

Welcome to E-XFL.COM

Understanding <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Embedded - DSP (Digital Signal Processors) are specialized microprocessors designed to perform complex mathematical computations on digital signals in real-time. Unlike general-purpose processors, DSPs are optimized for high-speed numeric processing tasks, making them ideal for applications that require efficient and precise manipulation of digital data. These processors are fundamental in converting and processing signals in various forms, including audio, video, and communication signals, ensuring that data is accurately interpreted and utilized in embedded systems.

Applications of <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Details

E·XFI

Product Status	Active
Туре	Blackfin+
Interface	CAN, DSPI, EBI/EMI, I ² C, PPI, QSPI, SD/SDIO, SPI, SPORT, UART/USART, USB OTG
Clock Rate	300MHz
Non-Volatile Memory	ROM (512kB)
On-Chip RAM	512kB
Voltage - I/O	1.8V, 3.3V
Voltage - Core	1.10V
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	184-LFBGA, CSPBGA
Supplier Device Package	184-CSPBGA (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/analog-devices/adsp-bf705bbcz-3

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

GENERAL DESCRIPTION

The ADSP-BF70x processor is a member of the Blackfin[®] family of products. The Blackfin processor combines a dual-MAC 16-bit state-of-the-art signal processing engine, the advantages of a clean, orthogonal RISC-like microprocessor instruction set, and single-instruction, multiple-data (SIMD) multimedia capabilities into a single instruction-set architecture. New enhancements to the Blackfin+ core add 32-bit MAC and 16-bit complex MAC support, cache enhancements, branch prediction and other instruction set improvements—all while maintaining instruction set compatibility to previous Blackfin products. The processor offers performance up to 400 MHz, as well as low static power consumption. Produced with a low-power and low-voltage design methodology, they provide world-class power management and performance.

By integrating a rich set of industry-leading system peripherals and memory (shown in Table 1), the Blackfin processor is the platform of choice for next-generation applications that require RISC-like programmability, multimedia support, and leadingedge signal processing in one integrated package. These applications span a wide array of markets, from automotive systems to embedded industrial, instrumentation, video/image analysis, biometric and power/motor control applications.

Table 1. Processor Comparison

D		ADSP-	ADSP-	ADSP-	ADSP-	ADSP- BF704	ADSP-	ADSP-	ADSP-	
Processor Feature Maximum Speed Grade (MHz) ¹		BF700								
	iximum SPeed Grade (MHZ)*		00	400 200						
		88-Lead	184-Ball	88-Lead	184-Ball	2 88-Lead	184-Ball	88-Lead	184-Ball	
Pd	ckage Options	LFCSP	CSP_BGA	LFCSP	CSP_BGA	LFCSP	CSP_BGA	LFCSP	CSP_BGA	
GP	IOs	43	47	43	47	43	47	43	47	
	L1 Instruction SRAM		•		48	3K	•		•	
_	L1 Instruction SRAM/Cache				16	5K				
Memory (bytes)	L1 Data SRAM				32	2K				
(d)	L1 Data SRAM/Cache				32	2K				
(Jor	L1 Scratchpad (L1 Data C)				8	К				
Aem	L2 SRAM	12	28K	25	6K	51	2K	10	24K	
2	L2 ROM				51	2K				
	DDR2/LPDDR (16-bit)	No	Yes	No	Yes	No	Yes	No	Yes	
l ² C		1								
Up	/Down/Rotary Counter	1								
GP	Timer	8								
Wa	itchdog Timer	1								
GP	Counter	1								
SP	ORTs	2								
Qı	ad SPI					2				
Du	al SPI					1				
SP	Host Port					1				
US	B 2.0 HS OTG	1								
Pa	rallel Peripheral Interface	1								
CAN						2				
UA	RT	2								
Real-Time Clock						1				
	tic Memory Controller (SMC)	Yes								
Se	curity Crypto Engine	Yes								
SD	/SDIO (MSI)	4-bit	8-bit	4-bit	8-bit	4-bit	8-bit	4-bit	8-bit	
4-(Channel 12-Bit ADC	No	Yes	No	Yes	No	Yes	No	Yes	

¹Other speed grades available.

output enable and the input enable of a GPIO pin are both active, the data signal before the pad driver is looped back to the receive path for the same GPIO pin.

MEMORY ARCHITECTURE

The processor views memory as a single unified 4G byte address space, using 32-bit addresses. All resources, including internal memory, external memory, and I/O control registers, occupy separate sections of this common address space. The memory portions of this address space are arranged in a hierarchical structure to provide a good cost/performance balance of some very fast, low-latency core-accessible memory as cache or SRAM, and larger, lower-cost and performance interface-accessible memory systems. See Figure 3.

Internal (Core-Accessible) Memory

The L1 memory system is the highest-performance memory available to the Blackfin+ processor core.

The core has its own private L1 memory. The modified Harvard architecture supports two concurrent 32-bit data accesses along with an instruction fetch at full processor speed which provides high-bandwidth processor performance. In the core, a 64K byte block of data memory partners with an 64K byte memory block for instruction storage. Each data block is multibanked for efficient data exchange through DMA and can be configured as SRAM. Alternatively, 16K bytes of each block can be configured in L1 cache mode. The four-way set-associative instruction cache and the 2 two-way set-associative data caches greatly accelerate memory access performance, especially when accessing external memories.

The L1 memory domain also features a 8K byte data SRAM block which is ideal for storing local variables and the software stack. All L1 memory is protected by a multi-parity-bit concept, regardless of whether the memory is operating in SRAM or cache mode.

Outside of the L1 domain, L2 and L3 memories are arranged using a Von Neumann topology. The L2 memory domain is a unified instruction and data memory and can hold any mixture of code and data required by the system design. The L2 memory domain is accessible by the Blackfin+ core through a dedicated 64-bit interface. It operates at SYSCLK frequency.

The processor features up to 1M byte of L2 SRAM, which is ECC-protected and organized in eight banks. Individual banks can be made private to any system master. There is also a 512K byte single-bank ROM in the L2 domain. It contains boot code, security code, and general-purpose ROM space.

OTP Memory

The processor features 4 kB of one-time-programmable (OTP) memory which is memory-map accessible. This memory stores a unique chip identification and is used to support secure-boot and secure operation.

