

Welcome to E-XFL.COM

Understanding <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Embedded - DSP (Digital Signal Processors) are specialized microprocessors designed to perform complex mathematical computations on digital signals in real-time. Unlike general-purpose processors, DSPs are optimized for high-speed numeric processing tasks, making them ideal for applications that require efficient and precise manipulation of digital data. These processors are fundamental in converting and processing signals in various forms, including audio, video, and communication signals, ensuring that data is accurately interpreted and utilized in embedded systems.

Applications of <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Details

E·XFI

Product Status	Active
Туре	Blackfin+
Interface	CAN, DSPI, EBI/EMI, I ² C, PPI, QSPI, SD/SDIO, SPI, SPORT, UART/USART, USB OTG
Clock Rate	400MHz
Non-Volatile Memory	ROM (512kB)
On-Chip RAM	256kB
Voltage - I/O	1.8V, 3.3V
Voltage - Core	1.10V
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	184-LFBGA, CSPBGA
Supplier Device Package	184-CSPBGA (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/analog-devices/adsp-bf703bbcz-4

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

system event or fault if enabled. ECC protection is fully transparent to the user, even if L2 memory is read or written by 8-bit or 16-bit entities.

CRC-Protected Memories

While parity bit and ECC protection mainly protect against random soft errors in L1 and L2 memory cells, the CRC engines can be used to protect against systematic errors (pointer errors) and static content (instruction code) of L1, L2, and even L3 memories (DDR2, LPDDR). The processor features two CRC engines which are embedded in the memory-to-memory DMA controllers. CRC checksums can be calculated or compared on the fly during memory transfers, or one or multiple memory regions can be continuously scrubbed by a single DMA work unit as per DMA descriptor chain instructions. The CRC engine also protects data loaded during the boot process.

Memory Protection

The Blackfin+ core features a memory protection concept, which grants data and/or instruction accesses to enabled memory regions only. A supervisor mode vs. user mode programming model supports dynamically varying access rights. Increased flexibility in memory page size options supports a simple method of static memory partitioning.

System Protection

The system protection unit (SPU) guards against accidental or unwanted access to the MMR space of a peripheral by providing a write-protection mechanism. The user is able to choose and configure the peripherals that are protected as well as configure which ones of the four system MMR masters (core, memory DMA, the SPI host port, and Coresight debug) the peripherals are guarded against.

The SPU is also part of the security infrastructure. Along with providing write-protection functionality, the SPU is employed to define which resources in the system are secure or non-secure and to block access to secure resources from non-secure masters.

Synonymously, the system memory protection unit (SMPU) provides memory protection against read and/or write transactions to defined regions of memory. There are two SMPU units in the ADSP-BF70x processors. One is for the L2 memory and the other is for the external DDR memory.

The SMPU is also part of the security infrastructure. It allows the user to not only protect against arbitrary read and/or write transactions, but it also allows regions of memory to be defined as secure and prevent non-secure masters from accessing those memory regions.

Watchpoint Protection

The primary purpose of watchpoints and hardware breakpoints is to serve emulator needs. When enabled, they signal an emulator event whenever user-defined system resources are accessed or the core executes from user-defined addresses. Watchpoint events can be configured such that they signal the events to the fault management unit of the SEC.

Watchdog

The on-chip software watchdog timer can supervise the Blackfin+ core.

Bandwidth Monitor

Memory-to-memory DMA channels are equipped with a bandwidth monitor mechanism. They can signal a system event or fault when transactions tend to starve because system buses are fully loaded with higher-priority traffic.

Signal Watchdogs

The eight general-purpose timers feature modes to monitor offchip signals. The watchdog period mode monitors whether external signals toggle with a period within an expected range. The watchdog width mode monitors whether the pulse widths of external signals are within an expected range. Both modes help to detect undesired toggling (or lack thereof) of system-level signals.

Up/Down Count Mismatch Detection

The GP counter can monitor external signal pairs, such as request/grant strobes. If the edge count mismatch exceeds the expected range, the GP counter can flag this to the processor or to the fault management unit of the SEC.

Fault Management

The fault management unit is part of the system event controller (SEC). Any system event, whether a dual-bit uncorrectable ECC error, or any peripheral status interrupt, can be defined as being a fault. Additionally, the system events can be defined as an interrupt to the core. If defined as such, the SEC forwards the event to the fault management unit, which may automatically reset the entire device for reboot, or simply toggle the SYS_FAULT output pin to signal off-chip hardware. Optionally, the fault management unit can delay the action taken through a keyed sequence, to provide a final chance for the Blackfin+ core to resolve the issue and to prevent the fault action from being taken.

ADDITIONAL PROCESSOR PERIPHERALS

The processor contains a rich set of peripherals connected to the core through several high-bandwidth buses, providing flexibility in system configuration as well as excellent overall system performance (see the block diagram on Page 1). The processor contains high-speed serial and parallel ports, an interrupt controller for flexible management of interrupts from the on-chip peripherals or external sources, and power management control functions to tailor the performance and power characteristics of the processor and system to many application scenarios.

The following sections describe additional peripherals that were not previously described.

Timers

The processor includes several timers which are described in the following sections.

SECURITY FEATURES DISCLAIMER

To our knowledge, the Security Features, when used in accordance with the data sheet and hardware reference manual specifications, provide a secure method of implementing code and data safeguards. However, Analog Devices does not guarantee that this technology provides absolute security. ACCORDINGLY, ANALOG DEVICES HEREBY DISCLAIMS ANY AND ALL EXPRESS AND IMPLIED WARRANTIES THAT THE SECURITY FEATURES CANNOT BE BREACHED, COMPROMISED, OR OTHERWISE CIRCUM-VENTED AND IN NO EVENT SHALL ANALOG DEVICES BE LIABLE FOR ANY LOSS, DAMAGE, DESTRUCTION, OR RELEASE OF DATA, INFORMATION, PHYSICAL PROP-ERTY, OR INTELLECTUAL PROPERTY.

