

Welcome to E-XFL.COM

Understanding <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Embedded - DSP (Digital Signal Processors) are specialized microprocessors designed to perform complex mathematical computations on digital signals in real-time. Unlike general-purpose processors, DSPs are optimized for high-speed numeric processing tasks, making them ideal for applications that require efficient and precise manipulation of digital data. These processors are fundamental in converting and processing signals in various forms, including audio, video, and communication signals, ensuring that data is accurately interpreted and utilized in embedded systems.

Applications of <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Details

Product Status	Active
Туре	Blackfin+
Interface	CAN, DSPI, EBI/EMI, I ² C, PPI, QSPI, SD/SDIO, SPI, SPORT, UART/USART, USB OTG
Clock Rate	200MHz
Non-Volatile Memory	ROM (512kB)
On-Chip RAM	128kB
Voltage - I/O	1.8V, 3.3V
Voltage - Core	1.10V
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	88-VFQFN Exposed Pad, CSP
Supplier Device Package	88-LFCSP-VQ (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/analog-devices/adsp-bf700bcpz-2

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

output enable and the input enable of a GPIO pin are both active, the data signal before the pad driver is looped back to the receive path for the same GPIO pin.

MEMORY ARCHITECTURE

The processor views memory as a single unified 4G byte address space, using 32-bit addresses. All resources, including internal memory, external memory, and I/O control registers, occupy separate sections of this common address space. The memory portions of this address space are arranged in a hierarchical structure to provide a good cost/performance balance of some very fast, low-latency core-accessible memory as cache or SRAM, and larger, lower-cost and performance interface-accessible memory systems. See Figure 3.

Internal (Core-Accessible) Memory

The L1 memory system is the highest-performance memory available to the Blackfin+ processor core.

The core has its own private L1 memory. The modified Harvard architecture supports two concurrent 32-bit data accesses along with an instruction fetch at full processor speed which provides high-bandwidth processor performance. In the core, a 64K byte block of data memory partners with an 64K byte memory block for instruction storage. Each data block is multibanked for efficient data exchange through DMA and can be configured as SRAM. Alternatively, 16K bytes of each block can be configured in L1 cache mode. The four-way set-associative instruction cache and the 2 two-way set-associative data caches greatly accelerate memory access performance, especially when accessing external memories.

The L1 memory domain also features a 8K byte data SRAM block which is ideal for storing local variables and the software stack. All L1 memory is protected by a multi-parity-bit concept, regardless of whether the memory is operating in SRAM or cache mode.

Outside of the L1 domain, L2 and L3 memories are arranged using a Von Neumann topology. The L2 memory domain is a unified instruction and data memory and can hold any mixture of code and data required by the system design. The L2 memory domain is accessible by the Blackfin+ core through a dedicated 64-bit interface. It operates at SYSCLK frequency.

The processor features up to 1M byte of L2 SRAM, which is ECC-protected and organized in eight banks. Individual banks can be made private to any system master. There is also a 512K byte single-bank ROM in the L2 domain. It contains boot code, security code, and general-purpose ROM space.

OTP Memory

The processor features 4 kB of one-time-programmable (OTP) memory which is memory-map accessible. This memory stores a unique chip identification and is used to support secure-boot and secure operation.

Figure 3. ADSP-BF706/ADSP-BF707 Internal/External Memory Map

Serial Peripheral Interface (SPI) Ports

The processors have three industry-standard SPI-compatible ports that allow it to communicate with multiple SPI-compatible devices.

The baseline SPI peripheral is a synchronous, four-wire interface consisting of two data pins, one device select pin, and a gated clock pin. The two data pins allow full-duplex operation to other SPI-compatible devices. An additional two (optional) data pins are provided to support quad SPI operation. Enhanced modes of operation such as flow control, fast mode, and dual I/O mode (DIOM) are also supported. In addition, a direct memory access (DMA) mode allows for transferring several words with minimal CPU interaction.

With a range of configurable options, the SPI ports provide a glueless hardware interface with other SPI-compatible devices in master mode, slave mode, and multimaster environments. The SPI peripheral includes programmable baud rates, clock phase, and clock polarity. The peripheral can operate in a multimaster environment by interfacing with several other devices, acting as either a master device or a slave device. In a multimaster environment, the SPI peripheral uses open-drain outputs to avoid data bus contention. The flow control features enable slow slave devices to interface with fast master devices by providing an SPI Ready pin which flexibly controls the transfers.

The SPI port's baud rate and clock phase/polarities are programmable, and it has integrated DMA channels for both transmit and receive data streams.

SPI Host Port (SPIHP)

The processor includes one SPI host port which may be used in conjunction with any available SPI port to enhance its SPI slave mode capabilities. The SPIHP allows a SPI host device access to memory-mapped resources of the processor through a SPI SRAM/FLASH style protocol. The following features are included:

- Direct read/write of memory and memory-mapped registers
- Support for pre-fetch for faster reads
- Support for SPI controllers that implement hardwarebased SPI memory protocol
- Error capture and reporting for protocol errors, bus errors, and over/underflow

UART Ports

The processor provides two full-duplex universal asynchronous receiver/transmitter (UART) ports, which are fully compatible with PC-standard UARTs. Each UART port provides a simplified UART interface to other peripherals or hosts, supporting full-duplex, DMA-supported, asynchronous transfers of serial data. A UART port includes support for five to eight data bits, and none, even, or odd parity. Optionally, an additional address bit can be transferred to interrupt only addressed nodes in multi-drop bus (MDB) systems. A frame is terminated by a configurable number of stop bits. The UART ports support automatic hardware flow control through the clear to send (CTS) input and request to send (RTS) output with programmable assertion FIFO levels.

To help support the local interconnect network (LIN) protocols, a special command causes the transmitter to queue a break command of programmable bit length into the transmit buffer. Similarly, the number of stop bits can be extended by a programmable inter-frame space.

The capabilities of the UARTs are further extended with support for the Infrared Data Association (IrDA*) serial infrared physical layer link specification (SIR) protocol.

2-Wire Controller Interface (TWI)

The processor includes a 2-wire interface (TWI) module for providing a simple exchange method of control data between multiple devices. The TWI module is compatible with the widely used I²C bus standard. The TWI module offers the capabilities of simultaneous master and slave operation and support for both 7-bit addressing and multimedia data arbitration. The TWI interface utilizes two pins for transferring clock (TWI_SCL) and data (TWI_SDA) and supports the protocol at speeds up to 400k bits/sec. The TWI interface pins are compatible with 5 V logic levels.

Additionally, the TWI module is fully compatible with serial camera control bus (SCCB) functionality for easier control of various CMOS camera sensor devices.