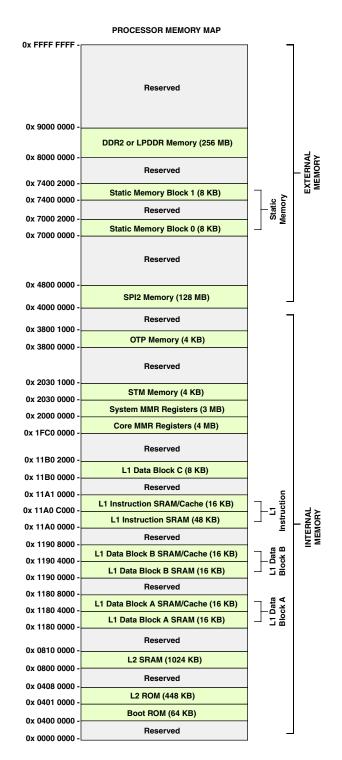


Figure 3. ADSP-BF706/ADSP-BF707 Internal/External Memory Map

Port Name	Direction	Description
HADC_VREFN	Input	Ground Reference for ADC. Connect to an external voltage reference that meets data sheet specifications.
HADC_VREFP	Input	External Reference for ADC. Connect to an external voltage reference that meets data sheet specifications.
MSI_CD	Input	Card Detect. Connects to a pull-up resistor and to the card detect output of an SD socket.
MSI_CLK	Output	Clock. The clock signal applied to the connected device from the MSI.
MSI_CMD	I/O	Command. Used to send commands to and receive responses from the connected device.
MSI_Dn	I/O	Data n. Bidirectional data bus.
MSI_INT	Input	eSDIO Interrupt Input. Used only for eSDIO. Connects to an eSDIO card's interrupt output. An interrupt may be sampled even when the MSI clock to the card is switched off.
Px_nn	I/O	Position n. General purpose input/output. See the GP Ports chapter of the HRM for programming information.
RTC_CLKIN	Input	Crystal input/external oscillator connection. Connect to an external clock source or crystal.
RTC_XTAL	Output	Crystal output. Drives an external crystal. Must be left unconnected if an external clock is driving RTC_CLKIN.
SMC_ABEn	Output	Byte Enable n. Indicate whether the lower or upper byte of a memory is being accessed. When an asynchronous write is made to the upper byte of a 16-bit memory, SMC_ABE1b=0 and SMC_ABE0b=1. When an asynchronous write is made to the lower byte of a 16-bit memory, SMC_ABE1b=1 and SMC_ABE0b=0.
SMC_AMSn	Output	Memory Select n. Typically connects to the chip select of a memory device.
SMC_AOE	Output	Output Enable. Asserts at the beginning of the setup period of a read access.
SMC_ARDY	Input	Asynchronous Ready. Flow control signal used by memory devices to indicate to the SMC when further transactions may proceed.
SMC_ARE	Output	Read Enable. Asserts at the beginning of a read access.
SMC_AWE	Output	Write Enable. Asserts for the duration of a write access period.
SMC_Ann	Output	Address n. Address bus.
SMC_Dnn	I/O	Data n. Bidirectional data bus.
SPI_CLK	I/O	Clock. Input in slave mode, output in master mode.
SPI_D2	I/O	Data 2. Used to transfer serial data in Quad mode. Open-drain when ODM mode is enabled.
SPI_D3	I/O	Data 3. Used to transfer serial data in Quad mode. Open-drain when ODM mode is enabled.
SPI_MISO	I/O	Master In, Slave Out. Used to transfer serial data. Operates in the same direction as SPI_MOSI in Dual and Quad modes. Open-drain when ODM mode is enabled.
SPI_MOSI	I/O	Master Out, Slave In. Used to transfer serial data. Operates in the same direction as SPI_MISO in Dual and Quad modes. Open-drain when ODM mode is enabled.
SPI_RDY	I/O	Ready. Optional flow signal. Output in slave mode, input in master mode.
SPI_SELn	Output	Slave Select Output n. Used in Master mode to enable the desired slave.
SPI_SS	Input	Slave Select Input. Slave mode - Acts as the slave select input. Master mode- Optionally serves as an error detection input for the SPI when there are multiple masters.
SPT_ACLK	I/O	Channel A Clock. Data and Frame Sync are driven/sampled with respect to this clock. This signal can be either internally or externally generated.
SPT_AD0	I/O	Channel A Data 0. Primary bidirectional data I/O. This signal can be configured as an output to transmit serial data, or as an input to receive serial data.
SPT_AD1	I/O	Channel A Data 1. Secondary bidirectional data I/O. This signal can be configured as an output to transmit serial data, or as an input to receive serial data.
SPT_AFS	I/O	Channel A Frame Sync. The frame sync pulse initiates shifting of serial data. This signal is either generated internally or externally.
SPT_ATDV	Output	Channel A Transmit Data Valid. This signal is optional and only active when SPORT is configured in multichannel transmit mode. It is asserted during enabled slots.

Table 6. ADSP-BF70x Detailed Signal Descriptions (Continued)

Table 6. ADSP-BF70x Detailed Signal Descriptions (Continued)

Port Name	Direction	Description			
SPT_BCLK	I/O	Channel B Clock. Data and Frame Sync are driven/sampled with respect to this clock. This signal can be either internally or externally generated.			
SPT_BD0	I/O	Channel B Data 0. Primary bidirectional data I/O. This signal can be configured as an output to transmit serial data, or as an input to receive serial data.			
SPT_BD1	I/O	Channel B Data 1. Secondary bidirectional data I/O. This signal can be configured as an output to transmit serial data, or as an input to receive serial data.			
SPT_BFS	I/O	Channel B Frame Sync. The frame sync pulse initiates shifting of serial data. This signal is either generated internally or externally.			
SPT_BTDV	Output	Channel B Transmit Data Valid. This signal is optional and only active when SPORT is configured in multi-channel transmit mode. It is asserted during enabled slots.			
SYS_BMODEn	Input	Boot Mode Control n. Selects the boot mode of the processor.			
SYS_CLKIN	Input	Clock/Crystal Input. Connect to an external clock source or crystal.			
SYS_CLKOUT	Output	Processor Clock Output. Outputs internal clocks. Clocks may be divided down. See the CGU chapter of the HRM for more details.			
SYS_EXTWAKE	Output	External Wake Control. Drives low during hibernate and high all other times. Typically connected to the enable input of the voltage regulator controlling the VDD_INT supply.			
SYS_FAULT	I/O	Active-Low Fault Output. Indicates internal faults or senses external faults depending on the operating mode.			
SYS_HWRST	Input	Processor Hardware Reset Control. Resets the device when asserted.			
SYS_NMI	Input	Non-maskable Interrupt. See the processor hardware and programming references for more details.			
SYS_RESOUT	Output	Reset Output. Indicates that the device is in the reset or hibernate state.			
SYS_WAKEn	Input	Power Saving Mode Wakeup n. Wake-up source input for deep sleep and/or hibernate mode.			
SYS_XTAL	Output	Crystal Output. Drives an external crystal. Must be left unconnected if an external clock is driving CLKIN.			
JTG_SWCLK	I/O	Serial Wire Clock. Clocks data into and out of the target during debug.			
JTG_SWDIO	I/O	Serial Wire DIO. Sends and receives serial data to and from the target during debug.			
JTG_SWO	Output	Serial Wire Out. Provides trace data to the emulator.			
JTG_TCK	Input	JTAG Clock. JTAG test access port clock.			
JTG_TDI	Input	JTAG Serial Data In. JTAG test access port data input.			
JTG_TDO	Output	JTAG Serial Data Out. JTAG test access port data output.			
JTG_TMS	Input	JTAG Mode Select. JTAG test access port mode select.			
JTG_TRST	Input	JTAG Reset. JTAG test access port reset.			
TM_ACIn	Input	Alternate Capture Input n. Provides an additional input for WIDCAP, WATCHDOG, and PININT modes.			
TM_ACLKn	Input	Alternate Clock n. Provides an additional time base for use by an individual timer.			
TM_CLK	Input	Clock. Provides an additional global time base for use by all the GP timers.			
TM_TMRn	I/O	Timer n. The main input/output signal for each timer.			
TRACE_CLK	Output	Trace Clock. Clock output.			
TRACE_Dnn	Output	Trace Data n. Unidirectional data bus.			
TWI_SCL	I/O	Serial Clock. Clock output when master, clock input when slave.			
TWI_SDA	I/O	Serial Data. Receives or transmits data.			
UART_CTS	Input	Clear to Send. Flow control signal.			
UART_RTS	Output	Request to Send. Flow control signal.			
UART_RX	Input	Receive. Receive input. Typically connects to a transceiver that meets the electrical requirements of the device being communicated with.			
UART_TX	Output	Transmit. Transmit output. Typically connects to a transceiver that meets the electrical requirements of the device being communicated with.			
USB_CLKIN	Input	Clock/Crystal Input. This clock input is multiplied by a PLL to form the USB clock. See data sheet specifications for frequency/tolerance information.			