Port Name	Direction	Description
USB_DM	I/O	Data –. Bidirectional differential data line.
USB_DP	I/O	Data +. Bidirectional differential data line.
USB_ID	Input	OTG ID. Senses whether the controller is a host or device. This signal is pulled low when an A-type plug is sensed (signifying that the USB controller is the A device), but the input is high when a B-type plug is sensed (signifying that the USB controller is the B device).
USB_VBC	Output	VBUS Control. Controls an external voltage source to supply VBUS when in host mode. May be configured as open-drain. Polarity is configurable as well.
USB_VBUS	I/O	Bus Voltage. Connects to bus voltage in host and device modes.
USB_XTAL	Output	Crystal. Drives an external crystal. Must be left unconnected if an external clock is driving USB_CLKIN.

Table 6. ADSP-BF70x Detailed Signal Descriptions (Continued)

Table 7. ADSP-BF70x 184-Ball CSP_BGA Signal Descriptions (Continued)

Signal Name	Description	Port	Pin Name
MSIO INT	MSIO eSDIO Interrupt Input	C	PC 14
PA 00-PA 15	Position 00 through Position 15	A	PA 00-PA 15
 PB 00-PB 15	Position 00 through Position 15	В	PB 00-PB 15
 PC_00-PC_14	Position 00 through Position 14	с	PC_00-PC_14
PPI0_CLK	EPPI0 Clock	A	PA_14
PPI0_D00	EPPIO Data 0	В	PB_07
PPI0_D01	EPPI0 Data 1	В	PB_06
PPI0_D02	EPPI0 Data 2	В	PB_05
PPI0_D03	EPPI0 Data 3	В	PB_04
PPI0_D04	EPPI0 Data 4	В	PB_03
PPI0_D05	EPPI0 Data 5	В	PB_02
PPI0_D06	EPPI0 Data 6	В	PB_01
PPI0_D07	EPPI0 Data 7	В	PB_00
PPI0_D08	EPPIO Data 8	A	PA_11
PPI0_D09	EPPI0 Data 9	Α	PA_10
PPI0_D10	EPPI0 Data 10	A	PA_09
PPI0_D11	EPPI0 Data 11	A	PA_08
PPI0_D12	EPPI0 Data 12	с	PC_03
PPI0_D13	EPPI0 Data 13	С	PC_02
PPI0_D14	EPPI0 Data 14	С	PC_01
PPI0_D15	EPPI0 Data 15	С	PC_00
PPI0_D16	EPPI0 Data 16	В	PB_08
PPI0_D17	EPPI0 Data 17	В	PB_09
PPI0_FS1	EPPI0 Frame Sync 1 (HSYNC)	A	PA_12
PPI0_FS2	EPPI0 Frame Sync 2 (VSYNC)	A	PA_13
PPI0_FS3	EPPI0 Frame Sync 3 (FIELD)	A	PA_15
RTC0_CLKIN	RTC0 Crystal input/external oscillator connection	Not Muxed	RTC0_CLKIN
RTC0_XTAL	RTC0 Crystal output	Not Muxed	RTC0_XTAL
SMC0_A01	SMC0 Address 1	Α	PA_08
SMC0_A02	SMC0 Address 2	A	PA_09
SMC0_A03	SMC0 Address 3	A	PA_10
SMC0_A04	SMC0 Address 4	A	PA_11
SMC0_A05	SMC0 Address 5	A	PA_07
SMC0_A06	SMC0 Address 6	A	PA_06
SMC0_A07	SMC0 Address 7	A	PA_05
SMC0_A08	SMC0 Address 8	A	PA_04
SMC0_A09	SMC0 Address 9	С	PC_01
SMC0_A10	SMC0 Address 10	С	PC_02
SMC0_A11	SMC0 Address 11	С	PC_03
SMC0_A12	SMC0 Address 12	С	PC_04
SMC0_ABE0	SMC0 Byte Enable 0	A	PA_00
SMC0_ABE1	SMC0 Byte Enable 1	A	PA_01
SMC0_AMS0	SMC0 Memory Select 0	Α	PA_15
SMC0_AMS1	SMC0 Memory Select 1	A	PA_02
SMC0_AOE	SMC0 Output Enable	A	PA_12
SMC0_ARDY	SMC0 Asynchronous Ready	A	PA_03

