JTAG emulator port).

Table 48. JTAG Port Timing

			V _{DD_EXT} 1.8V Nominal		V _{DD_EXT} 3.3 V Nominal	
Parameter		Min	Max	Min	Max	Unit
Timing Requireme	nts					
t _{TCK}	JTG_TCK Period	20		20		ns
t _{STAP}	JTG_TDI, JTG_TMS Setup Before JTG_TCK High	5		4		ns
t _{HTAP}	JTG_TDI, JTG_TMS Hold After JTG_TCK High	4		4		ns
t _{ssys}	System Inputs Setup Before JTG_TCK High ¹	4		4		ns
t _{HSYS}	System Inputs Hold After JTG_TCK High ¹	4		4		ns
t _{TRSTW}	JTG_TRST Pulse Width (Measured in JTG_TCK Cycles) ²	4		4		t _{TCK}
Switching Characteristics						
t _{DTDO}	JTG_TDO Delay From JTG_TCK Low		16.5		14.5	ns
t _{DSYS}	System Outputs Delay After JTG_TCK Low ³		18		16.5	ns
t _{DTMS}	TMS Delay After TCK High in SWD Mode	3.5	16.5	3.5	14.5	ns

¹ System inputs = DMC0_DQxx, DMC0_LDQS, <u>DMC0_LDQS</u>, DMC0_UDQS, <u>DMC0_UDQS</u>, PA_xx, PB_xx, PC_xx, SYS_BMODEx, <u>SYS_HWRST</u>, <u>SYS_FAULT</u>, <u>SYS_NMI</u>, TWI0_SCL, TWI0_SDA, and SYS_EXTWAKE.

² 50 MHz maximum.

³ System outputs = DMC0_Axx, DMC0_BAx, DMC0_CAS, DMC0_CK, DMC0_CK, DMC0_CKE, DMC0_CS0, DMC0_DQxx, DMC0_LDM, DMC0_LDQS, DMC0_LDQS, DMC0_UDQS, DMC0_WE, PA_xx, PB_xx, PC_xx, SYS_CLKOUT, SYS_FAULT, SYS_RESOUT, and SYS_NMI.

Figure 26. JTAG Port Timing

Table 51. Serial Ports—Enable and Three-State

		1.8	V _{DD_EXT} 1.8V Nominal		V _{DD_EXT} 3.3 V Nominal	
Parameter		Min	Max	Min	Max	Unit
Switching Characteristics						
t _{DDTEN}	Data Enable from External Transmit SPT_CLK ¹	1		1		ns
t _{DDTTE}	Data Disable from External Transmit SPT_CLK ¹		14		14	ns
t _{DDTIN}	Data Enable from Internal Transmit SPT_CLK ¹	-1.12		-1		ns
t _{DDTTI}	Data Disable from Internal Transmit SPT_CLK ¹		2.8		2.8	ns

¹Referenced to drive edge.

Table 61. Enhanced Parallel Peripheral Interface—External Clock

		V _{DD_EXT} 1.8 V Nominal		V _{DD_EXT} 3.3 V Nominal		
Parameter		Min	Мах	Min	Max	Unit
Timing	Requirements					
t _{PCLKW}	EPPI_CLK Width ¹	$(0.5 \times t_{PCLKEXT}) - 1$		$(0.5 \times t_{PCLKEXT}) - 1$		ns
t _{PCLK}	EPPI_CLK Period ¹	t _{PCLKEXT} – 1		t _{PCLKEXT} – 1		ns
t _{SFSPE}	External FS Setup Before EPPI_CLK	1.5		1		ns
t _{HFSPE}	External FS Hold After EPPI_CLK	3.3		3		ns
t _{SDRPE}	Receive Data Setup Before EPPI_CLK	1		1		ns
t _{HDRPE}	Receive Data Hold After EPPI_CLK	3		3		ns
Switchi	ng Characteristics					
t _{DFSPE}	Internal FS Delay After EPPI_CLK		17.5		14.5	ns
t _{HOFSPE}	Internal FS Hold After EPPI_CLK	2.5		2.5		ns
t _{DDTPE}	Transmit Data Delay After EPPI_CLK		17.5		14.5	ns
t _{HDTPE}	Transmit Data Hold After EPPI_CLK	2.5		2.5		ns

¹This specification indicates the minimum instantaneous width or period that can be tolerated due to duty cycle variation or jitter on the external EPPI_CLK. For the external EPPI_CLK ideal maximum frequency, see the f_{PCLKEXT} specification in Table 18 on Page 52 in Clock Related Operating Conditions.