Table 7. ADSP-BF70x 184-Ball CSP_BGA Signal Descriptions (Continued)

Signal Name	Description	Port	Pin Name
DMC0_DQ07	DMC0 Data 7	Not Muxed	DMC0_DQ07
DMC0_DQ08	DMC0 Data 8	Not Muxed	DMC0_DQ08
MC0_DQ09	DMC0 Data 9	Not Muxed	DMC0_DQ09
DMC0_DQ10	DMC0 Data 10	Not Muxed	DMC0_DQ10
DMC0_DQ11	DMC0 Data 11	Not Muxed	DMC0_DQ11
DMC0_DQ12	DMC0 Data 12	Not Muxed	DMC0_DQ12
DMC0_DQ13	DMC0 Data 13	Not Muxed	DMC0_DQ13
MC0_DQ14	DMC0 Data 14	Not Muxed	DMC0_DQ14
MC0_DQ15	DMC0 Data 15	Not Muxed	DMC0_DQ15
MC0_LDM	DMC0 Data Mask for Lower Byte	Not Muxed	DMC0_LDM
MC0_LDQS	DMC0 Data Strobe for Lower Byte	Not Muxed	DMC0_LDQS
MC0_LDQS	DMC0 Data Strobe for Lower Byte (complement)	Not Muxed	DMC0_LDQS
MC0_ODT	DMC0 On-die termination	Not Muxed	DMC0_ODT
MC0_RAS	DMC0 Row Address Strobe	Not Muxed	DMC0_RAS
MC0_UDM	DMC0 Data Mask for Upper Byte	Not Muxed	DMC0_UDM
MC0_UDQS	DMC0 Data Strobe for Upper Byte	Not Muxed	DMC0_UDQS
DMC0_UDQS	DMC0 Data Strobe for Upper Byte (complement)	Not Muxed	DMC0_UDQS
MC0_VREF	DMC0 Voltage Reference	Not Muxed	DMC0_VREF
DMC0_WE	DMC0 Write Enable	Not Muxed	DMC0_WE
ND	Ground	Not Muxed	GND
ND_HADC	Ground HADC	Not Muxed	GND_HADC
IADC0_VIN0	HADC0 Analog Input at channel 0	Not Muxed	HADC0_VIN0
IADC0_VIN1	HADC0 Analog Input at channel 1	Not Muxed	HADC0_VIN1
IADC0_VIN2	HADC0 Analog Input at channel 2	Not Muxed	HADC0_VIN2
IADC0_VIN3	HADC0 Analog Input at channel 3	Not Muxed	HADC0_VIN3
IADC0_VREFN	HADC0 Ground Reference for ADC	Not Muxed	HADC0_VREFN
IADC0_VREFP	HADC0 External Reference for ADC	Not Muxed	HADC0_VREFP
TG_SWCLK	TAPC0 Serial Wire Clock	Not Muxed	JTG_TCK_SWCLK
TG_SWDIO	TAPC0 Serial Wire DIO	Not Muxed	JTG_TMS_SWDIO
TG_SWO	TAPC0 Serial Wire Out	Not Muxed	JTG_TDO_SWO
TG_TCK	TAPC0 JTAG Clock	Not Muxed	JTG_TCK_SWCLK
TG_TDI	TAPC0 JTAG Serial Data In	Not Muxed	JTG_TDI
TG_TDO	TAPC0 JTAG Serial Data Out	Not Muxed	JTG_TDO_SWO
TG_TMS	TAPC0 JTAG Mode Select	Not Muxed	JTG_TMS_SWDIO
TG_TRST	TAPC0 JTAG Reset	Not Muxed	JTG_TRST
ISI0_CD	MSI0 Card Detect	A	PA_08
ISI0_CLK	MSI0 Clock	С	PC_09
ISI0_CMD	MSI0 Command	С	PC_05
ISI0_D0	MSI0 Data 0	С	PC_08
1SI0_D1	MSI0 Data 1	С	PC_04
1SI0_D2	MSI0 Data 2	С	PC_07
ISI0_D3	MSI0 Data 3	С	PC_06
ISI0_D4	MSI0 Data 4	С	PC_10
1SI0_D5	MSI0 Data 5	С	PC_11
1SI0_D6	MSI0 Data 6	С	PC_12
ASIO_D7	MSI0 Data 7	С	PC_13

		Driver	Int	Reset	Reset	Hiber	Hiber	Power	Description
Signal Name	Туре	Туре	Term	Term	Drive	Term	Drive	Domain	and Notes
PB_04	I/O	A	none	none	none	none	none	VDD_EXT	Desc: PPI0 Data 3 SPT0 Channel B Clock SPI0 Slave Select Output 4 SMC0 Data 3 TM0 Alternate Clock 6 Notes: SPI slave select outputs require a pull-up when used.
PB_05	I/O	A	none	none	none	none	none	VDD_EXT	Desc: PPI0 Data 2 SPT0 Channel B Data 0 SPI0 Slave Select Output 5 SMC0 Data 2 Notes: SPI slave select outputs require a
									pull-up when used.
PB_06	I/O	A	none	none	none	none	none	VDD_EXT	Desc: PPI0 Data 1 SPT0 Channel B Frame Sync SPI0 Slave Select Output 6 SMC0 Data 1 TM0 Clock
									Notes: SPI slave select outputs require a pull-up when used.
PB_07	I/O	A	none	none	none	none	none	VDD_EXT	Desc: PPI0 Data 0 SPT0 Channel B Data 1 SPI0 Data 3 SMC0 Data 0 SYS Power Saving Mode Wakeup 0
									Notes: If hibernate mode is used, one of the following must be true during hibernate. Either this pin must be actively driven by another IC, or it must have a pull-up or pull-down.
PB_08	I/O	A	none	none	none	none	none	VDD_EXT	Desc: UARTO Transmit PPI0 Data 16 SPI2 Slave Select Output 2 SMC0 Data 8 SYS Power Saving Mode Wakeup 1 Notes: SPI slave select outputs require a pull-up when used. If hibernate mode is used, one of the following must be true during hibernate. Either this pin must be actively driven by another IC, or it must have a pull-up or pull-down.
PB_09	I/O	A	none	none	none	none	none	VDD_EXT	Desc: UARTO Receive PPI0 Data 17 SPI2 Slave Select Output 3 SMC0 Data 9 TM0 Alternate Capture Input 3 Notes: SPI slave select outputs require a pull-up when used.
PB_10	I/O	A	none	none	none	none	none	VDD_EXT	Desc: SPI2 Clock TRACE0 Trace Clock SMC0 Data 10 TM0 Alternate Clock 4 Notes: SPI clock requires a pull-down when controlling most SPI flash devices.
PB_11	I/O	A	none	none	none	none	none	VDD_EXT	Desc: SPI2 Master In, Slave Out TRACE0 Trace Data 4 SMC0 Data 11 Notes: Pull-up required for SPI_MISO if SPI master boot is used.