Mobile Storage Interface (MSI)

The mobile storage interface (MSI) controller acts as the host interface for multimedia cards (MMC), secure digital memory cards (SD), and secure digital input/output cards (SDIO). The following list describes the main features of the MSI controller:

- Support for a single MMC, SD memory, and SDIO card
- Support for 1-bit and 4-bit SD modes
- Support for 1-bit, 4-bit, and 8-bit MMC modes
- Support for eMMC 4.5 embedded NAND flash devices
- Support for power management and clock control
- An eleven-signal external interface with clock, command, optional interrupt, and up to eight data lines
- Card interface clock generation from SCLK0 or SCLK1
- · SDIO interrupt and read wait features

Controller Area Network (CAN)

A CAN controller implements the CAN 2.0B (active) protocol. This protocol is an asynchronous communications protocol used in both industrial and automotive control systems. The CAN protocol is well suited for control applications due to its capability to communicate reliably over a network. This is because the protocol incorporates CRC checking, message error tracking, and fault node confinement.

level specified by the crystal manufacturer. The user should verify the customized values based on careful investigations on multiple devices over the required temperature range.

NOTE: VALUES MARKED WITH * MUST BE CUSTOMIZED, DEPENDING ON THE CRYSTAL AND LAYOUT. ANALYZE CAREFULLY. FOR FREQUENCIES ABOVE 33 MHz, THE SUGGESTED CAPACITOR VALUE OF 18pF SHOULD BE TREATED AS A MAXIMUM.

Figure 4. External Crystal Connection

A third-overtone crystal can be used for frequencies above 25 MHz. The circuit is then modified to ensure crystal operation only at the third overtone by adding a tuned inductor circuit as shown in Figure 4. A design procedure for third-overtone operation is discussed in detail in application note (EE-168) *Using Third Overtone Crystals with the ADSP-218x DSP* (www.analog.com/ee-168).

The same recommendations may be used for the USB crystal oscillator.

Real-Time Clock

The real-time clock (RTC) provides a robust set of digital watch features, including current time, stopwatch, and alarm. The RTC is clocked by a 32.768 kHz crystal external to the processor. Connect RTC pins RTC_CLKIN and RTC_XTAL with external components as shown in Figure 5.

The RTC peripheral has dedicated power supply pins so that it can remain powered up and clocked even when the rest of the processor is in a low power state. The RTC provides several programmable interrupt options, including interrupt per second, minute, hour, or day clock ticks, interrupt on programmable stopwatch countdown, or interrupt at a programmed alarm time.

The 32.768 kHz input clock frequency is divided down to a 1 Hz signal by a prescaler. The counter function of the timer consists of four counters: a 60-second counter, a 60-minute counter, a 24-hour counter, and a 32,768-day counter. When the alarm interrupt is enabled, the alarm function generates an interrupt when the output of the timer matches the programmed value in the alarm control register. There are two alarms. The first alarm is for a time of day. The second alarm is for a specific day and time of that day.

NOTE: CRYSTAL LOAD CAPACITORS ARE NOT NECESSARY IN MOST CASES.

Figure 5. External Components for RTC

The stopwatch function counts down from a programmed value, with one-second resolution. When the stopwatch interrupt is enabled and the counter underflows, an interrupt is generated.

Clock Generation

The clock generation unit (CGU) generates all on-chip clocks and synchronization signals. Multiplication factors are programmed to define the PLLCLK frequency. Programmable values divide the PLLCLK frequency to generate the core clock (CCLK), the system clocks (SYSCLK, SCLK0, and SCLK1), the LPDDR or DDR2 clock (DCLK), and the output clock (OCLK).

Writing to the CGU control registers does not affect the behavior of the PLL immediately. Registers are first programmed with a new value, and the PLL logic executes the changes so that it transitions smoothly from the current conditions to the new ones.

SYS_CLKIN oscillations start when power is applied to the VDD_EXT pins. The rising edge of SYS_HWRST can be applied after all voltage supplies are within specifications, and SYS_CLKIN oscillations are stable.

Clock Out/External Clock

The SYS_CLKOUT output pin has programmable options to output divided-down versions of the on-chip clocks. By default, the SYS_CLKOUT pin drives a buffered version of the SYS_ CLKIN input. Clock generation faults (for example, PLL unlock) may trigger a reset by hardware. The clocks shown in Table 3 can be output on the SYS_CLKOUT pin.

Table 3. Clock Dividers

Clock Source	Divider (if Available on SYS_CLKOUT)
CCLK (Core Clock)	By 16
SYSCLK (System Clock)	Ву 8
SCLK0 (System Clock, All Peripherals not Covered by SCLK1)	Not available on SYS_CLKOUT
SCLK1 (System Clock for Crypto Engines and MDMA)	Ву 8
DCLK (LPDDR/DDR2 Clock)	Ву 8
OCLK (Output Clock)	Programmable
CLKBUF	None, direct from SYS_CLKIN

Power Management

As shown in Table 4, the processor supports multiple power domains, which maximizes flexibility while maintaining compliance with industry standards and conventions. There are no sequencing requirements for the various power domains, but all domains must be powered according to the appropriate Specifications table for processor operating conditions; even if the feature/peripheral is not used.

Table 4. Power Domains

Power Domain	V _{DD} Range
All Internal Logic	V _{DD_INT}
DDR2/LPDDR	V _{DD_DMC}
USB	V_{DD_USB}
OTP Memory	V _{DD_OTP}
HADC	V_{DD_HADC}
RTC	V _{DD_RTC}
All Other I/O (Includes SYS, JTAG, and Ports Pins)	V_{DD_EXT}

The dynamic power management feature of the processor allows the processor's core clock frequency (f_{CCLK}) to be dynamically controlled.

The power dissipated by a processor is largely a function of its clock frequency and the square of the operating voltage. For example, reducing the clock frequency by 25% results in a 25% reduction in dynamic power dissipation.

See Table 5 for a summary of the power settings for each mode.

Full-On Operating Mode—Maximum Performance

In the full-on mode, the PLL is enabled and is not bypassed, providing capability for maximum operational frequency. This is the power-up default execution state in which maximum performance can be achieved. The processor core and all enabled peripherals run at full speed.

Deep Sleep Operating Mode—Maximum Dynamic Power Savings

The deep sleep mode maximizes dynamic power savings by disabling the clocks to the processor core and to all synchronous peripherals. Asynchronous peripherals may still be running but cannot access internal resources or external memory.

Table 5. Power Settings

Mode/State	PLL	PLL Bypassed	fccik	f _{SYSCLK} , f _{DCLK} , f _{SCLK0} , f _{SCLK1}	Core Power
Full On	Enabled	No	Enabled	Enabled	On
Deep Sleep	Disabled	_	Disabled	Disabled	On
Hibernate	Disabled	—	Disabled	Disabled	Off

Hibernate State—Maximum Static Power Savings

The hibernate state maximizes static power savings by disabling the voltage and clocks to the processor core and to all of the peripherals. This setting signals the external voltage regulator supplying the VDD_INT pins to shut off using the SYS_ EXTWAKE signal, which provides the lowest static power dissipation.

Any critical information stored internally (for example, memory contents, register contents, and other information) must be written to a nonvolatile storage device (or self-refreshed DRAM) prior to removing power if the processor state is to be preserved.