Signal Name	Description	Port	Pin Name
SMC0_ARE	SMC0 Read Enable	A	PA_13
SMC0_AWE	SMC0 Write Enable	A	PA_14
SMC0_D00	SMC0 Data 0	В	PB_07
SMC0_D01	SMC0 Data 1	В	PB_06
SMC0_D02	SMC0 Data 2	В	PB_05
SMC0_D03	SMC0 Data 3	В	PB_04
SMC0_D04	SMC0 Data 4	В	PB_03
SMC0_D05	SMC0 Data 5	В	PB_02
SMC0_D06	SMC0 Data 6	В	PB_01
SMC0_D07	SMC0 Data 7	В	PB_00
SMC0_D08	SMC0 Data 8	В	PB_08
SMC0_D09	SMC0 Data 9	В	PB_09
SMC0_D10	SMC0 Data 10	В	PB_10
SMC0_D11	SMC0 Data 11	В	PB_11
SMC0_D12	SMC0 Data 12	В	PB_12
SMC0_D13	SMC0 Data 13	В	PB_13
SMC0_D14	SMC0 Data 14	В	PB_14
SMC0_D15	SMC0 Data 15	В	PB_15
SPI0_CLK	SPI0 Clock	В	PB_00
SPI0_CLK	SPI0 Clock	С	PC_04
SPI0_D2	SPI0 Data 2	В	PB_03
SPI0_D2	SPI0 Data 2	С	PC_08
SPI0_D3	SPI0 Data 3	В	PB_07
SPI0_D3	SPI0 Data 3	С	PC_09
SPI0_MISO	SPI0 Master In, Slave Out	В	PB_01
SPI0_MISO	SPI0 Master In, Slave Out	С	PC_06
SPI0_MOSI	SPI0 Master Out, Slave In	В	PB_02
SPI0_MOSI	SPI0 Master Out, Slave In	С	PC_07
SPI0_RDY	SPI0 Ready	A	PA_06
SPI0_SEL1	SPI0 Slave Select Output 1	A	PA_05
SPI0_SEL2	SPI0 Slave Select Output 2	A	PA_06
SPI0_SEL3	SPI0 Slave Select Output 3	С	PC_11
SPI0_SEL4	SPI0 Slave Select Output 4	В	PB_04
SPI0_SEL5	SPI0 Slave Select Output 5	В	PB_05
SPI0_SEL6	SPI0 Slave Select Output 6	В	PB_06
SPIO_SS	SPI0 Slave Select Input	A	PA_05
SPI1_CLK	SPI1 Clock	A	PA_00
SPI1_MISO	SPI1 Master In, Slave Out	A	PA_01
SPI1_MOSI	SPI1 Master Out, Slave In	A	PA_02
SPI1_RDY	SPI1 Ready	A	PA_03
SPI1_SEL1	SPI1 Slave Select Output 1	A	PA_04
SPI1_SEL2	SPI1 Slave Select Output 2	A	PA_03
SPI1_SEL3	SPI1 Slave Select Output 3	С	PC_10
SPI1_SEL4	SPI1 Slave Select Output 4	А	PA_14
SPI1_SS	SPI1 Slave Select Input	А	PA_04
SPI2_CLK	SPI2 Clock	В	PB_10

Table 7. ADSP-BF70x 184-Ball CSP_BGA Signal Descriptions (Continued)

Signal Name	Description	Port	Pin Name
SYS_FAULT	Active-Low Fault Output	Not Muxed	SYS_FAULT
SYS_HWRST	Processor Hardware Reset Control	Not Muxed	SYS_HWRST
SYS_NMI	Nonmaskable Interrupt	Not Muxed	SYS_NMI
SYS_RESOUT	Reset Output	Not Muxed	SYS_RESOUT
SYS_WAKE0	Power Saving Mode Wake-up 0	В	PB_07
SYS_WAKE1	Power Saving Mode Wake-up 1	В	PB_08
SYS_WAKE2	Power Saving Mode Wake-up 2	В	PB_12
SYS_WAKE3	Power Saving Mode Wake-up 3	с	PC_02
SYS_WAKE4	Power Saving Mode Wake-up 4	А	PA_12
SYS_XTAL	Crystal Output	Not Muxed	SYS_XTAL
TM0_ACI0	TIMER0 Alternate Capture Input 0	С	PC_03
TM0_ACI1	TIMER0 Alternate Capture Input 1	В	PB_01
TM0_ACI2	TIMER0 Alternate Capture Input 2	С	PC_07
TM0_ACI3	TIMER0 Alternate Capture Input 3	В	PB_09
TM0_ACI4	TIMER0 Alternate Capture Input 4	С	PC_01
TM0_ACI5	TIMER0 Alternate Capture Input 5	С	PC_02
TM0_ACI6	TIMER0 Alternate Capture Input 6	А	PA_12
TM0_ACLK0	TIMER0 Alternate Clock 0	С	PC_04
TM0_ACLK1	TIMER0 Alternate Clock 1	С	PC_10
TM0_ACLK2	TIMER0 Alternate Clock 2	с	PC_09
TM0_ACLK3	TIMER0 Alternate Clock 3	В	PB_00
TM0_ACLK4	TIMER0 Alternate Clock 4	В	PB_10
TM0_ACLK5	TIMER0 Alternate Clock 5	A	PA_14
TM0_ACLK6	TIMER0 Alternate Clock 6	В	PB_04
TM0_CLK	TIMER0 Clock	В	PB_06
TM0_TMR0	TIMER0 Timer 0	A	PA_05
TM0_TMR1	TIMER0 Timer 1	A	PA_06
TM0_TMR2	TIMER0 Timer 2	A	PA_07
TM0_TMR3	TIMER0 Timer 3	С	PC_05
TM0_TMR4	TIMER0 Timer 4	A	PA_09
TM0_TMR5	TIMER0 Timer 5	A	PA_10
TM0_TMR6	TIMER0 Timer 6	A	PA_11
TM0_TMR7	TIMER0 Timer 7	A	PA_04
TRACE0_CLK	TPIU0 Trace Clock	В	PB_10
TRACE0_D00	TPIU0 Trace Data 0	В	PB_15
TRACE0_D01	TPIU0 Trace Data 1	В	PB_14
TRACE0_D02	TPIU0 Trace Data 2	В	PB_13
TRACE0_D03	TPIU0 Trace Data 3	В	PB_12
TRACE0_D04	TPIU0 Trace Data 4	В	PB_11
TRACE0_D05	TPIU0 Trace Data 5	А	PA_02
TRACE0_D06	TPIU0 Trace Data 6	Α	PA_01
TRACE0_D07	TPIU0 Trace Data 7	A	PA_00
TWI0_SCL	TWI0 Serial Clock	Not Muxed	TWI0_SCL
TWI0_SDA	TWI0 Serial Data	Not Muxed	TWI0_SDA
UARTO_CTS	UART0 Clear to Send	С	PC_03
UARTO_RTS	UART0 Request to Send	С	PC_02

Table 7. ADSP-BF70x 184-Ball CSP_BGA Signal Descriptions (Continued)

GPIO MULTIPLEXING FOR 12 mm × 12 mm 88-LEAD LFCSP (QFN)

Table 12 through Table 14 identify the pin functions that aremultiplexed on the general-purpose I/O pins of the12 mm \times 12 mm 88-Lead LFCSP (QFN) package.