Table 15. ADSP-BF70x Designer Quick Reference (Continued)

		Driver	Int	Reset	Reset	Hiber	Hiber	Power	Description
Signal Name	Туре	Туре	Term	Term	Drive	Term	Drive	Domain	and Notes
PB_12	I/O	A	none	none	none	none	none	VDD_EXT	Desc: SPI2 Master Out, Slave In TRACE0 Trace Data 3 SMC0 Data 12 SYS Power Saving Mode Wakeup 2
									Notes: If hibernate mode is used, one of the following must be true during hibernate. Either this pin must be actively driven by another IC, or it must have a pull-up or pull-down.
PB_13	I/O	A	none	none	none	none	none	VDD_EXT	Desc: SPI2 Data 2 UART1 Request to Send TRACE0 Trace Data 2 SMC0 Data 13 Notes: No notes.
PB_14	I/O	A	none	none	none	none	none	VDD_EXT	Desc: SPI2 Data 3 UART1 Clear to Send TRACE0 Trace Data 1 SMC0 Data 14 Notes: No notes.
PB_15	I/O	A	none	none	none	none	none	VDD_EXT	Desc: SPI2 Slave Select Output 1 TRACE0 Trace Data 0 SMC0 Data 15 SPI2 Slave Select Input Notes: SPI slave select outputs require a pull-up when used.
PC_00	I/O	A	none	none	none	none	none	VDD_EXT	Desc: UART1 Transmit SPT0 Channel A Data 1 PPI0 Data 15 Notes: No notes.
PC_01	I/O	A	none	none	none	none	none	VDD_EXT	Desc: UART1 Receive SPT0 Channel B Data 1 PPI0 Data 14 SMC0 Address 9 TM0 Alternate Capture Input 4 Notes: No notes.
PC_02	Ι/Ο	A	none	none	none	none	none	VDD_EXT	Desc: UART0 Request to Send CAN0 Receive PPI0 Data 13 SMC0 Address 10 SYS Power Saving Mode Wakeup 3 TM0 Alternate Capture Input 5 Notes: If hibernate mode is used, one of the following must be true during hibernate. Either this pin must be actively driven by another IC, or it must have a pull-up or pull-down.
PC_03	I/O	A	none	none	none	none	none	VDD_EXT	Desc: UARTO Clear to Send CANO Transmit PPIO Data 12 SMCO Address 11 TMO Alternate Capture Input 0 Notes: No notes.
PC_04	Ι/Ο	A	none	none	none	none	none	VDD_EXT	Desc: SPT0 Channel B Clock SPI0 Clock MSI0 Data 1 SMC0 Address 12 TM0 Alternate Clock 0 Notes: An external pull-up may be required for MSI modes, see the MSI chapter in the hardware reference for details.

Table 15. ADSP-BF70x Designer Quick Reference (Continued)

SPECIFICATIONS

For information about product specifications, contact your Analog Devices, Inc. representative.

OPERATING CONDITIONS

Parameter		Test Conditions/Comments	Min	Nominal	Max	Unit
V _{DD_INT}	Internal Supply Voltage	CCLK ≤ 400 MHz	1.045	1.100	1.155	V
$V_{DD_EXT}^{1}$	External Supply Voltage		1.7	1.8	1.9	v
$V_{DD_EXT}^{1}$	External Supply Voltage		3.13	3.30	3.47	v
V _{DD_DMC}	DDR2/LPDDR Supply Voltage		1.7	1.8	1.9	v
$V_{DD_{USB}}^{2}$	USB Supply Voltage		3.13	3.30	3.47	v
$V_{DD_{RTC}}$	Real-Time Clock Supply Voltage		2.00	3.30	3.47	v
V_{DD_HADC}	Housekeeping ADC Supply Voltage		3.13	3.30	3.47	v
$V_{DD_OTP}^{1}$	OTP Supply Voltage					
	For Reads		2.25	3.30	3.47	V
	For Writes		3.13	3.30	3.47	v
V _{DDR_VREF}	DDR2 Reference Voltage		$0.49 \times V_{DD_DMC}$	$0.50 \times V_{DD_DMC}$	$0.51 \times V_{DD_DMC}$	v
$V_{HADC_{REF}}^{3}$	HADC Reference Voltage		2.5	3.30	V _{DD_HADC}	v
V_{IH}^{4}	High Level Input Voltage	$V_{DD_{EXT}} = 3.47 V$	2.0			v
V_{IH}^{4}	High Level Input Voltage	$V_{DD_EXT} = 1.9 V$	$0.7 \times V_{DD_EXT}$			V
V _{IHTWI} ^{5, 6}	High Level Input Voltage	$V_{DD_EXT} = maximum$	$0.7 \times V_{VBUSTWI}$		V _{VBUSTWI}	V
$V_{\text{IH}_{DDR2}}^{7}$		$V_{DD_DMC} = 1.9 V$	$V_{DDR_REF} + 0.25$			v
$V_{\text{IH_LPDDR}}^{8}$		$V_{DD_DMC} = 1.9 V$	$0.8 \times V_{DD_DMC}$			V
V _{ID_DDR2} 9	Differential Input Voltage	$V_{IX} = 1.075 V$	0.50			V
V _{ID_DDR2} 9	Differential Input Voltage	$V_{IX} = 0.725 V$	0.55			V
V_{IL}^{4}	Low Level Input Voltage	$V_{DD_{EXT}} = 3.13 V$			0.8	V
V_{IL}^{4}	Low Level Input Voltage	$V_{DD_EXT} = 1.7 V$			$0.3 \times V_{\text{DD}_\text{EXT}}$	V
V _{ILTWI} 5, 6	Low Level Input Voltage	$V_{DD_EXT} = minimum$			$0.3 imes V_{VBUSTWI}$	V
$V_{IL_DDR2}^{7}$		$V_{DD_DMC} = 1.7 V$			$V_{DDR_{REF}} - 0.25$	V
$V_{IL_LPDDR}^{8}$		$V_{DD_DMC} = 1.7 V$			$0.2 \times V_{DD_DMC}$	V
TJ	Junction Temperature	$T_{AMBIENT} = 0^{\circ}C \text{ to } +70^{\circ}C$	0		105	°C
TJ	Junction Temperature	$T_{AMBIENT} = -40^{\circ}C \text{ to } +85^{\circ}C$	-40		+105	°C
T	Junction Temperature	$T_{AMBIENT} = -40^{\circ}C \text{ to } +105^{\circ}C$	-40		+125	°C

¹Must remain powered (even if the associated function is not used).

² If not used, connect to 1.8 V or 3.3 V.

 $^{3}\mathrm{V}_{\mathrm{HADC_VREF}}$ should always be less than $\mathrm{V}_{\mathrm{DD_HADC}}.$

⁴ Parameter value applies to all input and bidirectional signals except RTC signals, TWI signals, DMC0 signals, and USB0 signals.

⁵ Parameter applies to TWI signals.

 6 TWI signals are pulled up to V_{BUSTWI} . See Table 16.

⁷ Parameter applies to DMC0 signals in DDR2 mode.

⁸ Parameter applies to DMC0 signals in LPDDR mode.

⁹ Parameter applies to signals DMC0_LDQS, <u>DMC0_LDQS</u>, DMC0_UDQS, <u>DMC0_UDQS</u> when used in DDR2 differential input mode.