Because the V_{DD_EXT} pins can still be supplied in this mode, all of the external pins three-state, unless otherwise specified. This allows other devices that may be connected to the processor to still have power applied without drawing unwanted current.

Reset Control Unit

Reset is the initial state of the whole processor or the core and is the result of a hardware- or software-triggered event. In this state, all control registers are set to their default values and functional units are idle. Exiting a full system reset starts with the core being ready to boot.

The reset control unit (RCU) controls how all the functional units enter and exit reset. Differences in functional requirements and clocking constraints define how reset signals are generated. Programs must guarantee that none of the reset functions puts the system into an undefined state or causes resources to stall. This is particularly important when the core is reset (programs must ensure that there is no pending system activity involving the core when it is being reset).

From a system perspective, reset is defined by both the reset target and the reset source described as follows in the following list.

Table 7. ADSP-BF70x 184-Ball CSP_BGA Signal Descriptions (Continued)

Signal Name	Description	Port	Pin Name
MSIO INT	MSIO eSDIO Interrupt Input	C	PC 14
PA 00-PA 15	Position 00 through Position 15	A	PA 00-PA 15
 PB 00-PB 15	Position 00 through Position 15	В	PB 00-PB 15
 PC_00-PC_14	Position 00 through Position 14	с	PC_00-PC_14
PPI0_CLK	EPPI0 Clock	A	PA_14
PPI0_D00	EPPIO Data 0	В	PB_07
PPI0_D01	EPPI0 Data 1	В	PB_06
PPI0_D02	EPPI0 Data 2	В	PB_05
PPI0_D03	EPPI0 Data 3	В	PB_04
PPI0_D04	EPPI0 Data 4	В	PB_03
PPI0_D05	EPPI0 Data 5	В	PB_02
PPI0_D06	EPPI0 Data 6	В	PB_01
PPI0_D07	EPPI0 Data 7	В	PB_00
PPI0_D08	EPPIO Data 8	A	PA_11
PPI0_D09	EPPI0 Data 9	A	PA_10
PPI0_D10	EPPI0 Data 10	A	PA_09
PPI0_D11	EPPI0 Data 11	A	PA_08
PPI0_D12	EPPI0 Data 12	с	PC_03
PPI0_D13	EPPI0 Data 13	С	PC_02
PPI0_D14	EPPI0 Data 14	С	PC_01
PPI0_D15	EPPI0 Data 15	С	PC_00
PPI0_D16	EPPI0 Data 16	В	PB_08
PPI0_D17	EPPI0 Data 17	В	PB_09
PPI0_FS1	EPPI0 Frame Sync 1 (HSYNC)	A	PA_12
PPI0_FS2	EPPI0 Frame Sync 2 (VSYNC)	A	PA_13
PPI0_FS3	EPPI0 Frame Sync 3 (FIELD)	A	PA_15
RTC0_CLKIN	RTC0 Crystal input/external oscillator connection	Not Muxed	RTC0_CLKIN
RTC0_XTAL	RTC0 Crystal output	Not Muxed	RTC0_XTAL
SMC0_A01	SMC0 Address 1	Α	PA_08
SMC0_A02	SMC0 Address 2	A	PA_09
SMC0_A03	SMC0 Address 3	A	PA_10
SMC0_A04	SMC0 Address 4	A	PA_11
SMC0_A05	SMC0 Address 5	A	PA_07
SMC0_A06	SMC0 Address 6	A	PA_06
SMC0_A07	SMC0 Address 7	A	PA_05
SMC0_A08	SMC0 Address 8	A	PA_04
SMC0_A09	SMC0 Address 9	С	PC_01
SMC0_A10	SMC0 Address 10	С	PC_02
SMC0_A11	SMC0 Address 11	С	PC_03
SMC0_A12	SMC0 Address 12	С	PC_04
SMC0_ABE0	SMC0 Byte Enable 0	A	PA_00
SMC0_ABE1	SMC0 Byte Enable 1	A	PA_01
SMC0_AMS0	SMC0 Memory Select 0	Α	PA_15
SMC0_AMS1	SMC0 Memory Select 1	A	PA_02
SMC0_AOE	SMC0 Output Enable	A	PA_12
SMC0_ARDY	SMC0 Asynchronous Ready	A	PA_03

Table 11. ADSP-BF70x 12 mm × 12 mm 88-Lead LFCSP (QFN) Signal Descriptions (Continued)

Signal Name	Description	Port	Pin Name
SPTO AFS	SPORTO Channel A Frame Sync	A	PA 12
SPTO AFS	SPORTO Channel A Frame Sync	c	PC 05
SPT0 ATDV	SPORTO Channel A Transmit Data Valid	A	PA 15
SPTO BCLK	SPORTO Channel B Clock	В	PB 04
SPTO BCLK	SPORTO Channel B Clock	c	PC 04
SPT0_BD0	SPORTO Channel B Data 0	B	PB 05
SPT0 BD0	SPORTO Channel B Data 0	c	PC 06
SPT0 BD1	SPORTO Channel B Data 1	В	PB 07
SPT0 BD1	SPORTO Channel B Data 1	c	PC 01
SPTO BFS	SPORTO Channel B Frame Sync	В	PB 06
SPT0 BFS	SPORTO Channel B Frame Sync	c	PC 07
SPT0 BTDV	SPORT0 Channel B Transmit Data Valid	A	PA 15
SPT1 ACLK	SPORT1 Channel A Clock	А	PA 08
SPT1 AD0	SPORT1 Channel A Data 0	А	PA 10
SPT1 AD1	SPORT1 Channel A Data 1	А	PA 11
SPT1_AFS	SPORT1 Channel A Frame Sync	A	PA_09
SPT1_ATDV	SPORT1 Channel A Transmit Data Valid	A	PA_07
SPT1_BCLK	SPORT1 Channel B Clock	В	PB_00
SPT1_BCLK	SPORT1 Channel B Clock	с	PC_10
SPT1_BD0	SPORT1 Channel B Data 0	В	PB_02
SPT1_BD1	SPORT1 Channel B Data 1	В	PB_03
SPT1_BFS	SPORT1 Channel B Frame Sync	В	PB_01
SPT1_BTDV	SPORT1 Channel B Transmit Data Valid	A	PA_07
SYS_BMODE0	Boot Mode Control 0	Not Muxed	SYS_BMODE0
SYS_BMODE1	Boot Mode Control 1	Not Muxed	SYS_BMODE1
SYS_CLKIN	Clock/Crystal Input	Not Muxed	SYS_CLKIN
SYS_CLKOUT	Processor Clock Output	Not Muxed	SYS_CLKOUT
SYS_EXTWAKE	External Wake Control	Not Muxed	SYS_EXTWAKE
SYS_FAULT	Active-Low Fault Output	Not Muxed	SYS_FAULT
SYS_HWRST	Processor Hardware Reset Control	Not Muxed	SYS_HWRST
SYS_NMI	Non-maskable Interrupt	Not Muxed	SYS_NMI
SYS_RESOUT	Reset Output	Not Muxed	SYS_RESOUT
SYS_WAKE0	Power Saving Mode Wake-up 0	В	PB_07
SYS_WAKE1	Power Saving Mode Wake-up 1	В	PB_08
SYS_WAKE2	Power Saving Mode Wake-up 2	В	PB_12
SYS_WAKE3	Power Saving Mode Wake-up 3	с	PC_02
SYS_WAKE4	Power Saving Mode Wake-up 4	A	PA_12
SYS_XTAL	Crystal Output	Not Muxed	SYS_XTAL
TM0_ACI0	TIMER0 Alternate Capture Input 0	с	PC_03
TM0_ACI1	TIMER0 Alternate Capture Input 1	В	PB_01
TM0_ACI2	TIMER0 Alternate Capture Input 2	С	PC_07
TM0_ACI3	TIMER0 Alternate Capture Input 3	В	PB_09
TM0_ACI4	TIMER0 Alternate Capture Input 4	С	PC_01
TM0_ACI5	TIMER0 Alternate Capture Input 5	С	PC_02
TM0_ACI6	TIMER0 Alternate Capture Input 6	A	PA_12
TM0_ACLK0	TIMER0 Alternate Clock 0	С	PC_04