Table 12. Signal Multiplexing for Port A

	Multiplexed	Multiplexed	Multiplexed	Multiplexed	Multiplexed
Signal Name	Function 0	Function 1	Function 2	Function 3	Function Input Tap
PA_00	SPI1_CLK		TRACE0_D07	SMC0_ABE0	
PA_01	SPI1_MISO		TRACE0_D06	SMC0_ABE1	
PA_02	SPI1_MOSI		TRACE0_D05	SMC0_AMS1	
PA_03	SPI1_SEL2	SPI1_RDY		SMC0_ARDY	
PA_04	SPI1_SEL1	TM0_TMR7	SPI2_RDY	SMC0_A08	SPI1_SS
PA_05	TM0_TMR0	SPI0_SEL1		SMC0_A07	SPI0_SS
PA_06	TM0_TMR1	SPI0_SEL2	SPI0_RDY	SMC0_A06	
PA_07	TM0_TMR2	SPT1_BTDV	SPT1_ATDV	SMC0_A05	CNT0_DG
PA_08	PPI0_D11	MSI0_CD	SPT1_ACLK	SMC0_A01	
PA_09	PPI0_D10	TM0_TMR4	SPT1_AFS	SMC0_A02	
PA_10	PPI0_D09	TM0_TMR5	SPT1_AD0	SMC0_A03	
PA_11	PPI0_D08	TM0_TMR6	SPT1_AD1	SMC0_A04	
PA_12	PPI0_FS1	CAN1_RX	SPT0_AFS	SMC0_AOE	TM0_ACI6/SYS_ WAKE4
PA_13	PPI0_FS2	CAN1_TX	SPT0_ACLK	SMC0_ARE	CNT0_ZM
PA_14	PPI0_CLK	SPI1_SEL4	SPT0_AD0	SMC0_AWE	TM0_ACLK5
PA_15	PPI0_FS3	SPT0_ATDV	SPT0_BTDV	SMC0_AMS0	CNT0_UD

Table 13. Signal Multiplexing for Port B

Signal Name	Multiplexed Function 0	Multiplexed Function 1	Multiplexed Function 2	Multiplexed Function 3	Multiplexed Function Input Tap
PB_00	PPI0_D07	SPT1_BCLK	SPI0_CLK	SMC0_D07	TM0_ACLK3
PB_01	PPI0_D06	SPT1_BFS	SPI0_MISO	SMC0_D06	TM0_ACI1
PB_02	PPI0_D05	SPT1_BD0	SPI0_MOSI	SMC0_D05	
PB_03	PPI0_D04	SPT1_BD1	SPI0_D2	SMC0_D04	
PB_04	PPI0_D03	SPT0_BCLK	SPI0_SEL4	SMC0_D03	TM0_ACLK6
PB_05	PPI0_D02	SPT0_BD0	SPI0_SEL5	SMC0_D02	
PB_06	PPI0_D01	SPT0_BFS	SPI0_SEL6	SMC0_D01	TM0_CLK
PB_07	PPI0_D00	SPT0_BD1	SPI0_D3	SMC0_D00	SYS_WAKE0
PB_08	UART0_TX	PPI0_D16	SPI2_SEL2	SMC0_D08	SYS_WAKE1
PB_09	UARTO_RX	PPI0_D17	SPI2_SEL3	SMC0_D09	TM0_ACI3
PB_10	SPI2_CLK		TRACE0_CLK	SMC0_D10	TM0_ACLK4
PB_11	SPI2_MISO		TRACE0_D04	SMC0_D11	
PB_12	SPI2_MOSI		TRACE0_D03	SMC0_D12	SYS_WAKE2
PB_13	SPI2_D2	UART1_RTS	TRACE0_D02	SMC0_D13	
PB_14	SPI2_D3	UART1_CTS	TRACE0_D01	SMC0_D14	
PB_15	SPI2_SEL1		TRACE0_D00	SMC0_D15	SPI2_SS

ADSP-BF70x DESIGNER QUICK REFERENCE

Table 15 provides a quick reference summary of pin related information for circuit board design. The columns in this table provide the following information:

- Signal Name: The Signal Name column in the table includes the signal name for every pin and (where applicable) the GPIO multiplexed pin function for every pin.
- Pin Type: The Type column in the table identifies the I/O type or supply type of the pin. The abbreviations used in this column are na (none), I/O (input/output), a (analog), s (supply), and g (ground).
- Driver Type: The Driver Type column in the table identifies the driver type used by the pin. The driver types are defined in the output drive currents section of this data sheet.
- Internal Termination: The Int Term column in the table specifies the termination present when the processor is not in the reset or hibernate state. The abbreviations used in this column are wk (weak keeper, weakly retains previous value driven on the pin), pu (pull-up), or pd (pull-down).
- Reset Termination: The Reset Term column in the table specifies the termination present when the processor is in the reset state. The abbreviations used in this column are wk (weak keeper, weakly retains previous value driven on the pin), pu (pull-up), or pd (pull-down).
- Reset Drive: The Reset Drive column in the table specifies the active drive on the signal when the processor is in the reset state.
- Hibernate Termination: The Hiber Term column in the table specifies the termination present when the processor is in the hibernate state. The abbreviations used in this column are wk (weak keeper, weakly retains previous value driven on the pin), pu (pull-up), or pd (pull-down).
- Hibernate Drive: The Hiber Drive column in the table specifies the active drive on the signal when the processor is in the hibernate state.