Parameter		Test Conditions/Comments	Min	Тур	Мах	Uni
I _{OZH_TWI} ¹⁴	Three-State Leakage Current	$V_{DD_EXT} = 3.47 \text{ V}, V_{DD_DMC} = 1.9 \text{ V}, V_{DD_USB} = 3.47 \text{ V}, V_{IN} = 5.5 \text{ V}$			10	μΑ
ADSP-BF701/	703/705/707 Input Capacitance					
C _{IN} (GPIO) ¹⁵	Input Capacitance	$T_{AMBIENT} = 25^{\circ}C$		5.2	6.0	pF
C _{IN_TWI} ¹⁴	Input Capacitance	$T_{AMBIENT} = 25^{\circ}C$		6.9	7.4	pF
C _{IN_DDR} ¹⁶	Input Capacitance	$T_{AMBIENT} = 25^{\circ}C$		6.1	6.9	pF
ADSP-BF700/	702/704/706 Input Capacitance	1				
C _{IN} (GPIO) ¹⁵	Input Capacitance	$T_{AMBIENT} = 25^{\circ}C$		5.0	5.3	pF
C _{IN_TWI} ¹⁴	Input Capacitance	$T_{AMBIENT} = 25^{\circ}C$		6.8	7.4	pF
I _{DD_DEEPSLEEP} ^{17, 1}	⁸ V _{DD_INT} Current in Deep Sleep Mode	Clocks disabled T ₁ = 25°C		1.4		mA
I _{DD_IDLE} ¹⁸	V _{DD_INT} Current in Idle	$f_{PLLCLK} = 300 \text{ MHz}$ $f_{CCLK} = 100 \text{ MHz}$ $ASF = 0.05 \text{ (idle)}$ $f_{SYSCLK} = f_{SCLK0} = 25 \text{ MHz}$ $USBCLK = DCLK = OUTCLK =$ $SCLK1 = DISABLED$ $Peripherals disabled$ $T_1 = 25^{\circ}C$		13		mA
I _{DD_TYP} ¹⁸	V _{DD_INT} Current	$f_{PLLCLK} = 800 \text{ MHz}$ $f_{CCLK} = 400 \text{ MHz}$ $ASF = 1.0 \text{ (full-on typical)}$ $f_{SYSCLK} = f_{SCLK0} = 25 \text{ MHz}$ $USBCLK = DCLK = OUTCLK =$ $SCLK1 = DISABLED$ $Peripherals disabled$		90		mA
I _{DD_TYP} ¹⁸	V _{DD_INT} Current	$T_{J} = 25^{\circ}C$ $f_{PLLCLK} = 300 \text{ MHz}$ $f_{CCLK} = 300 \text{ MHz}$ $ASF = 1.0 \text{ (full-on typical)}$ $f_{SYSCLK} = f_{SCLK0} = 25 \text{ MHz}$ $USBCLK = DCLK = OUTCLK =$ $SCLK1 = DISABLED$ $Peripherals disabled$ $T_{J} = 25^{\circ}C$		66		mA
I _{DD_TYP} ¹⁸	V _{DD_INT} Current	$f_{PLLCLK} = 400 \text{ MHz}$ $f_{CCLK} = 200 \text{ MHz}$ $ASF = 1.0 \text{ (full-on typical)}$ $f_{SYSCLK} = f_{SCLK0} = 25 \text{ MHz}$ $USBCLK = DCLK = OUTCLK =$ $SCLK1 = DISABLED$ $Peripherals disabled$ $T_J = 25^{\circ}C$		49		mA
I _{DD_TYP} ¹⁸	V _{DD_INT} Current	$f_{PLLCLK} = 300 \text{ MHz}$ $f_{CCLK} = 100 \text{ MHz}$ $ASF = 1.0 \text{ (full-on typical)}$ $f_{SYSCLK} = f_{SCLK0} = 25 \text{ MHz}$ $USBCLK = DCLK = OUTCLK =$ $SCLK1 = DISABLED$ $Peripherals disabled$ $T_J = 25^{\circ}C$		30		mA

PACKAGE INFORMATION

The information presented in Figure 7 and Table 27 provides details about package branding. For a complete listing of product availability, see the Ordering Guide.

Figure 7. Product Information on Package¹

¹ Exact brand may differ, depending on package type.

Table 27. Package Brand Information

Brand Key	Field Description
ADSP-BF70x	Product model
t	Temperature range
рр	Package type
Z	RoHS compliant designation
ссс	See Ordering Guide
ννννν.χ	Assembly lot code
n.n	Silicon revision
yyww	Date code

ABSOLUTE MAXIMUM RATINGS

Stresses at or above those listed in Table 28 may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

Table 28. Absolute Maximum Ratings

Parameter	Rating
Internal Supply Voltage (V _{DD_INT})	–0.33 V to +1.20 V
External (I/O) Supply Voltage (V _{DD_EXT})	–0.33 V to +3.60 V
DDR2 Controller Supply Voltage	–0.33 V to +1.90 V
(V _{DD_DMC})	
USB PHY Supply Voltage (V _{DD_USB})	–0.33 V to +3.60 V
Real-Time Clock Supply Voltage	–0.33 V to +3.60 V
(V _{DD_RTC})	
Housekeeping ADC Supply Voltage	–0.33 V to +3.60 V
(V _{DD_HADC})	
One-Time Programmable Memory	–0.33 V to +3.60 V
Supply Voltage (V _{DD_OTP})	
HADC Reference Voltage (V _{HADC_REF})	–0.33 V to +3.60 V

Table 28. Absolute Maximum Ratings (Continued)

Parameter	Rating
DDR2 Reference Voltage (V _{DDR_REF})	–0.33 V to +1.90 V
Input Voltage ^{1, 2}	–0.33 V to +3.60 V
TWI Input Voltage ^{2, 3}	–0.33 V to +5.50 V
USB0_Dx Input Voltage ⁴	–0.33 V to +5.25 V
USB0_VBUS Input Voltage ⁵	–0.33 V to +6 V
DDR2 Input Voltage⁵	–0.33 V to +1.90 V
Output Voltage Swing	-0.33 V to V _{DD_EXT} + 0.5 V
I _{OH} /I _{OL} Current per Signal ¹	4 mA (max)
Storage Temperature Range	–65°C to +150°C
Junction Temperature While Biased	+125°C

¹ Applies to 100% transient duty cycle.

 2 Applies only when $V_{\rm DD_EXT}$ is within specifications. When $V_{\rm DD_EXT}$ is outside specifications, the range is $V_{\rm DD_EXT}\pm0.2$ V.

³ Applies to balls TWI_SCL and TWI_SDA.

⁴ If the USB is not used, connect USB0_Dx and USB0_VBUS according to Table 15 on Page 38.

 5 Applies only when V_{DD_DMC} is within specifications. When V_{DD_DMC} is outside specifications, the range is $V_{DD_DMC}\pm 0.2$ V.

ESD SENSITIVITY

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

Power-Up Reset Timing

A power-up reset is required to place the processor in a known state after power-up. A power-up reset is initiated by asserting SYS_HWRST and JTG_TRST. During power-up reset, all pins are high impedance except for those noted in the ADSP-BF70x Designer Quick Reference on Page 38.