Signal Name	Description	Port	Pin Name
TM0_ACLK1	TIMER0 Alternate Clock 1	С	PC_10
TM0_ACLK2	TIMER0 Alternate Clock 2	с	PC_09
TM0_ACLK3	TIMER0 Alternate Clock 3	В	PB_00
TM0_ACLK4	TIMER0 Alternate Clock 4	В	PB_10
TM0_ACLK5	TIMER0 Alternate Clock 5	A	PA_14
TM0_ACLK6	TIMER0 Alternate Clock 6	В	PB_04
TM0_CLK	TIMER0 Clock	В	PB_06
TM0_TMR0	TIMER0 Timer 0	А	PA_05
TM0_TMR1	TIMER0 Timer 1	А	PA_06
TM0_TMR2	TIMER0 Timer 2	A	PA_07
TM0_TMR3	TIMER0 Timer 3	С	PC_05
TM0_TMR4	TIMER0 Timer 4	А	PA_09
TM0_TMR5	TIMER0 Timer 5	A	PA_10
TM0_TMR6	TIMER0 Timer 6	A	PA_11
TM0_TMR7	TIMER0 Timer 7	A	PA_04
TRACE0_CLK	TPIU0 Trace Clock	В	PB_10
TRACE0_D00	TPIU0 Trace Data 0	В	PB_15
TRACE0_D01	TPIU0 Trace Data 1	В	PB_14
TRACE0_D02	TPIU0 Trace Data 2	В	PB_13
TRACE0_D03	TPIU0 Trace Data 3	В	PB_12
TRACE0_D04	TPIU0 Trace Data 4	В	PB_11
TRACE0_D05	TPIU0 Trace Data 5	A	PA_02
TRACE0_D06	TPIU0 Trace Data 6	A	PA_01
TRACE0_D07	TPIU0 Trace Data 7	A	PA_00
TWI0_SCL	TWI0 Serial Clock	Not Muxed	TWI0_SCL
TWI0_SDA	TWI0 Serial Data	Not Muxed	TWI0_SDA
UART0_CTS	UART0 Clear to Send	С	PC_03
UARTO_RTS	UART0 Request to Send	С	PC_02
UART0_RX	UART0 Receive	В	PB_09
UART0_TX	UART0 Transmit	В	PB_08
UART1_CTS	UART1 Clear to Send	В	PB_14
UART1_RTS	UART1 Request to Send	В	PB_13
UART1_RX	UART1 Receive	С	PC_01
UART1_TX	UART1 Transmit	С	PC_00
USB0_CLKIN	USB0 Clock/Crystal Input	Not Muxed	USB0_CLKIN
USB0_DM	USB0 Data –	Not Muxed	USB0_DM
USB0_DP	USB0 Data +	Not Muxed	USB0_DP
USB0_ID	USB0 OTG ID	Not Muxed	USB0_ID
USB0_VBC	USB0 VBUS Control	Not Muxed	USB0_VBC
USB0_VBUS	USB0 Bus Voltage	Not Muxed	USB0_VBUS
USB0_XTAL	USB0 Crystal	Not Muxed	USB0_XTAL
VDD_EXT	External VDD	Not Muxed	VDD_EXT
VDD_INT	Internal VDD	Not Muxed	VDD_INT
VDD_OTP	VDD for OTP	Not Muxed	VDD_OTP
VDD_RTC	VDD for RTC	Not Muxed	VDD_RTC
VDD_USB	VDD for USB	Not Muxed	VDD_USB

Table 11. ADSP-BF70x 12 mm × 12 mm 88-Lead LFCSP (QFN) Signal Descriptions (Continued)

		Driver	Int	Reset	Reset	Hiber	Hiber	Power	Description
Signal Name	Туре	Туре	Term	Term	Drive	Term	Drive	Domain	and Notes
DMC0_DQ08	I/O	В	none	none	none	none	none	VDD_DMC	Desc: DMC0 Data 8
									Notes: No notes.
DMC0_DQ09	I/O	В	none	none	none	none	none	VDD_DMC	Desc: DMC0 Data 9
									Notes: No notes.
DMC0_DQ10	I/O	В	none	none	none	none	none	VDD_DMC	Desc: DMC0 Data 10
									Notes: No notes.
DMC0_DQ11	I/O	В	none	none	none	none	none	VDD_DMC	Desc: DMC0 Data 11
									Notes: No notes.
DMC0_DQ12	I/O	В	none	none	none	none	none	VDD_DMC	Desc: DMC0 Data 12
									Notes: No notes.
DMC0_DQ13	I/O	В	none	none	none	none	none	VDD_DMC	Desc: DMC0 Data 13
									Notes: No notes.
DMC0_DQ14	I/O	В	none	none	none	none	none	VDD_DMC	Desc: DMC0 Data 14
									Notes: No notes.
DMC0_DQ15	I/O	В	none	none	none	none	none	VDD_DMC	Desc: DMC0 Data 15
									Notes: No notes.
DMC0_LDM	I/O	В	none	none	none	none	none	VDD_DMC	Desc: DMC0 Data Mask for Lower Byte
									Notes: No notes.
DMC0_LDQS	I/O	С	none	none	none	none	none	VDD_DMC	Desc: DMC0 Data Strobe for Lower Byte
									Notes: For LPDDR, a pull-down is
									required.
DMC0_LDQS	I/O	С	none	none	none	none	none	VDD_DMC	Desc: DMC0 Data Strobe for Lower Byte
									(complement)
									to DMC0_VREE_For LPDDR_leave
									unconnected.
DMC0 ODT	1/0	в	none	none	none	none	none		Desc: DMC0 On-die termination
Diffeo_0D1	,, 0		none	none	none	none	none	VDD_DINC	Notes: For LPDDR, leave unconnected.
DMC0 RAS	1/0	в	none	none	none	none	none		Desc: DMC0 Bow Address Strobe
211100_1010	., 0		none	none	none	none	none	100_0mc	Notes: No notes.
	1/0	В	none	none	none	none	none		Desc: DMC0 Data Mask for Upper Byte
billeo_obili	., 0		none	none	none	none	none	100_0mc	Notes: No notes.
DMC0 UDOS	1/0	с	none	none	none	none	none	VDD DMC	Desc: DMC0 Data Strobe for Upper Byte
	., -	-							Notes: For LPDDR, a pull-down is
									required.
DMC0_UDQS	I/O	С	none	none	none	none	none	VDD_DMC	Desc: DMC0 Data Strobe for Upper Byte
									(complement)
									Notes: For single ended DDR2, connect
									to DMC0_VREF. For LPDDR, leave
									unconnected.
DMC0_VREF	а	na	none	none	none	none	none	VDD_DMC	Desc: DMC0 Voltage Reference
									Notes: For LPDDR, leave unconnected.
									If the DMC is not used, connect to
	1/0	R	nono	nono	nono	nona	nono		Dosc: DMC0 Write Enable
	1/0		none	none	none	none	none		Notes: No notes
GND	a	na	none	none	none	none	none	na	Desc: Ground
	А		none	none	none	none	none		Notes: No notes
	1	1	1	1	1	1	1	1	