- Power Domain: The Power Domain column in the table specifies the power supply domain in which the signal resides.
- Description and Notes: The Description and Notes column in the table identifies any special requirements or characteristics for the signal. If no special requirements are listed the signal may be left unconnected if it is not used. Also, for multiplexed general-purpose I/O pins, this column identifies the functions available on the pin.

If an external pull-up or pull-down resistor is required for any signal, 100 $k\Omega$ is the maximum value that can be used unless otherwise noted.

Note that for Port A, Port B, and Port C (PA_00 to PC_14), when <u>SYS_HWRST</u> is low, these pads are three-state. After <u>SYS_HWRST</u> is released, but before code execution begins, these pins are internally pulled up. Subsequently, the state depends on the input enable and output enable which are controlled by software.

Software control of internal pull-ups works according to the following settings in the PADS_PCFG0 register. When PADS_PCFG0 = 0: For PA_15:PA_00, PB_15:PB_00, and PC_14:PC_00, the internal pull-up is enabled when both the input enable and output enable of a particular pin are deasserted. When PADS_PCFG0 = 1: For PA_15:PA_00, PB_15:PB_00, and PC_14:PC_00, the internal pull-up is enabled as long as the output enable of a particular pin is deasserted.

There are some exceptions to this scheme:

- Internal pull-ups are always disabled if MSI mode is selected for that signal.
- The following signals enabled the internal pull-down when the output enable is de-asserted: <u>SMC0_AMS[1:0]</u>, <u>SMC0_ARE</u>, <u>SMC0_AWE</u>, <u>SMC0_AOE</u>, <u>SMC0_ARDY</u>, <u>SPI0_SEL[6:1]</u>, <u>SPI1_SEL[4:1]</u>, and <u>SPI2_SEL[3:1]</u>.

		Driver	Int	Reset	Reset	Hiber	Hiber	Power	Description
Signal Name	Туре	Туре	Term	Term	Drive	Term	Drive	Domain	and Notes
DMC0_A00	I/O	В	none	none	none	none	none	VDD_DMC	Desc: DMC0 Address 0
									Notes: No notes.
DMC0_A01	I/O	В	none	none	none	none	none	VDD_DMC	Desc: DMC0 Address 1
									Notes: No notes.
DMC0_A02	I/O	В	none	none	none	none	none	VDD_DMC	Desc: DMC0 Address 2
									Notes: No notes.
DMC0_A03	I/O	В	none	none	none	none	none	VDD_DMC	Desc: DMC0 Address 3
									Notes: No notes.
DMC0_A04	I/O	В	none	none	none	none	none	VDD_DMC	Desc: DMC0 Address 4
									Notes: No notes.
DMC0_A05	I/O	В	none	none	none	none	none	VDD_DMC	Desc: DMC0 Address 5
									Notes: No notes.

Table 15. ADSP-BF70x Designer Quick Reference

Signal Name	Туре	Driver Type	lnt Term	Reset Term	Reset Drive	Hiber Term	Hiber Drive	Power Domain	Description and Notes
GND_HADC	g	na	none	none	none	none	none	na	Desc: Ground HADC Notes: If HADC is not used, connect to
HADC0_VIN0	а	na	none	none	none	none	none	VDD_HADC	ground. Desc: HADC0 Analog Input at channel 0 Notes: If HADC is not used, connect to ground.
HADC0_VIN1	а	na	none	none	none	none	none	VDD_HADC	Desc: HADC0 Analog Input at channel 1 Notes: If HADC is not used, connect to ground.
HADC0_VIN2	a	na	none	none	none	none	none	VDD_HADC	Desc: HADC0 Analog Input at channel 2 Notes: If HADC is not used, connect to ground.
HADC0_VIN3	a	na	none	none	none	none	none	VDD_HADC	Desc: HADC0 Analog Input at channel 3 Notes: If HADC is not used, connect to ground.
HADC0_VREFN	a	na	none	none	none	none	none	VDD_HADC	Desc: HADC0 Ground Reference for ADC Notes: If HADC is not used, connect to ground.
HADC0_VREFP	a	na	none	none	none	none	none	VDD_HADC	Desc: HADC0 External Reference for ADC Notes: If HADC is not used, connect to ground.
JTG_TCK_ SWCLK	I/O	na	pd	none	none	none	none	VDD_EXT	Desc: JTAG Clock Serial Wire Clock Notes: Functional during reset.
JTG_TDI	I/O	na	pu	none	none	none	none	VDD_EXT	Desc: JTAG Serial Data In Notes: Functional during reset
JTG_TDO_SWO	I/O	A	none	none	none	none	none	VDD_EXT	Desc: JTAG Serial Data Out Serial Wire Out Notes: Functional during reset, three-
JTG_TMS_ SWDIO	I/O	A	pu	none	none	none	none	VDD_EXT	Desc: JTAG Mode Select Serial Wire DIO Notes: Functional during reset.
JTG_TRST	I/O	na	pd	none	none	none	none	VDD_EXT	Desc: JTAG Reset Notes: Functional during reset, a 10k external pull-down may be used to shorten the t _{VDDEXT_RST} timing requirement.
PA_00	I/O	A	none	none	none	none	none	VDD_EXT	Desc: SPI1 Clock TRACE0 Trace Data 7 SMC0 Byte Enable 0 Notes: SPI clock requires a pull-down when controlling most SPI flash devices.
PA_01	I/O	A	none	none	none	none	none	VDD_EXT	Desc: SPI1 Master In, Slave Out TRACE0 Trace Data 6 SMC0 Byte Enable 1 Notes: Pull-up required for SPI_MISO if SPI master boot is used.