Both JTG_TRST and SYS_HWRST need to be asserted upon power-up, but only SYS_HWRST needs to be released for the device to boot properly. JTG_TRST may be asserted indefinitely for normal operation. JTG_TRST only needs to be released when using an emulator to connect to the DAP for debug or boundary scan. There is an internal pull-down on JTG_TRST to ensure internal emulation logic will always be properly initialized during power-up reset.

Table 30 and Figure 9 show the relationship between power supply startup and processor reset timing, related to the clock generation unit (CGU) and reset control unit (RCU). In Figure 9, $V_{DD_{_SUPPLIES}}$ are $V_{DD_{_INT}}$, $V_{DD_{_EXT}}$, $V_{DD_{_DMC}}$, $V_{DD_{_USB}}$, $V_{DD_{_CTC}}$, $V_{DD_{_OTP}}$, and $V_{DD_{_HADC}}$.

There is no power supply sequencing requirement for the ADSP-BF70x processor. However, if saving power during power-on is important, bringing up $V_{DD_{INT}}$ last is recommended. This avoids a small current drain in the $V_{DD_{INT}}$ domain during the transition period of I/O voltages from 0 V to within the voltage specification.

Table 30. Power-Up Reset Timing

Paramete	r	Min	Max	
Timing Red	quirement			
t _{rst_in_pwr}	$\label{eq:starsest} \overrightarrow{SYS_HWRST} and \ \overrightarrow{JTG_TRST} \ Deasserted \ After \ V_{DD_INT}, \ V_{DD_DMC}, \ V_{DD_USB}, \\ V_{DD_RTC}, \ V_{DD_OTP}, \ V_{DD_HADC}, \ and \ SYS_CLKIN \ are \ Stable \ and \ Within \ Specification$	$11 \times t_{CKIN}$		ns
t _{VDDEXT_RST}	SYS_HWRST Deasserted After V _{DD_EXT} is Stable and Within Specifications (No External Pull-Down on JTG_TRST)	10		μs
t _{vddext_rst}	\overline{SYS}_{HWRST} Deasserted After V_{DD_EXT} is Stable and Within Specifications (10k External Pull-Down on \overline{JTG}_{TRST})	1		μs

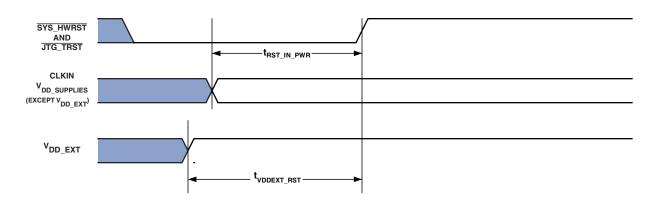


Figure 9. Power-Up Reset Timing

SMC Read Cycle Timing With Reference to SYS_CLKOUT

The following SMC specifications with respect to SYS_CLKOUT are given to accommodate the connection of the SMC to programmable logic devices. These specifications assume that SYS_CLKOUT is outputting a buffered version of SCLK0 by setting CGU_CLKOUTSEL.CLKOUTSEL = 0x3. However, SCLK0 must not run faster than the maximum f_{OCLK} specification. For this example, RST = 0x2, RAT = 0x4, and RHT = 0x1.

Table 32. SMC Read Cycle Timing With Reference to SYS_CLKOUT (BxMODE = b#00)

		1.	V _{DD_EXT} BV Nominal	3.	V _{DD_EXT} 3V Nominal	
Paramet	er	Min	Max	Min	Max	Unit
Timing Re	equirements					
t _{SDAT}	SMC0_Dx Setup Before SYS_CLKOUT	5.3		4.3		ns
t _{HDAT}	SMC0_Dx Hold After SYS_CLKOUT	1.5		1.5		ns
t _{SARDY}	SMC0_ARDY Setup Before SYS_CLKOUT	16.6		14.4		ns
t _{HARDY}	SMC0_ARDY Hold After SYS_CLKOUT	0.7		0.7		ns
Switching	g Characteristics					
t _{DO}	Output Delay After SYS_CLKOUT ¹		7		7	ns
t _{HO}	Output Hold After SYS_CLKOUT ¹	-2.5		-2.5		ns

¹Output signals are SMC0_Ax, <u>SMC0_AMSx</u>, <u>SMC0_AOE</u>, and <u>SMC0_ABEx</u>.

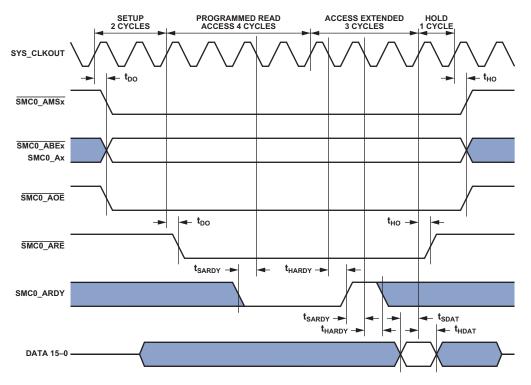


Figure 11. Asynchronous Memory Read Cycle Timing

Asynchronous Write

Table 35 and Figure 14 show asynchronous memory write timing, related to the static memory controller (SMC).

Table 35. Asynchronous Memory Write (BxMODE = b#00)

			_ _{EXT} ominal	V _{DD} 3.3 V No		
Parameter		Min	Max	Min	Max	Unit
Timing Req	uirement					
t _{DARDYAWE} 1	SMC0_ARDY Valid After SMC0_AWE Low ²		(WAT – 2.5) × t _{SCLK0} – 17.5		(WAT – 2.5) × t _{SCLK0} – 17.5	ns
Switching (Characteristics					
t _{endat}	DATA Enable After SMC0_AMSx Assertion	-3		-2		ns
t _{DDAT}	DATA Disable After <u>SMC0_AMSx</u> Deassertion		4.5		4	ns
t _{AMSAWE}	SMC0_Ax/SMC0_AMSx Assertion Before SMC0_AWE Low ³	$(PREST + WST + PREAT) \times t_{SCLK0} - 2$		$(PREST + WST + PREAT) \times t_{SCLK0} - 4$		ns
t _{HAWE}	Output ⁴ Hold After <mark>SMC0_AWE</mark> High⁵	$WHT \times t_{SCLK0}$		$WHT \times t_{SCLK0}$		ns
t _{WAWE} ⁶	SMC0_AWE Active Low Width ⁶	WAT \times t _{SCLK0} – 2		WAT \times t _{SCLK0} – 2		ns
t _{DAWEARDY} ¹	SMC0_AWE High Delay After SMC0_ARDY Assertion		$3.5 \times t_{SCLK0} + 17.5$		$3.5 \times t_{SCLK0} + 17.5$	ns

¹SMC_BxCTL.ARDYEN bit = 1.

 $^2\,\rm WAT$ value set using the SMC_BxTIM.WAT bits.

³ PREST, WST, PREAT values set using the SMC_BxETIM.PREST bits, SMC_BxTIM.WST bits, SMC_BxETIM.PREAT bits, and the SMC_BxTIM.RAT bits.

⁴ Output signals are DATA, SMC0_Ax, <u>SMC0_AMSx</u>, <u>SMC0_ABEx</u>.

⁵ WHT value set using the SMC_BxTIM.WHT bits.

⁶SMC_BxCTL.ARDYEN bit = 0.