Table 15. ADSP-BF70x Designer Quick Reference (Continued)

Table 18. Peripheral Clock Operating Conditions

Parameter		Restriction	Min	Тур	Max	Unit
f _{oclk}	Output Clock Frequency				50	MHz
f _{sys_clkoutj}	SYS_CLKOUT Period Jitter ^{1, 2}			±2		%
f _{PCLKPROG}	Programmed PPI Clock When Transmitting Data and Frame Sync				50	MHz
f _{PCLKPROG}	Programmed PPI Clock When Receiving Data or Frame Sync				50	MHz
f _{PCLKEXT}	External PPI Clock When Receiving Data and Frame Sync ^{3, 4}	$f_{\text{PCLKEXT}} \leq f_{\text{SCLK0}}$			50	MHz
f _{PCLKEXT}	External PPI Clock Transmitting Data or Frame Sync ^{3, 4}	$f_{\text{PCLKEXT}} \leq f_{\text{SCLK0}}$			50	MHz
f _{SPTCLKPROG}	Programmed SPT Clock When Transmitting Data and Frame Sync				50	MHz
f _{SPTCLKPROG}	Programmed SPT Clock When Receiving Data or Frame Sync				50	MHz
f _{SPTCLKEXT}	External SPT Clock When Receiving Data and Frame Sync ^{3, 4}	$f_{\text{SPTCLKEXT}} \leq f_{\text{SCLK0}}$			50	MHz
f _{SPTCLKEXT}	External SPT Clock Transmitting Data or Frame Sync ^{3, 4}	$f_{\text{SPTCLKEXT}} \leq f_{\text{SCLK0}}$			50	MHz
f _{SPICLKPROG}	Programmed SPI Clock When Transmitting Data				50	MHz
f _{SPICLKPROG}	Programmed SPI Clock When Receiving Data				50	MHz
f _{SPICLKEXT}	External SPI Clock When Receiving Data ^{3, 4}	$f_{\text{SPICLKEXT}} \leq f_{\text{SCLK0}}$			50	MHz
f _{SPICLKEXT}	External SPI Clock When Transmitting Data ^{3, 4}	$f_{\text{SPICLKEXT}} \leq f_{\text{SCLK0}}$			50	MHz
f _{MSICLKPROG}	Programmed MSI Clock				50	MHz

¹SYS_CLKOUT jitter is dependent on the application system design including pin switching activity, board layout, and the jitter characteristics of the SYS_CLKIN source. Due to the dependency on these factors the measured jitter may be higher or lower than this typical specification for each end application.

² The value in the Typ field is the percentage of the SYS_CLKOUT period.

³ The maximum achievable frequency for any peripheral in external clock mode is dependent on being able to meet the setup and hold times in the ac timing specifications section for that peripheral. Pay particular attention to setup and hold times for VDD_EXT = 1.8 V which may preclude the maximum frequency listed here.

 4 The peripheral external clock frequency must also be less than or equal to the f_{SCLK} that clocks the peripheral.

Figure 6. Clock Relationships and Divider Values

Table 19. Phase-Locked Loop Operating Conditions

Parameter		Min	Max	Unit
f _{PLLCLK}	PLL Clock Frequency	230.2	800	MHz
CGU_CTL.MSEL ¹	PLL Multiplier	8	41	

¹The CGU_CTL.MSEL setting must also be chosen to ensure that the f_{PLLCLK} specification is not violated.

Parameter		Test Conditions/Comments	Min	Тур	Max	Unit
I _{OZH_TWI} ¹⁴	Three-State Leakage Current				10	μΑ
ADSP-BF701/7	03/705/707 Input Capacitance					
C _{IN} (GPIO) ¹⁵	Input Capacitance	$T_{AMBIENT} = 25^{\circ}C$		5.2	6.0	pF
C _{IN_TWI} ¹⁴	Input Capacitance	$T_{AMBIENT} = 25^{\circ}C$		6.9	7.4	pF
C _{IN_DDR} ¹⁶	Input Capacitance	T _{AMBIENT} = 25°C		6.1	6.9	pF
ADSP-BF700/7	02/704/706 Input Capacitance					
C _{IN} (GPIO) ¹⁵	Input Capacitance	$T_{AMBIENT} = 25^{\circ}C$		5.0	5.3	pF
C _{IN_TWI} ¹⁴	Input Capacitance	$T_{AMBIENT} = 25^{\circ}C$		6.8	7.4	pF
I _{DD_DEEPSLEEP} 17, 18	$V_{\text{DD_INT}}$ Current in Deep Sleep Mode	Clocks disabled T ₁ = 25°C		1.4		mA
I _{DD_IDLE} ¹⁸	V _{DD_INT} Current in Idle	$f_{PLLCLK} = 300 \text{ MHz}$ $f_{CCLK} = 100 \text{ MHz}$ ASF = 0.05 (idle) $f_{SYSCLK} = f_{SCLK0} = 25 \text{ MHz}$ USBCLK = DCLK = OUTCLK = SCLK1 = DISABLED Peripherals disabled $T_{T} = 25\%$		13		mA
I _{DD_TYP} ¹⁸	V _{DD_INT} Current	$f_{PLLCLK} = 800 \text{ MHz}$ $f_{CCLK} = 400 \text{ MHz}$ $ASF = 1.0 \text{ (full-on typical)}$ $f_{SYSCLK} = f_{SCLK0} = 25 \text{ MHz}$ $USBCLK = DCLK = OUTCLK =$ $SCLK1 = DISABLED$ $Peripherals disabled$ $T_{J} = 25^{\circ}C$		90		mA
I _{DD_TYP} ¹⁸	V _{DD_INT} Current	$\label{eq:fpllclk} \begin{split} f_{\text{PLLCLK}} &= 300 \text{ MHz} \\ f_{\text{CCLK}} &= 300 \text{ MHz} \\ \text{ASF} &= 1.0 \text{ (full-on typical)} \\ f_{\text{SYSCLK}} &= f_{\text{SCLK0}} = 25 \text{ MHz} \\ \text{USBCLK} &= \text{DCLK} = \text{OUTCLK} = \\ \text{SCLK1} &= \text{DISABLED} \\ \text{Peripherals disabled} \\ T_J &= 25^{\circ}\text{C} \end{split}$		66		mA
I _{DD_TYP} ¹⁸	V _{DD_INT} Current	$\label{eq:fpllclk} \begin{split} f_{\text{PLLCLK}} &= 400 \text{ MHz} \\ f_{\text{CCLK}} &= 200 \text{ MHz} \\ \text{ASF} &= 1.0 \text{ (full-on typical)} \\ f_{\text{SYSCLK}} &= f_{\text{SCLK0}} = 25 \text{ MHz} \\ \text{USBCLK} &= \text{DCLK} = \text{OUTCLK} = \\ \text{SCLK1} &= \text{DISABLED} \\ \text{Peripherals disabled} \\ T_J &= 25^{\circ}\text{C} \end{split}$		49		mA
I _{DD_TYP} ¹⁸	V _{DD_INT} Current	$\label{eq:fpllclk} \begin{split} f_{\text{PLLCLK}} &= 300 \text{ MHz} \\ f_{\text{CCLK}} &= 100 \text{ MHz} \\ \text{ASF} &= 1.0 \text{ (full-on typical)} \\ f_{\text{SYSCLK}} &= f_{\text{SCLK0}} = 25 \text{ MHz} \\ \text{USBCLK} &= \text{DCLK} = \text{OUTCLK} = \\ \text{SCLK1} &= \text{DISABLED} \\ \text{Peripherals disabled} \\ T_J &= 25^{\circ}\text{C} \end{split}$		30		mA