Table 15. ADSP-BF70x Designer Quick Reference (Continued)

Table 15. ADSP-BF70x Designer Quick Reference (Continued)

Signal Nama	Turne	Driver Type	Int Term	Reset	Reset	Hiber	Hiber Drive	Power	Description
	Туре	туре	Term	Termi	Drive	Termi	Dive		
PC_05	1/0	A	none	none	none	none	none	VDD_EXT	Timer 3 MSI0 Command
									Notes: An external pull-up may be required for MSI modes, see the MSI chapter in the hardware reference for details.
PC_06	I/O	A	none	none	none	none	none	VDD_EXT	Desc: SPT0 Channel B Data 0 SPI0 Master In, Slave Out MSI0 Data 3
									Notes: An external pull-up may be required for MSI modes, see the MSI chapter in the hardware reference for details.
PC_07	I/O	A	none	none	none	none	none	VDD_EXT	Desc: SPT0 Channel B Frame Sync SPI0 Master Out, Slave In MSI0 Data 2 TM0 Alternate Capture Input 2
									Notes: An external pull-up may be required for MSI modes, see the MSI chapter in the hardware reference for details.
PC_08	I/O	A	none	none	none	none	none	VDD_EXT	Desc: SPT0 Channel A Data 0 SPI0 Data 2 MSI0 Data 0
									Notes: An external pull-up may be required for MSI modes, see the MSI chapter in the hardware reference for details.
PC_09	I/O	A	none	none	none	none	none	VDD_EXT	Desc: SPT0 Channel A Clock SPI0 Data 3 MSI0 Clock TM0 Alternate Clock 2
									Notes: No notes.
PC_10	1/0	A	none	none	none	none	none	VDD_EXT	4 SPI1 Channel B Clock MSI0 Data 4 SPI1 Slave Select Output 3 TM0 Alternate Clock 1
									Notes: An external pull-up may be required for MSI modes, see the MSI chapter in the hardware reference for details. SPI slave select outputs require a pull-up when used.
PC_11	I/O	A	none	none	none	none	none	VDD_EXT	Desc: SPT1 Channel B Frame Sync MSI0 Data 5 SPI0 Slave Select Output 3
									Notes: An external pull-up may be required for MSI modes, see the MSI chapter in the hardware reference for details. SPI slave select outputs require a pull-up when used.
PC_12	I/O	A	none	none	none	none	none	VDD_EXT	Desc: SPT1 Channel B Data 0 MSI0 Data 6
									Notes: An external pull-up may be required for MSI modes, see the MSI chapter in the hardware reference for details.

TWI_DT Setting	V _{DD_EXT} Nominal	V _{BUSTWI} Min	V _{BUSTWI} Nominal	V _{BUSTWI} Max	Unit
TWI000 ¹	3.30	3.13	3.30	3.47	V
TWI001	1.80	1.70	1.80	1.90	V
TWI011	1.80	3.13	3.30	3.47	V
TWI100	3.30	4.75	5.00	5.25	V

Table 16.	TWI	_VSEL	Selections	s and V _D	D EXT/VBUSTWI
-----------	-----	-------	------------	----------------------	---------------

¹Designs must comply with the V_{DD_EXT} and V_{BUSTWI} voltages specified for the default TWI_DT setting for correct JTAG boundary scan operation during reset.

Clock Related Operating Conditions

Table 17 and Table 18 describe the core clock, system clock, and peripheral clock timing requirements. The data presented in the tables applies to all speed grades (found in the Ordering Guide) except where expressly noted. Figure 6 provides a graphical representation of the various clocks and their available divider values.

Table 17. Core and System Clock Operating Conditions

Parameter		Ratio Restriction	PLLCLK Restriction	Min	Max	Unit
f _{CCLK}	Core Clock Frequency	$f_{CCLK} \geq f_{SYSCLK}$	PLLCLK = 800		400	MHz
\mathbf{f}_{CCLK}	Core Clock Frequency	$f_{CCLK} \geq f_{SYSCLK}$	$600 \le PLLCLK < 800$		390	MHz
\mathbf{f}_{CCLK}	Core Clock Frequency	$f_{CCLK} \geq f_{SYSCLK}$	380 ≤ PLLCLK < 600		380	MHz
f_{CCLK}	Core Clock Frequency	$f_{CCLK} \geq f_{SYSCLK}$	230.2 ≤ PLLCLK < 380		PLLCLK	MHz
f _{SYSCLK}	SYSCLK Frequency ¹		PLLCLK = 800	60	200	MHz
f _{SYSCLK}	SYSCLK Frequency ¹		$600 \le PLLCLK < 800$	60	195	MHz
f _{SYSCLK}	SYSCLK Frequency ¹		$380 \le PLLCLK < 600$	60	190	MHz
f _{SYSCLK}	SYSCLK Frequency ¹		230.2 ≤ PLLCLK < 380	60	PLLCLK ÷ 2	MHz
f _{SCLK0}	SCLK0 Frequency ¹	$f_{\text{SYSCLK}} \geq f_{\text{SCLK0}}$		30	100	MHz
f _{SCLK1}	SCLK1 Frequency	$f_{\text{SYSCLK}} \geq f_{\text{SCLK1}}$			200	MHz
\mathbf{f}_{DCLK}	DDR2 Clock Frequency	$f_{\text{SYSCLK}} \geq f_{\text{DCLK}}$		125	200	MHz
\mathbf{f}_{DCLK}	LPDDR Clock Frequency	$f_{\text{SYSCLK}} \geq f_{\text{DCLK}}$		10	200	MHz

¹ The minimum frequency for SYSCLK and SCLK0 applies only when the USB is used.