Figure 45. PPI External Clock GP Receive Mode with Internal Frame Sync Timing

Figure 46. PPI External Clock GP Transmit Mode with Internal Frame Sync Timing

Dimensions for the 12 mm \times 12 mm LFCSP_VQ package in Figure 72 are shown in millimeters.

COMPLIANT TO JEDEC STANDARDS MO-220

Figure 72. 88-Lead Lead Frame Chip Scale Package [LFCSP_VQ] (CP-88-8) Dimensions shown in millimeters

SURFACE-MOUNT DESIGN

Table 71 is provided as an aid to PCB design. For industry-
standard design recommendations, refer to IPC-7351, Generic
Requirements for Surface-Mount Design and Land Pattern
Standard.

Table 71. CSP_BGA Data for Use with Surface-Mount Design

Package	Package	Package	Package	
	Ball Attach Type	Solder Mask Opening	Ball Pad Size	
BC-184-1	Solder Mask Defined	0.4 mm Diameter	0.5 mm Diameter	

PLANNED AUTOMOTIVE PRODUCTION PRODUCTS

Model ^{1, 2, 3}	Max. Core Clock	L2 SRAM	Temperature Grade ⁴	Package Description	Package Option
ADBF702WCCPZ3xx	300 MHz	256K bytes	-40°C to +105°C	88-Lead LFCSP_VQ	CP-88-8
ADBF702WCCPZ4xx	400 MHz	256K bytes	–40°C to +105°C	88-Lead LFCSP_VQ	CP-88-8
ADBF703WCBCZ3xx	300 MHz	256K bytes	–40°C to +105°C	184-Ball CSP_BGA	BC-184-1
ADBF703WCBCZ4xx	400 MHz	256K bytes	–40°C to +105°C	184-Ball CSP_BGA	BC-184-1
ADBF704WCCPZ3xx	300 MHz	512K bytes	–40°C to +105°C	88-Lead LFCSP_VQ	CP-88-8
ADBF704WCCPZ4xx	400 MHz	512K bytes	–40°C to +105°C	88-Lead LFCSP_VQ	CP-88-8
ADBF705WCBCZ3xx	300 MHz	512K bytes	–40°C to +105°C	184-Ball CSP_BGA	BC-184-1
ADBF705WCBCZ4xx	400 MHz	512K bytes	–40°C to +105°C	184-Ball CSP_BGA	BC-184-1
ADBF706WCCPZ3xx	300 MHz	1024K bytes	–40°C to +105°C	88-Lead LFCSP_VQ	CP-88-8
ADBF706WCCPZ4xx	400 MHz	1024K bytes	–40°C to +105°C	88-Lead LFCSP_VQ	CP-88-8
ADBF707WCBCZ3xx	300 MHz	1024K bytes	-40°C to +105°C	184-Ball CSP_BGA	BC-184-1
ADBF707WCBCZ4xx	400 MHz	1024K bytes	-40°C to +105°C	184-Ball CSP_BGA	BC-184-1

¹ Select Automotive grade products, supporting -40° C to $+105^{\circ}$ C T_{AMBIENT} condition, will be available when they appear in the Automotive Products table. ² Z = RoHS Compliant Part.

 $^3\,\rm xx$ denotes the current die revision.

⁴ Referenced temperature is ambient temperature. The ambient temperature is not a specification. See Operating Conditions on Page 50 for the junction temperature (T_j) specification which is the only temperature specification.