Total Internal Power Dissipation

Total power dissipation has two components:

- 1. Static, including leakage current (deep sleep)
- 2. Dynamic, due to transistor switching characteristics for each clock domain

Many operating conditions can also affect power dissipation, including temperature, voltage, operating frequency, and processor activity. The following equation describes the internal current consumption.

$$\begin{split} I_{DDINT_TOT} &= I_{DDINT_DEEPSLEEP} + I_{DDINT_CCLK_DYN} + \\ I_{DDINT_PLLCLK_DYN} + I_{DDINT_SYSCLK_DYN} + \\ I_{DDINT_SCLK0_DYN} + I_{DDINT_SCLK1_DYN} + \\ I_{DDINT_DCLK_DYN} + I_{DDINT_DMA_DR_DYN} + \\ I_{DDINT_USBCLK_DYN} \end{split}$$

 $I_{DDINT_DEEPSLEEP}$ is the only item present that is part of the static power dissipation component. $I_{DDINT_DEEPSLEEP}$ is specified as a function of voltage (V_{DD_INT}) and temperature (see Table 21).

There are eight different items that contribute to the dynamic power dissipation. These components fall into three broad categories: application-dependent currents, clock currents, and data transmission currents.

Application-Dependent Current

The application-dependent currents include the dynamic current in the core clock domain.

Core clock (CCLK) use is subject to an activity scaling factor (ASF) that represents application code running on the processor cores and L1/L2 memories (Table 22). The ASF is combined with the CCLK frequency and $V_{DD_{_{}INT}}$ dependent data in Table 23 to calculate this portion.

 $I_{DDINT_CCLK_DYN}$ (mA) = Table 23 × ASF

Clock Current

The dynamic clock currents provide the total power dissipated by all transistors switching in the clock paths. The power dissipated by each clock domain is dependent on voltage ($V_{DD_{_INT}}$), operating frequency and a unique scaling factor.

 $I_{DDINT_PLLCLK_DYN} (mA) = 0.012 \times f_{PLLCLK} (MHz) \times V_{DD_INT} (V)$ $I_{DDINT_SYSCLK_DYN} (mA) = 0.120 \times f_{SYSCLK} (MHz) \times V_{DD_INT} (V)$ $I_{DDINT_SCLK0_DYN} (mA) = 0.110 \times f_{SCLK0} (MHz) \times V_{DD_INT} (V)$ $I_{DDINT_SCLK1_DYN} (mA) = 0.068 \times f_{SCLK1} (MHz) \times V_{DD_INT} (V)$ $I_{DDINT_SCLK_DYN} (mA) = 0.055 \times f_{DCLK} (MHz) \times V_{DD_INT} (V)$ The dynamic component of the LISB clock is a unique case. T

The dynamic component of the USB clock is a unique case. The USB clock contributes a near constant current value when used.

Table 20. IDDINT_USBCLK_DYN Current

Is USB Enabled?	I _{DDINT_USBCLK_DYN} (mA)
Yes – High-Speed Mode	13.94
Yes – Full-Speed Mode	10.83
Yes – Suspend Mode	5.2
No	0.34

Data Transmission Current

The data transmission current represents the power dissipated when transmitting data. This current is expressed in terms of data rate. The calculation is performed by adding the data rate (MB/s) of each DMA-driven access to peripherals, L1, L2, and external memory. This number is then multiplied by a weighted data-rate coefficient and V_{DD_LINT} :

$I_{DDINT_DMADR_DYN} (mA) = Weighted DRC \times Total Data Rate (MB/s) \times V_{DD_INT} (V)$

A weighted data-rate coefficient is used because different coefficients exist depending on the source and destination of the transfer. For details on using this equation and calculating the weighted DRC, see the related Engineer Zone material. For a quick maximum calculation, the weighted DRC can be assumed to be 0.0497, which is the coefficient for L1 to L1 transfers.

Power-Up Reset Timing

A power-up reset is required to place the processor in a known state after power-up. A power-up reset is initiated by asserting SYS_HWRST and JTG_TRST. During power-up reset, all pins are high impedance except for those noted in the ADSP-BF70x Designer Quick Reference on Page 38.

Both JTG_TRST and SYS_HWRST need to be asserted upon power-up, but only SYS_HWRST needs to be released for the device to boot properly. JTG_TRST may be asserted indefinitely for normal operation. JTG_TRST only needs to be released when using an emulator to connect to the DAP for debug or boundary scan. There is an internal pull-down on JTG_TRST to ensure internal emulation logic will always be properly initialized during power-up reset.

Table 30 and Figure 9 show the relationship between power supply startup and processor reset timing, related to the clock generation unit (CGU) and reset control unit (RCU). In Figure 9, $V_{DD_{_SUPPLIES}}$ are $V_{DD_{_INT}}$, $V_{DD_{_EXT}}$, $V_{DD_{_DMC}}$, $V_{DD_{_USB}}$, $V_{DD_{_CTC}}$, $V_{DD_{_OTP}}$, and $V_{DD_{_HADC}}$.