Power-Up Reset Timing

A power-up reset is required to place the processor in a known state after power-up. A power-up reset is initiated by asserting SYS_HWRST and JTG_TRST. During power-up reset, all pins are high impedance except for those noted in the ADSP-BF70x Designer Quick Reference on Page 38.

Both JTG_TRST and SYS_HWRST need to be asserted upon power-up, but only SYS_HWRST needs to be released for the device to boot properly. JTG_TRST may be asserted indefinitely for normal operation. JTG_TRST only needs to be released when using an emulator to connect to the DAP for debug or boundary scan. There is an internal pull-down on JTG_TRST to ensure internal emulation logic will always be properly initialized during power-up reset.

Table 30 and Figure 9 show the relationship between power supply startup and processor reset timing, related to the clock generation unit (CGU) and reset control unit (RCU). In Figure 9, $V_{DD_{_SUPPLIES}}$ are $V_{DD_{_INT}}$, $V_{DD_{_EXT}}$, $V_{DD_{_DMC}}$, $V_{DD_{_USB}}$, $V_{DD_{_CTC}}$, $V_{DD_{_OTP}}$, and $V_{DD_{_HADC}}$.

There is no power supply sequencing requirement for the ADSP-BF70x processor. However, if saving power during power-on is important, bringing up $V_{DD_{INT}}$ last is recommended. This avoids a small current drain in the $V_{DD_{INT}}$ domain during the transition period of I/O voltages from 0 V to within the voltage specification.

Table 30. Power-Up Reset Timing

Paramete	r	Min	Max	Unit
Timing Red	quirement			
t _{rst_in_pwr}	$\label{eq:starsest} \overrightarrow{SYS_HWRST} and \overrightarrow{JTG_TRST} Deasserted After V_{DD_INT}, V_{DD_DMC}, V_{DD_USB}, \\ V_{DD_RTC}, V_{DD_OTP}, V_{DD_HADC}, and SYS_CLKIN are Stable and Within Specification$	$11 \times t_{CKIN}$		ns
t _{VDDEXT_RST}	$\overline{\text{SYS}_\text{HWRST}}$ Deasserted After V_{DD_EXT} is Stable and Within Specifications (No External Pull-Down on JTG_TRST)	10		μs
t _{vddext_rst}	SYS_HWRST Deasserted After V _{DD_EXT} is Stable and Within Specifications (10k External Pull-Down on JTG_TRST)	1		μs

Figure 9. Power-Up Reset Timing

DDR2 SDRAM Read Cycle Timing

Table 40 and Figure 18 show DDR2 SDRAM read cycle timing, related to the dynamic memory controller (DMC).

Table 40. DDR2 SDRAM Read Cycle Timing, V_{DD_DMC} Nominal 1.8 V

		200	MHz ¹	
Parameter		Min	Max	Unit
Timing Requirements				
t _{DQSQ}	DMC0_DQS-DMC0_DQ Skew for DMC0_DQS and Associated DMC0_ DQ Signals		0.35	ns
t _{QH}	DMC0_DQ, DMC0_DQS Output Hold Time From DMC0_DQS	1.8		ns
t _{RPRE}	Read Preamble	0.9		t _{CK}
t _{RPST}	Read Postamble	0.4		t _{CK}

¹To ensure proper operation of the DDR2, all the DDR2 guidelines have to be strictly followed.

Figure 18. DDR2 SDRAM Controller Input AC Timing

Figure 27. Serial Ports

Table 51. Serial Ports—Enable and Three-State

		1.8	V _{DD_EXT} 1.8V Nominal		V _{DD_EXT} 3.3 V Nominal	
Parameter		Min	Max	Min	Max	Unit
Switching Characteristics						
t _{DDTEN}	Data Enable from External Transmit SPT_CLK ¹	1		1		ns
t _{DDTTE}	Data Disable from External Transmit SPT_CLK ¹		14		14	ns
t _{DDTIN}	Data Enable from Internal Transmit SPT_CLK ¹	-1.12		-1		ns
t _{DDTTI}	Data Disable from Internal Transmit SPT_CLK ¹		2.8		2.8	ns

¹Referenced to drive edge.

Serial Peripheral Interface (SPI) Port—SPI_RDY Slave Timing

Table 56. SPI Port—SPI_RDY Slave Timing

		V _{DD_EXT} 1.8 V/3.3 V Nominal		
Parameter		Min	Max	Unit
Switching C	haracteristics			
t _{dspisckrdysr}	SPI_RDY De-assertion from Valid Input SPI_CLK Edge in Slave Mode Receive	$2.5 imes t_{SCLK0} + t_{HDSPID}$	$3.5 imes t_{\text{SCLK0}} + t_{\text{DDSPID}}$	ns
t _{dspisckrdyst}	SPI_RDY De-assertion from Valid Input SPI_CLK Edge in Slave Mode Transmit	$3.5 imes t_{SCLK0} + t_{HDSPID}$	$4.5 \times t_{SCLK0} + t_{DDSPID}$	ns

Figure 33. SPI_RDY De-assertion from Valid Input SPI_CLK Edge in Slave Mode Receive (FCCH = 0)

Figure 34. SPI_RDY De-assertion from Valid Input SPI_CLK Edge in Slave Mode Transmit (FCCH = 1)

ADSP-BF70x 184-BALL CSP_BGA BALL ASSIGNMENTS (NUMERICAL BY BALL NUMBER)

Figure 69 shows an overview of signal placement on the 184-ball CSP_BGA.