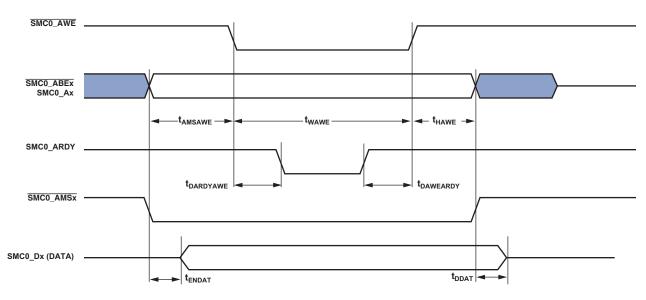


Figure 14. Asynchronous Write

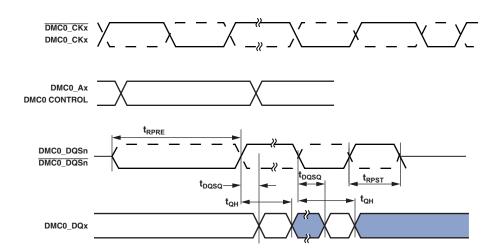
DDR2 SDRAM Read Cycle Timing

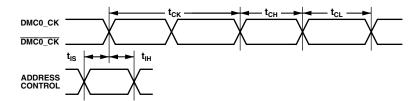
Table 40 and Figure 18 show DDR2 SDRAM read cycle timing, related to the dynamic memory controller (DMC).

Table 40. DDR2 SDRAM Read Cycle Timing, V_{DD_DMC} Nominal 1.8 V

			200 MHz ¹	
Parameter	Min	Max	Unit	
Timing Requirements				
t _{DQSQ}	DMC0_DQS-DMC0_DQ Skew for DMC0_DQS and Associated DMC0_ DQ Signals		0.35	ns
t _{QH}	DMC0_DQ, DMC0_DQS Output Hold Time From DMC0_DQS	1.8		ns
t _{RPRE}	Read Preamble	0.9		t _{CK}
t _{RPST}	Read Postamble	0.4		t _{ск}

¹To ensure proper operation of the DDR2, all the DDR2 guidelines have to be strictly followed.




Figure 18. DDR2 SDRAM Controller Input AC Timing

Mobile DDR SDRAM Clock and Control Cycle Timing

Table 42 and Figure 20 show mobile DDR SDRAM clock and control cycle timing, related to the dynamic memory controller (DMC).

Table 42. Mobile DDR SDRAM Clock and Control Cycle Timing, V_{DD_DMC} Nominal 1.8 V

			200 MHz	
Parameter		Min	Мах	Unit
Switching	Characteristics			
t _{CK}	Clock Cycle Time (CL = 2 Not Supported)	5		ns
t _{CH}	Minimum Clock Pulse Width	0.45	0.55	t _{CK}
t _{CL}	Maximum Clock Pulse Width	0.45	0.55	t _{CK}
t _{IS}	Control/Address Setup Relative to DMC0_CK Rise	1.5		ns
t _{IH}	Control/Address Hold Relative to DMC0_CK Rise	1.5		ns

NOTE: CONTROL = DMC0_CS0, DMC0_CKE, DMC0_RAS, DMC0_CAS, AND DMC0_WE. ADDRESS = DMC0_A00-13, AND DMC0_BA0-2.

Figure 20. Mobile DDR SDRAM Clock and Control Cycle Timing

Serial Ports

To determine whether serial port (SPORT) communication is possible between two devices at clock speed n, the following specifications must be confirmed: 1) frame sync delay and frame sync setup and hold, 2) data delay and data setup and hold, and 3) serial clock (SPT_CLK) width. In Figure 27 either the rising edge or the falling edge of SPT_CLK (external or internal) can be used as the active sampling edge.

When externally generated the SPORT clock is called $f_{SPTCLKEXT}$:

$$t_{SPTCLKEXT} = \frac{1}{f_{SPTCLKEXT}}$$

When internally generated, the programmed SPORT clock ($f_{SPTCLKPROG}$) frequency in MHz is set by the following equation where CLKDIV is a field in the SPORT_DIV register that can be set from 0 to 65,535:

$$f_{SPTCLKPROG} = \frac{f_{SCLK0}}{(CLKDIV + 1)}$$

$$t_{SPTCLKPROG} = \frac{1}{f_{SPTCLKPROG}}$$

Table 49. Serial Ports-External Clock

		V _{DD_EX} 1.8V Nom		V _{DD} 3.3 V No		
Paramet	ter	Min	Мах	Min	Max	Unit
Timing R	equirements					
t _{sfse}	Frame Sync Setup Before SPT_CLK (Externally Generated Frame Sync in Either Transmit or Receive Mode) ¹	1.5		1		ns
t _{HFSE}	Frame Sync Hold After SPT_CLK (Externally Generated Frame Sync in Either Transmit or Receive Mode) ¹	3		3		ns
t _{SDRE}	Receive Data Setup Before Receive SPT_CLK ¹	1.5		1		ns
t _{HDRE}	Receive Data Hold After SPT_CLK ¹	3		3		ns
t _{SCLKW}	SPT_CLK Width ²	$(0.5 \times t_{SPTCLKEXT}) - 1$		$(0.5 \times t_{SPTCLKEXT}) - 1$		ns
t _{sptclke}	SPT_CLK Period ²	t _{sptclkext} – 1		t _{sptclkext} – 1		ns
Switching	g Characteristics					
t _{DFSE}	Frame Sync Delay After SPT_CLK (Internally Generated Frame Sync in Either Transmit or Receive Mode) ³		18		15	ns
t _{HOFSE}	Frame Sync Hold After SPT_CLK (Internally Generated Frame Sync in Either Transmit or Receive Mode) ³	2.5		2.5		ns
t _{DDTE}	Transmit Data Delay After Transmit SPT_CLK ³		18		15	ns
t _{HDTE}	Transmit Data Hold After Transmit SPT_CLK ³	2.5		2.5		ns

¹Referenced to sample edge.

² This specification indicates the minimum instantaneous width or period that can be tolerated due to duty cycle variation or jitter on the external SPT_CLK. For the external SPT_CLK ideal maximum frequency, see the f_{SPTCLKEXT} specification in Table 18 on Page 52 in Clock Related Operating Conditions.

³Referenced to drive edge.

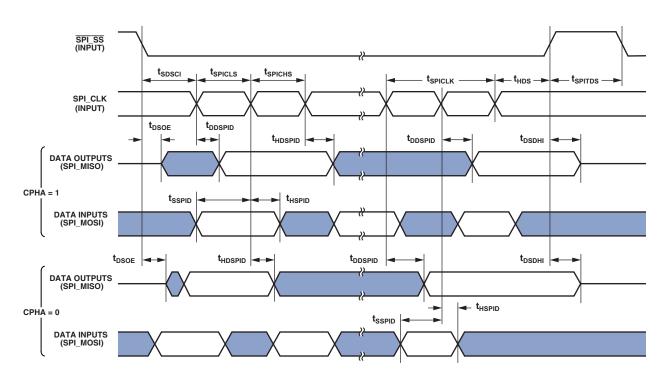


Figure 32. Serial Peripheral Interface (SPI) Port—Slave Timing

Serial Peripheral Interface (SPI) Port—SPI_RDY Slave Timing

Table 56. SPI Port—SPI_RDY Slave Timing

V _{DD_EXT} 1.8 V/3.3 V Nomina				
Parameter		Min	Max	Unit
Switching C	haracteristics			
t _{dspisckrdysr}	SPI_RDY De-assertion from Valid Input SPI_CLK Edge in Slave Mode Receive	$2.5 imes t_{\text{SCLK0}} + t_{\text{HDSPID}}$	$3.5 \times t_{SCLK0} + t_{DDSPID}$	ns
t _{dspisckrdyst}	SPI_RDY De-assertion from Valid Input SPI_CLK Edge in Slave Mode Transmit	$3.5 imes t_{\text{SCLK0}} + t_{\text{HDSPID}}$	$4.5 \times t_{SCLK0} + t_{DDSPID}$	ns