There is no power supply sequencing requirement for the ADSP-BF70x processor. However, if saving power during power-on is important, bringing up $V_{DD_{INT}}$ last is recommended. This avoids a small current drain in the $V_{DD_{INT}}$ domain during the transition period of I/O voltages from 0 V to within the voltage specification.

Table 30. Power-Up Reset Timing

Parameter		Min	Max	Unit
Timing Requirement				
t _{rst_in_pwr}	$\label{eq:starsest} \overrightarrow{SYS_HWRST} and \overrightarrow{JTG_TRST} Deasserted After V_{DD_INT}, V_{DD_DMC}, V_{DD_USB}, \\ V_{DD_RTC}, V_{DD_OTP}, V_{DD_HADC}, and SYS_CLKIN are Stable and Within Specification$	$11 \times t_{CKIN}$		ns
t _{VDDEXT_RST}	$\overline{\text{SYS}_\text{HWRST}}$ Deasserted After V_{DD_EXT} is Stable and Within Specifications (No External Pull-Down on JTG_TRST)	10		μs
t _{vddext_rst}	SYS_HWRST Deasserted After V _{DD_EXT} is Stable and Within Specifications (10k External Pull-Down on JTG_TRST)	1		μs

Figure 9. Power-Up Reset Timing

Asynchronous Page Mode Read

Table 34 and Figure 13 show asynchronous memory page mode read timing, related to the static memory controller (SMC).

Table 34. Asynchronous Page Mode Read

		V _{DD_EXT} 1.8 V /3.3 V Nominal		
Paramete	r	Min	Max	Unit
Switching (Characteristics			
t _{AV}	SMC0_Ax (Address) Valid for First Address Min Width ¹	$(PREST + RST + PREAT + RAT) \times t_{SCLK0} - 2$		ns
t _{AV1}	SMC0_Ax (Address) Valid for Subsequent SMC0_Ax (Address) Min Width	$PGWS \times t_{SCLK0} - 2$		ns
t _{WADV}	SMC0_NORDV Active Low Width ²	$RST \times t_{SCLK0} - 2$		ns
t _{HARE}	Output ³ Hold After SMC0_ARE High ⁴	$RHT \times t_{SCLK0} - 2$		ns
t _{WARE} 5	SMC0_ARE Active Low Width ⁶	$(RAT + (Nw - 1) \times PGWS) \times t_{SCLK0} - 2$		ns

¹PREST, RST, PREAT and RAT values set using the SMC_BXETIM.PREST bits, SMC_BXTIM.RST bits, SMC_BXETIM.PREAT bits, and the SMC_BXTIM.RAT bits.

² RST value set using the SMC_BxTIM.RST bits.

³Output signals are SMC0_Ax, <u>SMC0_AMSx</u>, <u>SMC0_AOE</u>.

⁴ RHT value set using the SMC_BxTIM.RHT bits.

⁵ SMC_BxCTL.ARDYEN bit = 0.

 $^6\,\rm RAT$ value set using the SMC_BxTIM.RAT bits.

Figure 13. Asynchronous Page Mode Read

Asynchronous Write

Table 35 and Figure 14 show asynchronous memory write timing, related to the static memory controller (SMC).

Table 35. Asynchronous Memory Write (BxMODE = b#00)

		V _{DD} 1.8V N	ominal	V _{DD} _ 3.3V No	_{EXT} ominal	
Parameter	r	Min	Max	Min	Max	Unit
Timing Req	uirement					
t _{DARDYAWE} ¹	SMC0_ARDY Valid After SMC0_AWE Low ²		(WAT – 2.5) × t _{SCLK0} – 17.5		(WAT – 2.5) × t _{SCLK0} – 17.5	ns
Switching C	Characteristics					
t _{ENDAT}	DATA Enable After SMC0_AMSx Assertion	-3		-2		ns
t _{DDAT}	DATA Disable After SMC0_AMSx Deassertion		4.5		4	ns
t _{AMSAWE}	SMC0_Ax/ <u>SMC0_AMSx</u> Assertion Before SMC0_AWE Low ³	$(PREST + WST + PREAT) \times t_{SCLK0} - 2$		$(PREST + WST + PREAT) \times t_{SCLK0} - 4$		ns
t _{HAWE}	Output ⁴ Hold After <u>SMC0_AWE</u> High⁵	$WHT \times t_{SCLK0}$		$WHT \times t_{SCLK0}$		ns
t_{WAWE}^{6}	SMC0_AWE Active Low Width ⁶	WAT \times t _{SCLK0} – 2		WAT \times t _{SCLK0} – 2		ns
t _{DAWEARDY} ¹	SMC0_AWE High Delay After SMC0_ARDY Assertion		$3.5 \times t_{SCLK0} + 17.5$		$3.5 \times t_{SCLK0} + 17.5$	ns

¹SMC_BxCTL.ARDYEN bit = 1.

 $^2\,\rm WAT$ value set using the SMC_BxTIM.WAT bits.

³ PREST, WST, PREAT values set using the SMC_BxETIM.PREST bits, SMC_BxTIM.WST bits, SMC_BxETIM.PREAT bits, and the SMC_BxTIM.RAT bits.

⁴ Output signals are DATA, SMC0_Ax, <u>SMC0_AMSx</u>, <u>SMC0_ABEx</u>.

⁵ WHT value set using the SMC_BxTIM.WHT bits.

⁶SMC_BxCTL.ARDYEN bit = 0.

Figure 14. Asynchronous Write

DDR2 SDRAM Read Cycle Timing

Table 40 and Figure 18 show DDR2 SDRAM read cycle timing, related to the dynamic memory controller (DMC).

Table 40. DDR2 SDRAM Read Cycle Timing, V_{DD_DMC} Nominal 1.8 V

		200 MHz ¹		
Parameter		Min	Max	Unit
Timing Requirements				
t _{DQSQ}	DMC0_DQS-DMC0_DQ Skew for DMC0_DQS and Associated DMC0_ DQ Signals		0.35	ns
t _{QH}	DMC0_DQ, DMC0_DQS Output Hold Time From DMC0_DQS	1.8		ns
t _{RPRE}	Read Preamble	0.9		t _{CK}
t _{RPST}	Read Postamble	0.4		t _{CK}

¹To ensure proper operation of the DDR2, all the DDR2 guidelines have to be strictly followed.

Figure 18. DDR2 SDRAM Controller Input AC Timing

Debug Interface (JTAG Emulation Port) Timing

Table 48 and Figure 26 provide I/O timing, related to the debug interface (JTAG emulator port).