Table 67 lists the 184-ball CSP_BGA package by ball number for the ADSP-BF70x. Table 68 lists the 184-ball CSP_BGA package by signal.

Figure 69. 184-Ball CSP_BGA Configuration

ADSP-BF70x 12 mm \times 12 mm 88-LEAD LFCSP (QFN) LEAD ASSIGNMENTS (NUMERICAL BY LEAD NUMBER)

Figure 70 shows an overview of signal placement on the 12 mm \times 12 mm 88-lead LFCSP (QFN).

Figure 70. 12 mm × 12 mm 88-Lead LFCSP (QFN) Configuration

Table 69 lists the 12 mm \times 12 mm 88-Lead LFCSP (QFN) package by lead number for the ADSP-BF70x. Table 70 lists the12 mm \times 12 mm 88-Lead LFCSP (QFN) package by signal.

Lead No.	Signal Name	Lead No.	Signal Name	Lead No.	Signal Name	Lead No.	Signal Name	
1	PC_10	24	PB_14	47	PB_02	70	PA_07	
2	PC_09	25	PB_13	48	PB_01	71	PA_06	
3	PC_08	26	VDD_EXT	49	VDD_OTP	72	VDD_EXT	
4	VDD_EXT	27	PB_12	50	VDD_EXT	73	PA_05	
5	PC_07	28	PB_11	51	VDD_INT	74	PA_04	
6	PC_06	29	PB_10	52	PB_00	75	PA_03	
7	PC_05	30	VDD_INT	53	PA_15	76	GND	
8	PC_04	31	USB0_XTAL	54	PA_14	77	SYS_NMI	
9	PC_03	32	USB0_CLKIN	55	VDD_EXT	78	PA_02	
10	PC_02	33	USB0_ID	56	SYS_XTAL	79	SYS_EXTWAKE	
11	VDD_EXT	34	USB0_VBUS	57	SYS_CLKIN	80	PA_01	
12	SYS_CLKOUT	35	USB0_DP	58	PA_13	81	VDD_INT	
13	PC_01	36	VDD_USB	59	PA_12	82	VDD_EXT	
14	VDD_INT	37	USB0_DM	60	PA_11	83	JTG_TDO_SWO	
15	SYS_RESOUT	38	USB0_VBC	61	VDD_INT	84	JTG_TMS_SWDIO	
16	PC_00	39	PB_09	62	VDD_EXT	85	JTG_TCK_SWCLK	
17	VDD_EXT	40	PB_08	63	PA_10	86	JTG_TDI	
18	TWI0_SDA	41	VDD_EXT	64	PA_09	87	JTG_TRST	
19	TWI0_SCL	42	PB_07	65	SYS_FAULT	88	PA_00	
20	RTC0_XTAL	43	PB_06	66	SYS_BMODE0	89*	GND	
21	RTC0_CLKIN	44	PB_05	67	SYS_BMODE1			
22	VDD_RTC	45	PB_04	68	SYS_HWRST			
23	PB_15	46	PB_03	69	PA_08			
*Pin no. 89 is the GND supply (see Figure 70) for the processor: this pad must connect to GND.								

Table 69. 12 mm × 12 mm 88-Lead LFCSP (QFN) Lead Assignment (Numerical by Lead Number)

PLANNED AUTOMOTIVE PRODUCTION PRODUCTS

Model ^{1, 2, 3}	Max. Core Clock	L2 SRAM	Temperature Grade ⁴	Package Description	Package Option
ADBF702WCCPZ3xx	300 MHz	256K bytes	-40°C to +105°C	88-Lead LFCSP_VQ	CP-88-8
ADBF702WCCPZ4xx	400 MHz	256K bytes	–40°C to +105°C	88-Lead LFCSP_VQ	CP-88-8
ADBF703WCBCZ3xx	300 MHz	256K bytes	–40°C to +105°C	184-Ball CSP_BGA	BC-184-1
ADBF703WCBCZ4xx	400 MHz	256K bytes	–40°C to +105°C	184-Ball CSP_BGA	BC-184-1
ADBF704WCCPZ3xx	300 MHz	512K bytes	–40°C to +105°C	88-Lead LFCSP_VQ	CP-88-8
ADBF704WCCPZ4xx	400 MHz	512K bytes	–40°C to +105°C	88-Lead LFCSP_VQ	CP-88-8
ADBF705WCBCZ3xx	300 MHz	512K bytes	–40°C to +105°C	184-Ball CSP_BGA	BC-184-1
ADBF705WCBCZ4xx	400 MHz	512K bytes	–40°C to +105°C	184-Ball CSP_BGA	BC-184-1
ADBF706WCCPZ3xx	300 MHz	1024K bytes	–40°C to +105°C	88-Lead LFCSP_VQ	CP-88-8
ADBF706WCCPZ4xx	400 MHz	1024K bytes	–40°C to +105°C	88-Lead LFCSP_VQ	CP-88-8
ADBF707WCBCZ3xx	300 MHz	1024K bytes	-40°C to +105°C	184-Ball CSP_BGA	BC-184-1
ADBF707WCBCZ4xx	400 MHz	1024K bytes	-40°C to +105°C	184-Ball CSP_BGA	BC-184-1

¹ Select Automotive grade products, supporting -40° C to $+105^{\circ}$ C T_{AMBIENT} condition, will be available when they appear in the Automotive Products table. ² Z = RoHS Compliant Part.

 $^3\,\rm xx$ denotes the current die revision.

⁴ Referenced temperature is ambient temperature. The ambient temperature is not a specification. See Operating Conditions on Page 50 for the junction temperature (T_j) specification which is the only temperature specification.