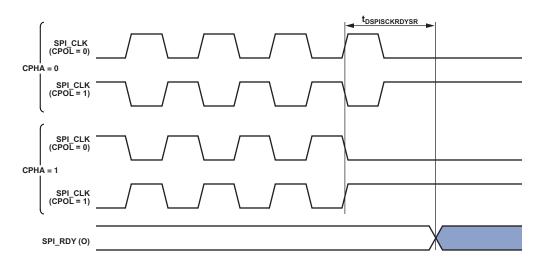


Figure 33. SPI_RDY De-assertion from Valid Input SPI_CLK Edge in Slave Mode Receive (FCCH = 0)

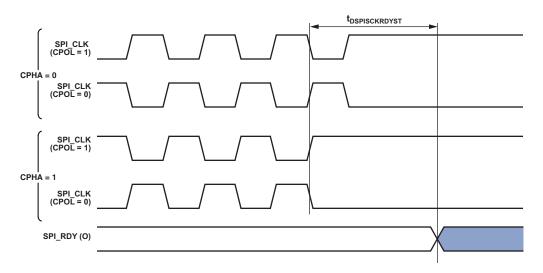


Figure 34. SPI_RDY De-assertion from Valid Input SPI_CLK Edge in Slave Mode Transmit (FCCH = 1)

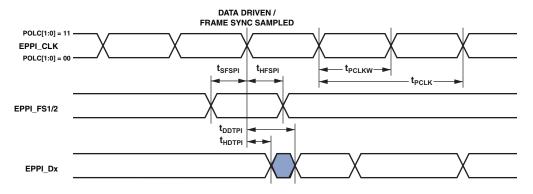


Figure 43. PPI Internal Clock GP Transmit Mode with External Frame Sync Timing

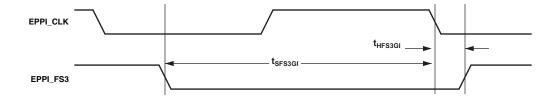


Figure 44. Clock Gating Mode with Internal Clock and External Frame Sync Timing

ORDERING GUIDE

Model ¹	Max. Core Clock	L2 SRAM	Temperature Grade ²	Package Description	Package Option
ADSP-BF700KCPZ-1	100 MHz	128K bytes	0°C to +70°C	88-Lead LFCSP_VQ	CP-88-8
ADSP-BF700KCPZ-2	200 MHz	128K bytes	0°C to +70°C	88-Lead LFCSP_VQ	CP-88-8
ADSP-BF700BCPZ-2	200 MHz	128K bytes	-40°C to +85°C	88-Lead LFCSP_VQ	CP-88-8
ADSP-BF701KBCZ-1	100 MHz	128K bytes	0°C to +70°C	184-Ball CSP_BGA	BC-184-1
ADSP-BF701KBCZ-2	200 MHz	128K bytes	0°C to +70°C	184-Ball CSP_BGA	BC-184-1
ADSP-BF701BBCZ-2	200 MHz	128K bytes	–40°C to +85°C	184-Ball CSP_BGA	BC-184-1
ADSP-BF702KCPZ-3	300 MHz	256K bytes	0°C to +70°C	88-Lead LFCSP_VQ	CP-88-8
ADSP-BF702BCPZ-3	300 MHz	256K bytes	–40°C to +85°C	88-Lead LFCSP_VQ	CP-88-8
ADSP-BF702KCPZ-4	400 MHz	256K bytes	0°C to +70°C	88-Lead LFCSP_VQ	CP-88-8
ADSP-BF702BCPZ-4	400 MHz	256K bytes	–40°C to +85°C	88-Lead LFCSP_VQ	CP-88-8
ADSP-BF703KBCZ-3	300 MHz	256K bytes	0°C to +70°C	184-Ball CSP_BGA	BC-184-1
ADSP-BF703BBCZ-3	300 MHz	256K bytes	–40°C to +85°C	184-Ball CSP_BGA	BC-184-1
ADSP-BF703KBCZ-4	400 MHz	256K bytes	0°C to +70°C	184-Ball CSP_BGA	BC-184-1
ADSP-BF703BBCZ-4	400 MHz	256K bytes	–40°C to +85°C	184-Ball CSP_BGA	BC-184-1
ADSP-BF704KCPZ-3	300 MHz	512K bytes	0°C to +70°C	88-Lead LFCSP_VQ	CP-88-8
ADSP-BF704BCPZ-3	300 MHz	512K bytes	–40°C to +85°C	88-Lead LFCSP_VQ	CP-88-8
ADSP-BF704KCPZ-4	400 MHz	512K bytes	0C to +70C	88-Lead LFCSP_VQ	CP-88-8
ADSP-BF704BCPZ-4	400 MHz	512K bytes	–40°C to +85°C	88-Lead LFCSP_VQ	CP-88-8
ADSP-BF705KBCZ-3	300 MHz	512K bytes	0°C to +70°C	184-Ball CSP_BGA	BC-184-1
ADSP-BF705BBCZ-3	300 MHz	512K bytes	-40°C to +85°C	184-Ball CSP_BGA	BC-184-1
ADSP-BF705KBCZ-4	400 MHz	512K bytes	0C to +70C	184-Ball CSP_BGA	BC-184-1
ADSP-BF705BBCZ-4	400 MHz	512K bytes	-40°C to +85°C	184-Ball CSP_BGA	BC-184-1
ADSP-BF706KCPZ-3	300 MHz	1024K bytes	0°C to +70°C	88-Lead LFCSP_VQ	CP-88-8
ADSP-BF706BCPZ-3	300 MHz	1024K bytes	-40°C to +85°C	88-Lead LFCSP_VQ	CP-88-8
ADSP-BF706KCPZ-4	400 MHz	1024K bytes	0°C to +70°C	88-Lead LFCSP_VQ	CP-88-8
ADSP-BF706BCPZ-4	400 MHz	1024K bytes	–40°C to +85°C	88-Lead LFCSP_VQ	CP-88-8
ADSP-BF707KBCZ-3	300 MHz	1024K bytes	0°C to +70°C	184-Ball CSP_BGA	BC-184-1
ADSP-BF707BBCZ-3	300 MHz	1024K bytes	–40°C to +85°C	184-Ball CSP_BGA	BC-184-1
ADSP-BF707KBCZ-4	400 MHz	1024K bytes	0°C to +70°C	184-Ball CSP_BGA	BC-184-1
ADSP-BF707BBCZ-4	400 MHz	1024K bytes	-40°C to +85°C	184-Ball CSP_BGA	BC-184-1

 1 Z = RoHS Compliant Part.

 2 Referenced temperature is ambient temperature. The ambient temperature is not a specification. See Operating Conditions on Page 50 for the junction temperature (T_j) specification which is the only temperature specification.

©2015 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D12396-0-9/15(A)

www.analog.com