Table 48. JTAG Port Timing

			V _{DD_EXT} 1.8V Nominal		V _{DD_EXT} 3.3 V Nominal	
Parameter		Min	Max	Min	Max	Unit
Timing Requireme	nts					
t _{TCK}	JTG_TCK Period	20		20		ns
t _{STAP}	JTG_TDI, JTG_TMS Setup Before JTG_TCK High	5		4		ns
t _{HTAP}	JTG_TDI, JTG_TMS Hold After JTG_TCK High	4		4		ns
t _{ssys}	System Inputs Setup Before JTG_TCK High ¹	4		4		ns
t _{HSYS}	System Inputs Hold After JTG_TCK High ¹	4		4		ns
t _{TRSTW}	JTG_TRST Pulse Width (Measured in JTG_TCK Cycles) ²	4		4		t _{TCK}
Switching Charact	eristics					
t _{DTDO}	JTG_TDO Delay From JTG_TCK Low		16.5		14.5	ns
t _{DSYS}	System Outputs Delay After JTG_TCK Low ³		18		16.5	ns
t _{DTMS}	TMS Delay After TCK High in SWD Mode	3.5	16.5	3.5	14.5	ns

¹ System inputs = DMC0_DQxx, DMC0_LDQS, <u>DMC0_LDQS</u>, DMC0_UDQS, <u>DMC0_UDQS</u>, PA_xx, PB_xx, PC_xx, SYS_BMODEx, <u>SYS_HWRST</u>, <u>SYS_FAULT</u>, <u>SYS_NMI</u>, TWI0_SCL, TWI0_SDA, and SYS_EXTWAKE.

² 50 MHz maximum.

³ System outputs = DMC0_Axx, DMC0_BAx, DMC0_CAS, DMC0_CK, DMC0_CK, DMC0_CKE, DMC0_CS0, DMC0_DQxx, DMC0_LDM, DMC0_LDQS, DMC0_LDQS, DMC0_UDQS, DMC0_WE, PA_xx, PB_xx, PC_xx, SYS_CLKOUT, SYS_FAULT, SYS_RESOUT, and SYS_NMI.

Figure 26. JTAG Port Timing

Serial Peripheral Interface (SPI) Port—Master Timing

Table 54 and Figure 31 describe serial peripheral interface (SPI) port master operations.

When internally generated, the programmed SPI clock ($f_{SPICLKPROG}$) frequency in MHz is set by the following equation where BAUD is a field in the SPI_CLK register that can be set from 0 to 65,535:

$$f_{SPICLKPROG} = \frac{f_{SCLK0}}{(BAUD+1)}$$

$$t_{SPICLKPROG} = \frac{1}{f_{SPICLKPROG}}$$

Note that:

- In dual mode data transmit, the SPI_MISO signal is also an output.
- In quad mode data transmit, the SPI_MISO, SPI_D2, and SPI_D3 signals are also outputs.
- In dual mode data receive, the SPI_MOSI signal is also an input.
- In quad mode data receive, the SPI_MOSI, SPI_D2, and SPI_D3 signals are also inputs.
- To add additional frame delays, see the documentation for the SPI_DLY register in the hardware reference manual.

Table 54. Serial Peripheral Interface (SPI) Port-Master Timing

		V _{DD_EXT} 1.8 V Nominal		V _{DD_EXT} 3.3 V Nominal		
Parameter		Min	Max	Min	Max	Unit
Timing Require	ements					
t _{sspidm}	Data Input Valid to SPI_CLK Edge (Data Input Setup)	6.5		5.5		ns
t _{hspidm}	SPI_CLK Sampling Edge to Data Input Invalid	1		1		ns
Switching Cha	racteristics					
t _{sdscim}	SPI_SEL low to First SPI_CLK Edge	$0.5 \times t_{SCLK0} - 2.5$		$0.5 \times t_{SCLK0} - 1.5$		ns
t _{spichm}	SPI_CLK High Period ¹	$0.5 imes t_{SPICLKPROG} - 1.5$		$0.5 \times t_{SPICLKPROG} - 1.5$		ns
t _{spiclm}	SPI_CLK Low Period ¹	$0.5 imes t_{SPICLKPROG} - 1.5$		$0.5 \times t_{SPICLKPROG} - 1.5$		ns
t _{spiclk}	SPI_CLK Period ¹	t _{spiclkprog} – 1.5		t _{spiclkprog} – 1.5		ns
t _{HDSM}	Last SPI_CLK Edge to SPI_SEL High	$(0.5 \times t_{SCLK0}) - 2.5$		$(0.5 \times t_{SCLK0}) - 1.5$		ns
t _{spitdm}	Sequential Transfer Delay ²	$(\text{STOP} \times \text{t}_{\text{SPICLK}}) - 1.5$		$(\text{STOP} \times \text{t}_{\text{SPICLK}}) - 1.5$		ns
t _{ddspidm}	SPI_CLK Edge to Data Out Valid (Data Out Delay)		2.5		2	ns
t _{hdspidm}	SPI_CLK Edge to Data Out Invalid (Data Out Hold)	-4.5		-3.5		ns

¹See Table 18 on Page 52 in Clock Related Operating Conditions for details on the minimum period that may be programmed for t_{SPICLKPROG}. ²STOP value set using the SPI_DLY.STOP bits.

Serial Peripheral Interface (SPI) Port—SPI_RDY Slave Timing

Table 56. SPI Port—SPI_RDY Slave Timing

		V _{DD_EXT} 1.8 V/3.3 V Nominal		
Parameter		Min	Max	Unit
Switching Characteristics				
t _{dspisckrdysr}	SPI_RDY De-assertion from Valid Input SPI_CLK Edge in Slave Mode Receive	$2.5 imes t_{SCLK0} + t_{HDSPID}$	$3.5 imes t_{\text{SCLK0}} + t_{\text{DDSPID}}$	ns
t _{dspisckrdyst}	SPI_RDY De-assertion from Valid Input SPI_CLK Edge in Slave Mode Transmit	$3.5 imes t_{SCLK0} + t_{HDSPID}$	$4.5 \times t_{SCLK0} + t_{DDSPID}$	ns

Figure 33. SPI_RDY De-assertion from Valid Input SPI_CLK Edge in Slave Mode Receive (FCCH = 0)

Figure 34. SPI_RDY De-assertion from Valid Input SPI_CLK Edge in Slave Mode Transmit (FCCH = 1)

OUTPUT DRIVE CURRENTS

Figure 50 through Figure 61 show typical current-voltage characteristics for the output drivers of the ADSP-BF70x Blackfin processors. The curves represent the current drive capability of the output drivers as a function of output voltage.

Figure 50. Driver Type A Current (1.8 V V_{DD_EXT})

Figure 51. Driver Type A Current (3.3 V V_{DD_EXT})

Figure 54. Driver Type B and Driver Type C (DDR Drive Strength 34Ω)

ADSP-BF70x 184-BALL CSP_BGA BALL ASSIGNMENTS (NUMERICAL BY BALL NUMBER)

Figure 69 shows an overview of signal placement on the 184-ball CSP_BGA.

Table 67 lists the 184-ball CSP_BGA package by ball number for the ADSP-BF70x. Table 68 lists the 184-ball CSP_BGA package by signal.

Figure 69. 184-Ball CSP_BGA Configuration